On the Farthest Subconstituent of the q-Johnson Graph $J_{q}(n, k)$

Ahmad Rio Adriansyah ${ }^{a, b}$
${ }^{a}$ Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung 40132 Indonesia,
${ }^{b}$ Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa 920-1192 Japan, E-mail: ahmad.rio.adriansyah@gmail.com

Abstract

The farthest subconstituent of the q-Johnson graph $J_{q}(n, k)$ is well-known to be isomorphic to the bilinear forms graph $M_{k}(q)$ in the case of $n=2 k$. This fact is generalized for $n \geq 2 k$.

Keywords: q-Johnson graph, farthest subconstituent.

1 Introduction

Let \mathbb{F}_{q} be the finite field of q-elements and $V=\mathbb{F}_{q}^{n}$ the n-dimensional vector space over \mathbb{F}_{q} consisting of row vectors :

$$
V=\left\{\mathbf{v}=\left(v_{1}, v_{2}, \ldots, v_{n}\right) \mid v_{i} \in \mathbb{F}_{q}, \quad(1 \leq i \leq n)\right\}
$$

Let X denote the set $\binom{V}{k}_{q}$ of k-dimensional subspace of V and define a symmetric relation \sim on X by

$$
U_{1} \sim U_{2} \Longleftrightarrow \operatorname{dim}\left(U_{1} \cap U_{2}\right)=k-1
$$

The graph $\Gamma=(X, \sim)$ is called the q-Johnson graph and denoted by $J_{q}(n, k)$. We may assume $k \leq \frac{n}{2}$, since $J_{q}(n, k)$ is isomorphic to $J_{q}(n, n-k)$. Thus the diameter of Γ is k :

$$
k=\max \left\{\partial\left(U_{1}, U_{2}\right) \mid U_{1}, U_{2} \in X\right\},
$$

where $\partial\left(U_{1}, U_{2}\right)$ is the distance between U_{1} and U_{2} in Γ, i.e., the length of shorthest paths joining U_{1} and U_{2}.

Note it holds that

$$
\partial\left(U_{1}, U_{2}\right)=k-\operatorname{dim}\left(U_{1} \cap U_{2}\right) .
$$

The reader is referred to [1] for basic properties of $J_{q}(n, k)$.
Fix a base vertex $U_{0} \in X$ and define the i-th subconstituent $\Gamma_{i}\left(U_{0}\right)$ by

$$
\Gamma_{i}\left(U_{0}\right)=\left\{U \in X \mid \partial\left(U_{0}, U\right)=i\right\} .
$$

We call $\Gamma_{k}\left(U_{0}\right)$ the farthest subconstituent.
In the case of $n=2 k$, it is well-known that there is a bijection ϕ from $\Gamma_{k}\left(U_{0}\right)$ to the set $M_{k}(q)$ of $k \times k$ matrices over \mathbb{F}_{q} such that $U_{1}, U_{2} \in \Gamma_{k}\left(U_{0}\right)$ are adjacent if and only if $\phi\left(U_{1}\right)-\phi\left(U_{2}\right)$ has rank 1. In other words, the farthest subconstituent $\Gamma_{k}\left(U_{0}\right)$ is isomorphic to the bilinear forms graph
$M_{k}(q)$. This paper aims to generalize this fact for $n \geq 2 k$.
The general linear group $G L(n, q)$ acts on $X=\binom{V}{k}_{q}$ from the right naturally as a group of graph automorphisms of $J_{q}(n, k)$. This action is distance-transitive, namely, $G L(n, q)$ acts on X transitively and the stabilizer of U_{0} in $G L(n, q)$ acts on each $\Gamma_{i}\left(U_{0}\right)$ transitively $(0 \leq i \leq k)$. From this point of view, $J_{q}(n, k)$ can be regarded as an association scheme (the q-Johnson scheme) rather than a graph, and in the case of $n=2 k$, the farthest subconstituent $\Gamma_{k}\left(U_{0}\right)$ is isomorphic to the bilinear forms scheme $M_{k}(q)$ as an association scheme. The papers [2], [3] treat $\Gamma_{k}\left(U_{0}\right)$ in the general case as an association scheme and determine the parameters. We note that the problem dealt with in this paper is different from the one in [2], [3].

2 The Standard Basis of a Subspace of $V=\mathbb{F}_{q}^{n}$

For a vector $\mathbf{v}=\left(v_{1}, v_{2}, \ldots, v_{n}\right) \in V=\mathbb{F}_{q}^{n}$, we denote the j-th entry v_{j} of \mathbf{v} by $\mathbf{v}(j) ; \mathbf{v}(j)=v_{j}$. Set

$$
h(\mathbf{v})=\min \{j \mid \mathbf{v}(j) \neq 0, \quad 1 \leq j \leq n\}
$$

and call $h(\mathbf{v})$ the head of $v \in V$.
Let U be a subspace of V. Then there exists a basis $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{t}$ for $U(t=\operatorname{dim}(U))$ such that

$$
\begin{equation*}
h\left(\mathbf{v}_{1}\right)<h\left(\mathbf{v}_{2}\right)<\ldots<h\left(\mathbf{v}_{t}\right) . \tag{1}
\end{equation*}
$$

We may assume that for $\nu=h\left(\mathbf{v}_{j}\right) \quad(1 \leq j \leq t)$,

$$
\begin{equation*}
\mathbf{v}_{i}(\nu)=\delta_{i j} \tag{2}
\end{equation*}
$$

where $\delta_{i j}$ is the Kronecker delta, i.e., $\delta_{i j}=1$ for $i=j$, and $\delta_{i j}=0$ for $i \neq j$. A basis $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{t}$ of U is called standard if it satisfies (1), (2). It is easy to see that a standard basis exists uniquely for each subspace of V.

