Non-vanishing Terms of the Jones Polynomial

Fuad Yasin ${ }^{a, b}$, Kenichi Kawagoe ${ }^{c}$
${ }^{a}$ Graduate Schold of Natural Science and Technology, Kanazawa University, Japan
${ }^{b}$ Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Indonesia
${ }^{c}$ Faculty of Mathematics and Physics, Kanazawa University, Japan

Abstract

We consider the Tutte polynomial for the graph associated to the $(2,2 k+1)$ torus and twist knot. Up to a sign and multiplication by a power of t the Jones polynomial $V_{L}(t)$ of an alternating link L is equal to the Tutte polynomial $\chi\left(G ;-t,-t^{-1}\right)$. Therefore, the Jones polynomial could be calculated by using the Tutte polynomial for $(2,2 k+1)$ torus and twist knot. The Jones polynomial has a vanishing term if the knot is a $(2,2 k+1)$ torus knot, but there is no vanishing term if the knot is a twist knot. We look for graphs which the associated with 3-tuple of pretzel link have non-vanishing terms in the Jones polynomial. The term Jones polynomial is proven to be non-vanishing by calculated the Tutte polynomial of the given graph.

Keywords: Graph theory, knot theory, the Tutte polynomial, the Jones polynomial

1 Introduction

A link is a finite family of disjoint, smooth, oriented or unoriented, closed curves in \mathbb{R}^{3} or equivalently S^{3}. A knot is a link with one component. Suppose L be an unoriented link, $w(L)$ denotes the writhe of L. We define the normalized bracket polynomial $X(L)=\left(-A^{3}\right)^{-w(L)}\langle L\rangle$. Then, we have the Jones polynomial

$$
\begin{equation*}
V_{L}(t)=\left.\left(-A^{3}\right)^{-w(L)}\langle L\rangle\right|_{A=t^{-\frac{1}{4}}} \in \mathbb{Z}\left[t^{\frac{1}{2}}, t^{-\frac{1}{2}}\right] \tag{1}
\end{equation*}
$$

The torus knot $T(2,2 k+1)$

Figure 1: The $(2,2 k+1)$ torus knot, $k=1,2, \ldots$
Let G_{k} be the medial graph of $T(2,2 k+1)$ (Fig. 2).
The Jones polynomial of $T(2,2 k-1)$

$$
\begin{equation*}
V_{T(2,2 k+1)}=t^{k}+\sum_{i=1}^{2 k}(-1)^{i+1} t^{i+k+1} \tag{2}
\end{equation*}
$$

G_{1}

G_{2}

G_{3}

G_{k}

Figure 2: Medial graph of $T(2,2 k+1)$.

The Jones polynomial of these knot are alternating and has zero coefficient at t^{k+1}. For example:

$$
\begin{array}{lr}
k=1 \Rightarrow V_{T(2,3)}(t)= & -t^{4}+t^{3}+t \\
k=2 \Rightarrow V_{T(2,5)}(t)= & -t^{7}+t^{6}-t^{5}+t^{4}+t^{2} \\
k=3 & \Rightarrow V_{T(2,7)}(t)=-t^{10}+t^{9}-t^{8}+t^{7}-t^{6}+t^{5}+t^{3}
\end{array}
$$

In this paper, we construct the Jones polynomial of an alternating knot which all coefficients are non-zero. We will briefly review the standard theory of the Tutte polynomial and the connection between the Tutte polynomial and the Jones polynomial.

2 Graph Theory

A graph $G=(V(G), E(G))$ or $G=(V, E)$ consists of two finite sets. $V(G)$ or V is the non-empty vertex set of the graph called vertices and $E(G)$ or E is the edge set of the graph called edges, such that each edge e in E is assigned as an unordered pair of vertices (u, v) called the end vertices of e. A path is a sequence of edges which connect a sequence of vertices which are all distinct from one another. A cycle of a graph G is a subset of the edge set of G that forms a path such that the first node of the path corresponds to the last. An isthmus or a bridge is an edge of graph if and only if it is not contained any cycle. A loop is an edge that connects a vertex to itself.

