Non-vanishing Terms of the Jones Polynomial

Fuad Yasin a,b , Kenichi Kawagoe^c

^aGraduate Schold of Natural Science and Technology, Kanazawa University, Japan
^bFaculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Indonesia
^cFaculty of Mathematics and Physics, Kanazawa University, Japan

Abstract. We consider the Tutte polynomial for the graph associated to the (2, 2k + 1) torus and twist knot. Up to a sign and multiplication by a power of t the Jones polynomial $V_L(t)$ of an alternating link L is equal to the Tutte polynomial $\chi(G; -t, -t^{-1})$. Therefore, the Jones polynomial could be calculated by using the Tutte polynomial for (2, 2k + 1) torus and twist knot. The Jones polynomial has a vanishing term if the knot is a (2, 2k + 1) torus knot, but there is no vanishing term if the knot is a twist knot. We look for graphs which the associated with 3-tuple of pretzel link have non-vanishing terms in the Jones polynomial. The term Jones polynomial is proven to be non-vanishing by calculated the Tutte polynomial of the given graph.

Keywords: Graph theory, knot theory, the Tutte polynomial, the Jones polynomial

1 Introduction

A link is a finite family of disjoint, smooth, oriented or unoriented, closed curves in \mathbb{R}^3 or equivalently S^3 . A knot is a link with one component. Suppose L be an unoriented link, w(L) denotes the writhe of L. We define the normalized bracket polynomial $X(L) = (-A^3)^{-w(L)} \langle L \rangle$. Then, we have the Jones polynomial

$$V_L(t) = (-A^3)^{-w(L)} \langle L \rangle \bigg|_{A=t^{-\frac{1}{4}}} \in \mathbb{Z}[t^{\frac{1}{2}}, t^{-\frac{1}{2}}]$$
(1)

The torus knot T(2, 2k+1)

Figure 1: The (2, 2k + 1) torus knot, k = 1, 2, ...

Let G_k be the medial graph of T(2, 2k + 1) (Fig. 2). The Jones polynomial of T(2, 2k - 1)

$$V_{T(2,2k+1)} = t^k + \sum_{i=1}^{2k} (-1)^{i+1} t^{i+k+1}$$
(2)

Figure 2: Medial graph of T(2, 2k + 1).

The Jones polynomial of these knot are alternating and has zero coefficient at t^{k+1} . For example:

$$k = 1 \Rightarrow V_{T(2,3)}(t) = -t^4 + t^3 + t$$

$$k = 2 \Rightarrow V_{T(2,5)}(t) = -t^7 + t^6 - t^5 + t^4 + t^2$$

$$k = 3 \Rightarrow V_{T(2,7)}(t) = -t^{10} + t^9 - t^8 + t^7 - t^6 + t^5 + t^3$$

In this paper, we construct the Jones polynomial of an alternating knot which all coefficients are non-zero. We will briefly review the standard theory of the Tutte polynomial and the connection between the Tutte polynomial and the Jones polynomial.

2 Graph Theory

ISCS 2015 Selected Papers

A graph G = (V(G), E(G)) or G = (V, E) consists of two finite sets. V(G) or V is the non-empty vertex set of the graph called vertices and E(G) or E is the edge set of the graph called edges, such that each edge e in E is assigned as an unordered pair of vertices (u, v) called the end vertices of e. A path is a sequence of edges which connect a sequence of vertices which are all distinct from one another. A cycle of a graph G is a subset of the edge set of G that forms a path such that the first node of the path corresponds to the last. An isthmus or a bridge is an edge of graph if and only if it is not contained any cycle. A loop is an edge that connects a vertex to itself.

3 The Tutte Polynomial by Deletion-Contraction

Consider the following recursive definition of the function $\chi_G(x, y)$ of a graph G, x, y are independent variables. Then Tutte polynomial is defined by:

	1	$\text{if } E(G) = \emptyset$
$\chi(G;x,y) = \langle$	$x\chi(G'_e;x,y)$	if $e \in E$ and e is an isthmus
	$y\chi(G''_e;x,y)$	if $e \in E$ and e is a loop
	$\chi(G; x, y) = \chi_{G'_{a}}(x, y) + \chi_{G''_{a}}(x, y)$	if e is neither a loop nor an isthmus

where G'_e denotes the deletion by an edge e of graph G and G''_e denotes the contraction by an edge e of graph G.

Example. If G is a complete graph K_3 , then

$$\chi(K_3; x, y) = x^2 + x + y$$

Non-vanishing Terms of the Jones Polynomial

Figure 3: An example of computing the Tutte polynomial of a graph by using deletion and contraction.

