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Abstract. We consider the Tutte polynomial for the graph associated to the (2, 2k + 1) torus and
twist knot. Up to a sign and multiplication by a power of t the Jones polynomial VL(t) of an al-
ternating link L is equal to the Tutte polynomial χ(G;−t,−t−1 ). Therefore, the Jones polynomial
could be calculated by using the Tutte polynomial for (2, 2k + 1) torus and twist knot. The Jones
polynomial has a vanishing term if the knot is a (2, 2k + 1) torus knot, but there is no vanishing
term if the knot is a twist knot. We look for graphs which the associated with 3-tuple of pretzel
link have non-vanishing terms in the Jones polynomial. The term Jones polynomial is proven to
be non-vanishing by calculated the Tutte polynomial of the given graph.
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1 Introduction

A link is a finite family of disjoint, smooth, oriented or unoriented, closed curves in R3 or equiva-
lently S3. A knot is a link with one component. Suppose L be an unoriented link, w(L) denotes
the writhe of L. We define the normalized bracket polynomial X(L) = (−A3)−w(L)

〈
L
〉
. Then, we

have the Jones polynomial

VL(t) = (−A3)−w(L)
〈
L
〉∣∣∣∣

A=t−
1
4

∈ Z[t
1
2 , t−

1
2 ] (1)

The torus knot T (2, 2k + 1)

Figure 1: The (2, 2k + 1) torus knot, k = 1, 2, . . .

Let Gk be the medial graph of T (2, 2k + 1) (Fig. 2).

The Jones polynomial of T (2, 2k − 1)

VT (2,2k+1) = tk +
2k∑
i=1

(−1)i+1ti+k+1 (2)
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Figure 2: Medial graph of T (2, 2k + 1).

The Jones polynomial of these knot are alternating and has zero coefficient at tk+1. For example:

k = 1⇒ VT (2,3)(t) = − t4 + t3 + t

k = 2⇒ VT (2,5)(t) = − t7 + t6 − t5 + t4 + t2

k = 3⇒ VT (2,7)(t) = − t10 + t9 − t8 + t7 − t6 + t5 + t3

In this paper, we construct the Jones polynomial of an alternating knot which all coefficients are
non-zero. We will briefly review the standard theory of the Tutte polynomial and the connection
between the Tutte polynomial and the Jones polynomial.

2 Graph Theory

A graph G = (V (G), E(G)) or G = (V,E) consists of two finite sets. V (G) or V is the non-empty
vertex set of the graph called vertices and E(G) or E is the edge set of the graph called edges, such
that each edge e in E is assigned as an unordered pair of vertices (u, v) called the end vertices of
e. A path is a sequence of edges which connect a sequence of vertices which are all distinct from
one another. A cycle of a graph G is a subset of the edge set of G that forms a path such that the
first node of the path corresponds to the last. An isthmus or a bridge is an edge of graph if and
only if it is not contained any cycle. A loop is an edge that connects a vertex to itself.

3 The Tutte Polynomial by Deletion-Contraction

Consider the following recursive definition of the function χG(x, y) of a graph G, x, y are indepen-
dent variables. Then Tutte polynomal is defined by:

χ(G;x, y) =


1 if E(G) = ∅
xχ(G′e;x, y) if e ∈ E and e is an isthmus

yχ(G′′e ;x, y) if e ∈ E and e is a loop

χ(G;x, y) = χG′e(x, y) + χG′′e (x, y) if e is neither a loop nor an isthmus

where G′e denotes the deletion by an edge e of graph G and G′′e denotes the contraction by an edge
e of graph G.
Example. If G is a complete graph K3, then

χ(K3;x, y) = x2 + x+ y

70



ISCS 2015 Selected Papers Non-vanishing Terms of the Jones Polynomial

Figure 3: An example of computing the Tutte polynomial of a graph by using deletion and contraction.

Theorem 1. (Thistlethwaite [4]) Suppose φ(t) be a sign and multiplication by power of t,
Let L be an unoriented link and G be a planar graph associated with L.
Then, VL(t) = φ(t)χ(G;−t,−t−1)
Example. Let K be a trefoil knot, G is a medial graph of knot K.

χ(G;x, y) = x2 + x+ y

χ(G;−t,−t−1) = t2 − t− t−1

VK(t) = t+ t3 − t4

VK(t) = (−t2)χ(G;−t,−t−1)

Figure 4: Trefoil knot with its medial graph.

4 The Jones Polynomial of 3-Tuple Pretzel Link

Let G(p,q,r) be a connected planar graph with three number of faces. p, q, and r are the number of
vertices of graph G(p,q,r) (Fig. 5). The graph G(p,q,r) is associated with 3-tuple pretzel link.
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Figure 5: Graph G(p,q,r) with three number of faces f1, f2, and f3

We have the Tutte polynomial of G(p,q,r)

χ(G(p,q,r);x, y) = (y− 1)2 + (y− 1)

p∑
i=0

xi +

q∑
j=0

xj
(
y− 1 +

p∑
i=0

xi
)

+
r∑

k=0

(
xky+

q+p∑
l=0

xk+l+1

)
(3)

By changing variable x = −t and y = −t−1 from (3) we get

χ(G(p,q,r);−t,−t−1) = t−2 + 2t−1 + 1 + (−t−1 − 1)

p∑
i=0

(−t)i

+

q∑
j=0

(−t)j
(
− t−1 − 1 +

p∑
i=0

(−t)i
)