3 The Tutte Polynomial by Deletion-Contraction

Consider the following recursive definition of the function $\chi_{G}(x, y)$ of a graph G, x, y are independent variables. Then Tutte polynomal is defined by:
$\chi(G ; x, y)= \begin{cases}1 & \text { if } E(G)=\emptyset \\ x \chi\left(G_{e}^{\prime} ; x, y\right) & \text { if } e \in E \text { and } e \text { is an isthmus } \\ y \chi\left(G_{e}^{\prime \prime} ; x, y\right) & \text { if } e \in E \text { and } e \text { is a loop } \\ \chi(G ; x, y)=\chi_{G_{e}^{\prime}}(x, y)+\chi_{G_{e}^{\prime \prime}}(x, y) & \text { if e is neither a loop nor an isthmus }\end{cases}$
where G_{e}^{\prime} denotes the deletion by an edge e of graph G and $G_{e}^{\prime \prime}$ denotes the contraction by an edge e of graph G.
Example. If G is a complete graph K_{3}, then

$$
\chi\left(K_{3} ; x, y\right)=x^{2}+x+y
$$

Figure 3: An example of computing the Tutte polynomial of a graph by using deletion and contraction.

Theorem 1. (Thistlethwaite [4]) Suppose $\phi(t)$ be a sign and multiplication by power of t, Let L be an unoriented link and G be a planar graph associated with L.
Then, $V_{L}(t)=\phi(t) \chi\left(G ;-t,-t^{-1}\right)$
Example. Let K be a trefoil knot, G is a medial graph of knot K.

$$
\begin{gathered}
\chi(G ; x, y)=x^{2}+x+y \\
\chi\left(G ;-t,-t^{-1}\right)=t^{2}-t-t^{-1} \\
V_{K}(t)=t+t^{3}-t^{4} \\
V_{K}(t)=\left(-t^{2}\right) \chi\left(G ;-t,-t^{-1}\right)
\end{gathered}
$$

Figure 4: Trefoil knot with its medial graph.

4 The Jones Polynomial of 3-Tuple Pretzel Link

Let $G_{(p, q, r)}$ be a connected planar graph with three number of faces. p, q, and r are the number of vertices of graph $G_{(p, q, r)}$ (Fig. 5). The graph $G_{(p, q, r)}$ is associated with 3-tuple pretzel link.

Figure 5: Graph $G_{(p, q, r)}$ with three number of faces f_{1}, f_{2}, and f_{3}

We have the Tutte polynomial of $G_{(p, q, r)}$

$$
\begin{equation*}
\chi\left(G_{(p, q, r)} ; x, y\right)=(y-1)^{2}+(y-1) \sum_{i=0}^{p} x^{i}+\sum_{j=0}^{q} x^{j}\left(y-1+\sum_{i=0}^{p} x^{i}\right)+\sum_{k=0}^{r}\left(x^{k} y+\sum_{l=0}^{q+p} x^{k+l+1}\right) \tag{3}
\end{equation*}
$$

By changing variable $x=-t$ and $y=-t^{-1}$ from (3) we get

$$
\begin{align*}
\chi\left(G_{(p, q, r)} ;-t,-t^{-1}\right) & =t^{-2}+2 t^{-1}+1+\left(-t^{-1}-1\right) \sum_{i=0}^{p}(-t)^{i} \\
& +\sum_{j=0}^{q}(-t)^{j}\left(-t^{-1}-1+\sum_{i=0}^{p}(-t)^{i}\right) \tag{4}\\
& +\sum_{k=0}^{r}\left((-t)^{k-1}+\sum_{l=0}^{q+p}(-t)^{k+l+1}\right)
\end{align*}
$$

We simplify the Tutte polynomial of $\left(-t,-t^{-1}\right)$ of graph $G_{(p, q, r)}$

$$
\begin{align*}
\chi\left(G_{(p, q, r)} ;-t,-t^{-1}\right) & =\frac{1}{t^{2}(t+1)^{2}} \\
& \times\left[1+t+\left\{2-(-t)^{p}-(-t)^{q}-(-t)^{r}\right\} t^{2}\right. \\
& +\left\{1-(-t)^{p}-(-t)^{q}-(-t)^{r}\right\} t^{3} \tag{5}\\
& +\left\{1-(-t)^{p}-(-t)^{q}-(-t)^{r}\right\} t^{4} \\
& \left.+(-t)^{p+q+r+5}\right]
\end{align*}
$$