Theorem 1. (Thistlethwaite [4]) Suppose $\phi(t)$ be a sign and multiplication by power of t, Let L be an unoriented link and G be a planar graph associated with L. Then, $V_L(t) = \phi(t)\chi(G; -t, -t^{-1})$

Example. Let K be a trefoil knot, G is a medial graph of knot K.

$$\chi(G; x, y) = x^{2} + x + y$$
$$\chi(G; -t, -t^{-1}) = t^{2} - t - t^{-1}$$
$$V_{K}(t) = t + t^{3} - t^{4}$$
$$V_{K}(t) = (-t^{2})\chi(G; -t, -t^{-1})$$

Figure 4: Trefoil knot with its medial graph.

4 The Jones Polynomial of 3-Tuple Pretzel Link

Let $G_{(p,q,r)}$ be a connected planar graph with three number of faces. p, q, and r are the number of vertices of graph $G_{(p,q,r)}$ (Fig. 5). The graph $G_{(p,q,r)}$ is associated with 3-tuple pretzel link.

Figure 5: Graph $G_{(p,q,r)}$ with three number of faces $f_1,\,f_2,\,{\rm and}\,\,f_3$

We have the Tutte polynomial of ${\cal G}_{(p,q,r)}$

$$\chi(G_{(p,q,r)};x,y) = (y-1)^2 + (y-1)\sum_{i=0}^p x^i + \sum_{j=0}^q x^j \left(y-1+\sum_{i=0}^p x^i\right) + \sum_{k=0}^r \left(x^k y + \sum_{l=0}^{q+p} x^{k+l+1}\right)$$
(3)

By changing variable x = -t and $y = -t^{-1}$ from (3) we get

$$\chi(G_{(p,q,r)}; -t, -t^{-1}) = t^{-2} + 2t^{-1} + 1 + (-t^{-1} - 1) \sum_{i=0}^{p} (-t)^{i} + \sum_{j=0}^{q} (-t)^{j} \left(-t^{-1} - 1 + \sum_{i=0}^{p} (-t)^{i} \right) + \sum_{k=0}^{r} \left((-t)^{k-1} + \sum_{l=0}^{q+p} (-t)^{k+l+1} \right)$$

$$(4)$$

We simplify the Tutte polynomial of $(-t, -t^{-1})$ of graph $G_{(p,q,r)}$

$$\chi(G_{(p,q,r)}; -t, -t^{-1}) = \frac{1}{t^2(t+1)^2} \times [1+t+\{2-(-t)^p - (-t)^q - (-t)^r\} t^2 + \{1-(-t)^p - (-t)^q - (-t)^r\} t^3 + \{1-(-t)^p - (-t)^q - (-t)^r\} t^4 + (-t)^{p+q+r+5}]$$
(5)

So by theorem 1 we get the Jones polynomial of link associated with graph $G_{(p,q,r)}$

$$V_L(t) = \frac{\phi(t)}{t^2(t+1)^2} \times [1+t+\{2-(-t)^p-(-t)^q-(-t)^r\}t^2 + \{1-(-t)^p-(-t)^q-(-t)^r\}t^3 + \{1-(-t)^p-(-t)^q-(-t)^r\}t^4 + (-t)^{p+q+r+5}]$$
(6)

Where $\phi = (-t^{\frac{3}{4}})^w (t^{-\frac{1}{4}(p+q+r-1)})$ [3]

ISCS 2015 Selected Papers

Statement of Results $\mathbf{5}$

Theorem 2. All coefficients in $\chi(G; -t, -t^{-1})$ are non-zero

Proof. Let $\sum_{i=1}^{n} (-1)^{i} a_{i} t^{i}$ be a Laurent polynomial with alternating sign and non-vanishing term $(a_i \neq 0).$

Consider $\sum_{i}^{n} (-1)^{i} a_{i} t^{i} \sum_{i}^{m} (-1)^{i} b_{i} t^{i} = \sum_{i}^{m+n} (-1)^{i} c_{i} t^{i}$ and $\sum_{i}^{m} \sum_{i}^{n} (-1)^{i} a_{i} t^{i} = \sum_{i}^{m+n} (-1)^{i} d_{i} t^{i}$. By using the symmetricity of Tutte polynomial, we will show all coefficients of the polynomial with

alternating sign in (4) are non-zero if at least p, q, r is greater than zero, assume that $p \leq q \leq r$. Let r > 0, we get the Tutte polynomial of $(-t, -t^{-1})$ for graph $G_{(p,q,r)}$

$$\begin{split} \chi(G_{(p,q,r)};-t,-t^{-1}) &= t^{-2} + 2t^{-1} + 1 + (-t^{-1}-1)\sum_{i=0}^{p} (-t)^{i} \\ &+ \sum_{j=0}^{q} (-t)^{j} \left(-t^{-1} - 1 + \sum_{i=0}^{p} (-t)^{i} \right) \\ &+ \sum_{k=0}^{r} \left((-t)^{k-1} + \sum_{l=0}^{q+p} (-t)^{k+l+1} \right) \\ &= \underbrace{t^{-2} + 1}_{A} + \sum_{i=0}^{p-1} (-t)^{i} + \sum_{i=0}^{q-1} (-t)^{i} \\ &+ \sum_{j=1}^{q} (-t)^{j} \sum_{i=1}^{p} (-t)^{i} + \sum_{k=0}^{r} (-t)^{k-1} \\ &+ \underbrace{\sum_{k=0}^{r} \sum_{l=0}^{q+p} (-t)^{k+l+1}}_{C_{p,q,r}} \end{split}$$