+

r∑
k=0

(
(−t)k−1 +

q+p∑
l=0

(−t)k+l+1

)
(4)

We simplify the Tutte polynomial of (−t,−t−1) of graph G(p,q,r)

χ(G(p,q,r);−t,−t−1) =
1

t2(t+ 1)2

× [1 + t+ {2− (−t)p − (−t)q − (−t)r} t2

+ {1− (−t)p − (−t)q − (−t)r} t3

+ {1− (−t)p − (−t)q − (−t)r} t4

+ (−t)p+q+r+5]

(5)

So by theorem 1 we get the Jones polynomial of link associated with graph G(p,q,r)

VL(t) =
φ(t)

t2(t+ 1)2

× [1 + t+ {2− (−t)p − (−t)q − (−t)r} t2

+ {1− (−t)p − (−t)q − (−t)r} t3

+ {1− (−t)p − (−t)q − (−t)r} t4

+ (−t)p+q+r+5]

(6)

Where φ = (−t 3
4 )w(t−

1
4 (p+q+r−1)) [3]
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5 Statement of Results

Theorem 2. All coefficients in χ(G;−t,−t−1) are non-zero

Proof. Let
n∑
i

(−1)iait
i be a Laurent polynomial with alternating sign and non-vanishing term

(ai 6= 0).

Consider
n∑
i

(−1)iait
i
m∑
i

(−1)ibit
i =

m+n∑
i

(−1)icit
i and

m∑
i

n∑
i

(−1)iait
i =

m+n∑
i

(−1)idit
i.

By using the symmetricity of Tutte polynomial, we will show all coefficients of the polynomial with
alternating sign in (4) are non-zero if at least p, q, r is greater than zero, assume that p ≤ q ≤ r.
Let r > 0, we get the Tutte polynomial of (−t,−t−1) for graph G(p,q,r)

χ(G(p,q,r);−t,−t−1) = t−2 + 2t−1 + 1 + (−t−1 − 1)

p∑
i=0

(−t)i

+

q∑
j=0

(−t)j
(
− t−1 − 1 +

p∑
i=0

(−t)i
)

+
r∑

k=0

(
(−t)k−1 +

q+p∑
l=0

(−t)k+l+1

)

= t−2 + 1︸ ︷︷ ︸
A

+

p−1∑
i=0

(−t)i +

q−1∑
i=0

(−t)i

+

q∑
j=1

(−t)j
p∑

i=1

(−t)i +
r∑

k=0

(−t)k−1︸ ︷︷ ︸
Br

+
r∑

k=0

q+p∑
l=0

(−t)k+l+1

︸ ︷︷ ︸
Cp,q,r

A = t−2 + 1

Br = − t−1 + 1− t+ t2 − t3+ · · ·+ (−t)r−1

Cp,q,r = − t+ t2 − t3+ · · ·+ (−t)q+p+1

+ t2 − t3 + t4 + · · ·+ (−t)q+p+2

− t3 + t4 − t5+ · · ·+ (−t)q+p+3

+(−t)r+1 + (−t)r+2 + (−t)r+3+ · · ·+(−t)r+q+p+1

All coefficients of polynomial terms A + Br + Cp,q,r are non-zero. Define deg− be the low-
est degree of its terms. Then, deg−

(
χ(G(p,q,r);−t,−t−1)

)
= deg− (A+Br + Cp,q,r) = −2 and

deg
(
χ(G(p,q,r);−t,−t−1)

)
= deg (A+Br + Cp,q,r) = r + q + p + 1. Therefore, all coefficients of

polynomial χ(G(p,q,r);−t,−t−1) are non-zero.�
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Corollary 1. All coefficients in the Jones polynomial of 3-tuple of pretzel link are non-zero.
Proof. Let L be a 3-tuple of pretzel link.

Consider χ(G(p,q,r);−t,−t−1) =
r+q+p+1∑

i=−2
(−1)iait

i be the Tutte polynomial with alternating sign

and non-vanishing term (ai 6= 0).
Let φ(t) = (−1)htk be a sign and multiplication by power of t.

Since VL(t) = φ(t)χ(G(p,q,r);−t,−t−1) = (−1)htk
r+q+p+1∑

i=−2
(−1)iait

i =
r+q+p+1∑

i=−2
(−1)h+iait

k+i.

Therefore, all coefficients of VL(t) are non-zero.�
Corollary 2. All coefficients in the Jones polynomial of n-tuple pretzel link are non-zero.
Proof. Let P (c1, c2, . . . , cn) be a pretzel link determined an n-tuple, G(c1, c2, . . . , cn) is a graph
associated with P (c1, c2, . . . , cn). Choose p, q, r as the first three largest number of c1, c2, . . . , cn
where p ≤ q ≤ r. Then we say that, all coefficients in χ(G(c1,c2,...,cn);−t,−t−1) are non-zero with
deg{χ(G(c1,c2,...,cn);−t,−t−1)} = m = r + q + p+ 1.

Let φ(t) = (−1)htk be a sign and multiplication by power of t.

Since VP (c1,c2,...,cn)(t) = φ(t)χ(G(c1,c2,...,cn);−t,−t−1) = (−1)htk
m∑

i=−2
(−1)iait

i =
m∑

i=−2
(−1)h+iait

k+i.

Therefore, all coefficients of VP (c1,c2,...,cn)(t) are non-zero.�
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