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1 Introduction

Let Fq be the finite field of q-elements and V = Fn
q the n-dimensional vector space over Fq consisting

of row vectors :
V = {v = (v1, v2, ..., vn) | vi ∈ Fq, (1 ≤ i ≤ n)}.

Let X denote the set

(
V
k

)
q

of k-dimensional subspace of V and define a symmetric relation ∼ on

X by
U1 ∼ U2 ⇐⇒ dim(U1 ∩ U2) = k − 1.

The graph Γ = (X,∼) is called the q-Johnson graph and denoted by Jq(n, k). We may assume

k ≤ n

2
, since Jq(n, k) is isomorphic to Jq(n, n− k). Thus the diameter of Γ is k:

k = max{∂(U1, U2) | U1, U2 ∈ X},

where ∂(U1, U2) is the distance between U1 and U2 in Γ, i.e., the length of shorthest paths joining
U1 and U2.

Note it holds that
∂(U1, U2) = k − dim(U1 ∩ U2).

The reader is referred to [1] for basic properties of Jq(n, k).

Fix a base vertex U0 ∈ X and define the i-th subconstituent Γi(U0) by

Γi(U0) = {U ∈ X | ∂(U0, U) = i}.

We call Γk(U0) the farthest subconstituent.

In the case of n = 2k, it is well-known that there is a bijection φ from Γk(U0) to the set Mk(q) of
k×k matrices over Fq such that U1, U2 ∈ Γk(U0) are adjacent if and only if φ(U1)−φ(U2) has rank
1. In other words, the farthest subconstituent Γk(U0) is isomorphic to the bilinear forms graph
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Mk(q). This paper aims to generalize this fact for n ≥ 2k.

The general linear group GL(n, q) acts on X =

(
V
k

)
q

from the right naturally as a group of

graph automorphisms of Jq(n, k). This action is distance-transitive, namely, GL(n, q) acts on X
transitively and the stabilizer of U0 in GL(n, q) acts on each Γi(U0) transitively (0 ≤ i ≤ k). From
this point of view, Jq(n, k) can be regarded as an association scheme (the q-Johnson scheme) rather
than a graph, and in the case of n = 2k, the farthest subconstituent Γk(U0) is isomorphic to the
bilinear forms scheme Mk(q) as an association scheme. The papers [2], [3] treat Γk(U0) in the
general case as an association scheme and determine the parameters. We note that the problem
dealt with in this paper is different from the one in [2], [3].

2 The Standard Basis of a Subspace of V = Fn
q

For a vector v = (v1, v2, ..., vn) ∈ V = Fn
q , we denote the j-th entry vj of v by v(j); v(j) = vj . Set

h(v) = min{j | v(j) 6= 0, 1 ≤ j ≤ n}

and call h(v) the head of v ∈ V .

Let U be a subspace of V . Then there exists a basis v1,v2, ...,vt for U (t = dim(U)) such
that

h(v1) < h(v2) < ... < h(vt). (1)

We may assume that for ν = h(vj) (1 ≤ j ≤ t),

vi(ν) = δij (2)

where δij is the Kronecker delta, i.e., δij = 1 for i = j, and δij = 0 for i 6= j. A basis v1,v2, ...,vt

of U is called standard if it satisfies (1), (2). It is easy to see that a standard basis exists uniquely
for each subspace of V .

For the standard basis v1,v2, ...,vt of U , we set

supp(U) = {h(v1), h(v2), ..., h(vt)}

and call it the support of U.

Let Mk×n(q) denote the set of k × n matrices over Fq. For a matrix A ∈Mk×n(q), we denote the
i-th row of A by Ai and the (i, j)-entry of A by Ai(j). The subspace spanned by A1, A2, ..., Ak is
denoted by row(A).

A matrix E ∈ Mk×n(q) is said to be in echelon form if E1, E2, ..., Et form the standard basis
for row(E) and Ei = (0, ..., 0) holds for t+ 1 ≤ i ≤ k. For a matrix E in echelon form, we set

supp(E) = {h(E1), ..., h(Et)},

where t = rank(E), and call it the support of E. Obviously, supp(E) coincides with supp(row(E)).
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Let M t
k×n(q) denote the subset of Mk×n(q) consisting matrices E such that E is in echelon form

with |supp(E)| = t. Let

(
V
t

)
q

denote the set of t-dimensional subspace of V = Fn
q . The following

lemma is an elementary fact of linear algebra.