So by theorem 1 we get the Jones polynomial of link associated with graph $G_{(p, q, r)}$

$$
\begin{align*}
V_{L}(t) & =\frac{\phi(t)}{t^{2}(t+1)^{2}} \\
& \times\left[1+t+\left\{2-(-t)^{p}-(-t)^{q}-(-t)^{r}\right\} t^{2}\right. \\
& +\left\{1-(-t)^{p}-(-t)^{q}-(-t)^{r}\right\} t^{3} \tag{6}\\
& +\left\{1-(-t)^{p}-(-t)^{q}-(-t)^{r}\right\} t^{4} \\
& \left.+(-t)^{p+q+r+5}\right]
\end{align*}
$$

Where $\phi=\left(-t^{\frac{3}{4}}\right)^{w}\left(t^{-\frac{1}{4}(p+q+r-1)}\right)[3]$

5 Statement of Results

Theorem 2. All coefficients in $\chi\left(G ;-t,-t^{-1}\right)$ are non-zero
Proof. Let $\sum_{i}^{n}(-1)^{i} a_{i} t^{i}$ be a Laurent polynomial with alternating sign and non-vanishing term $\left(a_{i} \neq 0\right)$.
Consider $\sum_{i}^{n}(-1)^{i} a_{i} t^{i} \sum_{i}^{m}(-1)^{i} b_{i} t^{i}=\sum_{i}^{m+n}(-1)^{i} c_{i} t^{i}$ and $\sum_{i}^{m} \sum_{i}^{n}(-1)^{i} a_{i} t^{i}=\sum_{i}^{m+n}(-1)^{i} d_{i} t^{i}$.
By using the symmetricity of Tutte polynomial, we will show all coefficients of the polynomial with alternating sign in (4) are non-zero if at least p, q, r is greater than zero, assume that $p \leq q \leq r$. Let $r>0$, we get the Tutte polynomial of $\left(-t,-t^{-1}\right)$ for graph $G_{(p, q, r)}$

$$
\begin{aligned}
\chi\left(G_{(p, q, r)} ;-t,-t^{-1}\right)= & t^{-2}+2 t^{-1}+1+\left(-t^{-1}-1\right) \sum_{i=0}^{p}(-t)^{i} \\
& +\sum_{j=0}^{q}(-t)^{j}\left(-t^{-1}-1+\sum_{i=0}^{p}(-t)^{i}\right) \\
& +\sum_{k=0}^{r}\left((-t)^{k-1}+\sum_{l=0}^{q+p}(-t)^{k+l+1}\right) \\
= & \underbrace{t^{-2}+1}_{A}+\sum_{i=0}^{p-1}(-t)^{i}+\sum_{i=0}^{q-1}(-t)^{i} \\
& +\sum_{j=1}^{\sum_{j=1}^{q}(-t)^{j} \sum_{i=1}^{p}(-t)^{i}}+\underbrace{\sum_{k=0}^{r}(-t)^{k-1}}_{B_{r}} \\
& +\underbrace{\sum_{k=0}^{r} \sum_{l=0}^{q+p}(-t)^{k+l+1}}_{C_{p, q, r}}
\end{aligned}
$$

$$
\begin{aligned}
& A=t^{-2} \quad+1 \\
& B_{r}=-t^{-1}+1-t+t^{2}-t^{3}+\quad \cdots+\quad(-t)^{r-1} \\
& C_{p, q, r}=\quad-t+t^{2}-t^{3}+\quad \cdots+(-t)^{q+p+1} \\
& +t^{2}-t^{3}+t^{4}+\quad \cdots+(-t)^{q+p+2} \\
& -t^{3}+t^{4}-t^{5}+\quad \cdots+(-t)^{q+p+3} \\
& +(-t)^{r+1}+(-t)^{r+2}+(-t)^{r+3}+\cdots+(-t)^{r+q+p+1}
\end{aligned}
$$

All coefficients of polynomial terms $A+B_{r}+C_{p, q, r}$ are non-zero. Define deg^{-}be the lowest degree of its terms. Then, $\operatorname{deg}^{-}\left(\chi\left(G_{(p, q, r)} ;-t,-t^{-1}\right)\right)=\operatorname{deg}^{-}\left(A+B_{r}+C_{p, q, r}\right)=-2$ and $\operatorname{deg}\left(\chi\left(G_{(p, q, r)} ;-t,-t^{-1}\right)\right)=\operatorname{deg}\left(A+B_{r}+C_{p, q, r}\right)=r+q+p+1$. Therefore, all coefficients of polynomial $\chi\left(G_{(p, q, r)} ;-t,-t^{-1}\right)$ are non-zero.