$A = t^{-2}$	2 +1		
$B_r =$	$-t^{-1} + 1 - t + t^2 - t^3 +$	···+	$(-t)^{r-1}$
$C_{p,q,r} =$	$-t + t^2 - t^3 +$	···+	$(-t)^{q+p+1}$
	$+t^2 - t^3 + t^4 +$	···+	$(-t)^{q+p+2}$
	$-t^3 + t^4 - t^5 +$	+	$(-t)^{q+p+3}$
	+(-	$(-t)^{r+1} + (-t)^{r+2} + (-t)^{r+3} + \dots + (-t)^{r+3}$	$(-t)^{r+q+p+1}$

All coefficients of polynomial terms $A + B_r + C_{p,q,r}$ are non-zero. Define deg⁻ be the low-est degree of its terms. Then, deg⁻ $(\chi(G_{(p,q,r)}; -t, -t^{-1})) = deg^- (A + B_r + C_{p,q,r}) = -2$ and deg $(\chi(G_{(p,q,r)}; -t, -t^{-1})) = deg (A + B_r + C_{p,q,r}) = r + q + p + 1$. Therefore, all coefficients of polynomial $\chi(G_{(p,q,r)}; -t, -t^{-1})$ are non-zero. \Box

ISCS 2015 Selected Papers

Corollary 1. All coefficients in the Jones polynomial of 3-tuple of pretzel link are non-zero. *Proof.* Let L be a 3-tuple of pretzel link.

Consider $\chi(G_{(p,q,r)}; -t, -t^{-1}) = \sum_{i=-2}^{r+q+p+1} (-1)^i a_i t^i$ be the Tutte polynomial with alternating sign and non-vanishing term $(a_i \neq 0)$.

Let $\phi(t) = (-1)^h t^k$ be a sign and multiplication by power of t.

Since
$$V_L(t) = \phi(t)\chi(G_{(p,q,r)}; -t, -t^{-1}) = (-1)^h t^k \sum_{i=-2}^{r+q+p+1} (-1)^i a_i t^i = \sum_{i=-2}^{r+q+p+1} (-1)^{h+i} a_i t^{k+i}.$$

Therefore, all coefficients of $V_L(t)$ are non-zero.

Corollary 2. All coefficients in the Jones polynomial of n-tuple pretzel link are non-zero. Proof. Let $P(c_1, c_2, \ldots, c_n)$ be a pretzel link determined an n-tuple, $G(c_1, c_2, \ldots, c_n)$ is a graph associated with $P(c_1, c_2, \ldots, c_n)$. Choose p, q, r as the first three largest number of c_1, c_2, \ldots, c_n where $p \leq q \leq r$. Then we say that, all coefficients in $\chi(G_{(c_1, c_2, \ldots, c_n)}; -t, -t^{-1})$ are non-zero with $\deg\{\chi(G_{(c_1, c_2, \ldots, c_n)}; -t, -t^{-1})\} = m = r + q + p + 1$. Let $\phi(t) = (-1)^h t^k$ be a sign and multiplication by power of t.

Since
$$V_{P(c_1,c_2,...,c_n)}(t) = \phi(t)\chi(G_{(c_1,c_2,...,c_n)}; -t, -t^{-1}) = (-1)^h t^k \sum_{i=-2}^m (-1)^i a_i t^i = \sum_{i=-2}^m (-1)^{h+i} a_i t^{k+i}$$
.
Therefore, all coefficients of V_{-i} , \dots , (t) are non-zero \Box .

Therefore, all coefficients of $V_{P(c_1,c_2,...,c_n)}(t)$ are non-zero.

Acknowledgment

We would like to thank Japanese Goverment (Monbukagakusho: MEXT) for the financial support in our research.

A special thank to Prof. Hiroshi Iwasaki, Andine Astiany, DDP KU-ITB 2013, our family, Computational Science of ITB and Kanazawa University's lecturers, and Kanazawa University for all the support.

References

- [1] N. L. Biggs. The tutte polynomial. Ch. 13 in Algebraic Graph Theory, 2nd ed.
- [2] Goodall, Andrew. The Tutte polynomial and related polynomials. Universita Karlova v Praze. 2014.
- [3] K. Mimachi. The Jones polynomial and the intersection numbers of twisted cycles associated with selberg type integral. *Journal of Knot Theory and Its Ramifications*, 20(3):469496, 2011.
- [4] Morwen B. Thistlethwaite. A spanning tree expansion of the jones polynomial. *Topology*, 26(3):297309, 1986.