Lemma 1.

(i) The following mapping is a bijection :

M t
k×n(q) −→

(
V
t

)
q

(E 7→ row(E))

(ii) Let E,F ∈Mk×n(q) be in echelon form. If row(E) ⊃ row(F ), then supp(E) ⊃ supp(F ).

Set Y = Mk
k×n(q). Then Y is bijectively mapped onto X =

(
V
k

)
q

by sending E ∈ Y to row(E) ∈

X.

3 The Farthest Subconstituent of Jq(n, k)

We keep the notation of the previous sections. So X =

(
V
k

)
q

, Y = Mk
k×n(q), and there is a natural

bijection between X and Y . When considering the farthest subconstituent Γk(U0), we may choose
the base vertex U0 arbitrarily without loss of generality, since GL(n, q) acts on X transitively as a
group of graph automorphisms. We set

U0 = {v ∈ V | v(1) = v(2) = ... = v(n− k) = 0}.

So supp(U0) = {n− k + 1, n− k + 2, ..., n} and the corresponding matrix in echelon form is [O I],
where O is the zero matrix of size k × n− k and I is the identity matrix of size k.

We observe that for E ∈ Y , row(E) belongs to Γk(U0), i.e., dim(U ∩ U0) = 0 (U = row(E))
if and only if

supp(E) ⊆ {1, 2, ..., n− k} (3)

So the following proposition holds.

Proposition 1. Set
Yk = {E ∈ Y | E satisfies (3)}.

Then the following mapping is a bijection :

Yk −→ Γk(U0) (E 7→ row(E)).

For E,E′ ∈ Yk, we set U = row(E), U ′ = row(E′) and ask when U ∼ U ′ holds in Γk(U0).

Suppose U ∼ U ′. Then dim(U ∩ U0) = k − 1, so there exist α, β /∈ supp(U ∩ U ′) such that

supp(U) = supp(U ∩ U ′) ∪ {α}, (4)
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supp(U ′) = supp(U ∩ U ′) ∪ {β}. (5)

In view of supp(U) = supp(E), supp(U ′) = supp(E′), we set

supp(E) = {i1, i2, ..., ik} with α = ir, (6)

supp(E′) = {i′1, i′2, ..., i′k} with β = i′s, (7)

where i1 < i2 < ... < ik, and i′1 < i′2 < ... < i′k.

By symmetry, we may assume
α ≤ β. (8)

Then we have

supp(U ∩ U ′) = {i1, ..., ir−1, ir+1, ..., ik}
= {i′1, ..., i′s−1, i′s+1, ..., i

′
k}

(9)

with r ≤ s and

i′j =

{
ij if 1 ≤ j ≤ r − 1, s+ 1 ≤ j ≤ k,
ij+1 if r ≤ j ≤ s− 1.

(10)

Since U = row(E), the standard basis of U is E1, E2, ..., Ek and h(Ej) = ij . So the standard basis
of supp(U ∩ U ′) consists of

Ej + xjEr (1 ≤ j ≤ r − 1) (11)

and
Ej (r + 1 ≤ j ≤ k) (12)

for some xj ∈ Fq (1 ≤ j ≤ r − 1).

Similiarly since E′1, E
′
2, ..., E

′
k form the standard basis of U ′ and h(E′j) = i′j , the standard ba-

sis of supp(U ∩ U ′) consists of
E′j + x′jE

′
r (1 ≤ j ≤ s− 1) (13)

and
E′j (s+ 1 ≤ j ≤ k) (14)

for some x′j ∈ Fq (1 ≤ j ≤ s− 1).