Corollary 1. All coefficients in the Jones polynomial of 3-tuple of pretzel link are non-zero. Proof. Let L be a 3 -tuple of pretzel link.
Consider $\chi\left(G_{(p, q, r)} ;-t,-t^{-1}\right)=\sum_{i=-2}^{r+q+p+1}(-1)^{i} a_{i} t^{i}$ be the Tutte polynomial with alternating sign and non-vanishing term $\left(a_{i} \neq 0\right)$.
Let $\phi(t)=(-1)^{h} t^{k}$ be a sign and multiplication by power of t.
Since $V_{L}(t)=\phi(t) \chi\left(G_{(p, q, r)} ;-t,-t^{-1}\right)=(-1)^{h} t^{k} \sum_{i=-2}^{r+q+p+1}(-1)^{i} a_{i} t^{i}=\sum_{i=-2}^{r+q+p+1}(-1)^{h+i} a_{i} t^{k+i}$.
Therefore, all coefficients of $V_{L}(t)$ are non-zero. \square
Corollary 2. All coefficients in the Jones polynomial of n-tuple pretzel link are non-zero.
Proof. Let $P\left(c_{1}, c_{2}, \ldots, c_{n}\right)$ be a pretzel link determined an n-tuple, $G\left(c_{1}, c_{2}, \ldots, c_{n}\right)$ is a graph associated with $P\left(c_{1}, c_{2}, \ldots, c_{n}\right)$. Choose p, q, r as the first three largest number of $c_{1}, c_{2}, \ldots, c_{n}$ where $p \leq q \leq r$. Then we say that, all coefficients in $\chi\left(G_{\left(c_{1}, c_{2}, \ldots, c_{n}\right)} ;-t,-t^{-1}\right)$ are non-zero with $\operatorname{deg}\left\{\chi\left(G_{\left(c_{1}, c_{2}, \ldots, c_{n}\right)} ;-t,-t^{-1}\right)\right\}=m=r+q+p+1$.
Let $\phi(t)=(-1)^{h} t^{k}$ be a sign and multiplication by power of t.
Since $V_{P\left(c_{1}, c_{2}, \ldots, c_{n}\right)}(t)=\phi(t) \chi\left(G_{\left(c_{1}, c_{2}, \ldots, c_{n}\right)} ;-t,-t^{-1}\right)=(-1)^{h} t^{k} \sum_{i=-2}^{m}(-1)^{i} a_{i} t^{i}=\sum_{i=-2}^{m}(-1)^{h+i} a_{i} t^{k+i}$.
Therefore, all coefficients of $V_{P\left(c_{1}, c_{2}, \ldots, c_{n}\right)}(t)$ are non-zero.

Acknowledgment

We would like to thank Japanese Goverment (Monbukagakusho: MEXT) for the financial support in our research.
A special thank to Prof. Hiroshi Iwasaki, Andine Astiany, DDP KU-ITB 2013, our family, Computational Science of ITB and Kanazawa University's lecturers, and Kanazawa University for all the support.

References

[1] N. L. Biggs. The tutte polynomial. Ch. 13 in Algebraic Graph Theory, 2nd ed.
[2] Goodall, Andrew. The Tutte polynomial and related polynomials. Univerzita Karlova v Praze. 2014.
[3] K. Mimachi. The Jones polynomial and the intersection numbers of twisted cycles associated with selberg type integral. Journal of Knot Theory and Its Ramifications, 20(3):469496, 2011.
[4] Morwen B. Thistlethwaite. A spanning tree expansion of the jones polynomial. Topology, 26(3):297309, 1986.