Since U ∩ U ′ has a unique standard basis, we have the following equations :

Ej + xjEr = E′j + x′jE
′
s (1 ≤ j ≤ r − 1) (15)

Ej+1 = E′j + x′jE
′
s (r ≤ j ≤ s− 1) (16)

Ej = E′j (s+ 1 ≤ j ≤ k) (17)

Conversely, if E,E′ are distinct elements of Yk and satisfy the condition (6), (7), (8) for their sup-
ports and the equations (15), (16), (17) for some xj ∈ Fq (1 ≤ j ≤ r−1), x′j ∈ Fq (1 ≤ j ≤ s−1),
then dim(U ∩ U ′) = k − 1 holds, i.e., U ∼ U ′, where U = row(E), U ′ = row(E′).
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We treat the case of α = β first. If α = β, then supp(E) = supp(E′) and r = s. Since
ij = i′j (1 ≤ j ≤ k) and α = β = ir, we have Ej(α) = E′j(α) = 0 (j 6= r) and Er(α) = E′r(α) = 1.
So we have xj = x′j(1 ≤ j ≤ r − 1) from (15). The equation (15) becomes

Ej − E′j = xj(E
′
r − Er) (1 ≤ j ≤ r − 1).

The equation (16) is empty. Thus we have the following theorem.

Theorem 1. For E,E′ ∈ Yk, assume E 6= E′ and supp(E) = supp(E′). Set U = row(E), U ′ =
row(E′). Then U ∼ U ′ in Γk(U0), i.e., dim(U ∩ U ′) = k − 1 if and only if rank(E − E′) = 1.

In the case of n = 2k, the assumption of supp(E) = supp(E′) always holds in the above theo-
rem, since the support of every element of Yk is {1, 2, ..., k}.

We now treat the case of α < β. In this case, r < s holds in (9). We want to solve the equations
(15), (16) under the conditions (6), (7), (10).

Since α = ir, we have Ej(α) = 0 (j 6= r) and Er(α) = 1. Since h(E′s) = i′s = β > α, we
have E′s(α) = 0. From (15), we get

xj = E′j(α) (1 ≤ j ≤ r − 1) (18)

Since β = i′s, we have E′j(β) = 0 (j 6= s) and E′s(β) = 1. From (15), we get

x′j = Ej(β) + xjEr(β) (1 ≤ j ≤ r − 1). (19)

By (16) we get
x′j = Ej+1(β) (r ≤ j ≤ s− 1). (20)

Thus we have the following conclusion.

Proposition 2. Let E,E′ ∈ Yk and set U = row(E), U ′ = row(E′). If U ∼ U ′ in Γk(U0),
i.e., dim(U ∩ U ′) = k − 1, then either supp(E) = supp(E′) or |supp(E) ∩ supp(E′)| = k − 1.

Theorem 2. Fix E ∈ Yk arbitrarily and set U = row(E).

(i.) Pick E′ ∈ Yk that satisfies |supp(E)∩supp(E′)| = k−1 and set U ′ = row(E′). Define α, β, r, s
by supp(E) = (supp(E) ∩ supp(E′)) ∪ {α}, supp(E′) = (supp(E) ∩ supp(E′)) ∪ {β}, α =
h(Er), β = h(E′s). Assume U ∼ U ′ in Γk(U0), i.e., dim(U ∩ U ′) = k − 1. If α < β, then
(15), (16), (17) hold for xj (1 ≤ j ≤ r − 1) in (18) and x′j (1 ≤ j ≤ s− 1) in (19), (20).

(ii.) Conversely, for arbitrarily chosen r, s ∈ Z (1 ≤ r < s ≤ k) and xj ∈ Fq (1 ≤ j ≤ r − 1),
define x′j (1 ≤ j ≤ s − 1) by (19), (20). Set α = h(Er). Choose an arbitrary vector
v ∈ V = Fn

q such that h(Es) < h(v) < h(Es+1) and v(β) = 1 (β = h(v)), v(ν) = 0 (ν ∈
supp(E), ν 6= α = h(Er)). Let E′ be a k×n matrix over Fq such that E′s = v and E′j (j 6= s)
are given by (15), (16), (17). Then E′ ∈ Yk and U ∼ U ′ in Γk(U0), where U ′ = row(E′).
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