For the standard basis $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{t}$ of U, we set

$$
\operatorname{supp}(U)=\left\{h\left(\mathbf{v}_{1}\right), h\left(\mathbf{v}_{2}\right), \ldots, h\left(\mathbf{v}_{t}\right)\right\}
$$

and call it the support of U .
Let $M_{k \times n}(q)$ denote the set of $k \times n$ matrices over \mathbb{F}_{q}. For a matrix $A \in M_{k \times n}(q)$, we denote the i-th row of A by A_{i} and the (i, j)-entry of A by $A_{i}(j)$. The subspace spanned by $A_{1}, A_{2}, \ldots, A_{k}$ is denoted by $\operatorname{row}(A)$.

A matrix $E \in M_{k \times n}(q)$ is said to be in echelon form if $E_{1}, E_{2}, \ldots, E_{t}$ form the standard basis for $\operatorname{row}(E)$ and $E_{i}=(0, \ldots, 0)$ holds for $t+1 \leq i \leq k$. For a matrix E in echelon form, we set

$$
\operatorname{supp}(E)=\left\{h\left(E_{1}\right), \ldots, h\left(E_{t}\right)\right\}
$$

where $t=\operatorname{rank}(E)$, and call it the support of E. Obviously, $\operatorname{supp}(E)$ coincides with $\operatorname{supp}(\operatorname{row}(E))$.

Let $M_{k \times n}^{t}(q)$ denote the subset of $M_{k \times n}(q)$ consisting matrices E such that E is in echelon form with $|\operatorname{supp}(E)|=t$. Let $\binom{V}{t}_{q}$ denote the set of t-dimensional subspace of $V=\mathbb{F}_{q}^{n}$. The following lemma is an elementary fact of linear algebra.

Lemma 1.

(i) The following mapping is a bijection :

$$
M_{k \times n}^{t}(q) \longrightarrow\binom{V}{t}_{q} \quad(E \mapsto \operatorname{row}(E))
$$

(ii) Let $E, F \in M_{k \times n}(q)$ be in echelon form. If $\operatorname{row}(E) \supset \operatorname{row}(F)$, then $\operatorname{supp}(E) \supset \operatorname{supp}(F)$.

Set $Y=M_{k \times n}^{k}(q)$. Then Y is bijectively mapped onto $X=\binom{V}{k}_{q}$ by sending $E \in Y$ to $\operatorname{row}(E) \in$ X.

3 The Farthest Subconstituent of $J_{q}(n, k)$

We keep the notation of the previous sections. So $X=\binom{V}{k}_{q}, Y=M_{k \times n}^{k}(q)$, and there is a natural bijection between X and Y. When considering the farthest subconstituent $\Gamma_{k}\left(U_{0}\right)$, we may choose the base vertex U_{0} arbitrarily without loss of generality, since $G L(n, q)$ acts on X transitively as a group of graph automorphisms. We set

$$
U_{0}=\{\mathbf{v} \in V \mid \mathbf{v}(1)=\mathbf{v}(2)=\ldots=\mathbf{v}(n-k)=0\}
$$

So $\operatorname{supp}\left(U_{0}\right)=\{n-k+1, n-k+2, \ldots, n\}$ and the corresponding matrix in echelon form is $[O I]$, where O is the zero matrix of size $k \times n-k$ and I is the identity matrix of size k.

We observe that for $E \in Y$, $\operatorname{row}(E)$ belongs to $\Gamma_{k}\left(U_{0}\right)$, i.e., $\operatorname{dim}\left(U \cap U_{0}\right)=0 \quad(U=\operatorname{row}(E))$ if and only if

$$
\begin{equation*}
\operatorname{supp}(E) \subseteq\{1,2, \ldots, n-k\} \tag{3}
\end{equation*}
$$

So the following proposition holds.
Proposition 1. Set

$$
Y_{k}=\{E \in Y \mid E \text { satisfies }(3)\}
$$

Then the following mapping is a bijection:

$$
Y_{k} \longrightarrow \Gamma_{k}\left(U_{0}\right) \quad(E \mapsto \operatorname{row}(E)) .
$$

For $E, E^{\prime} \in Y_{k}$, we set $U=\operatorname{row}(E), U^{\prime}=\operatorname{row}\left(E^{\prime}\right)$ and ask when $U \sim U^{\prime}$ holds in $\Gamma_{k}\left(U_{0}\right)$.
Suppose $U \sim U^{\prime}$. Then $\operatorname{dim}\left(U \cap U_{0}\right)=k-1$, so there exist $\alpha, \beta \notin \operatorname{supp}\left(U \cap U^{\prime}\right)$ such that

$$
\begin{equation*}
\operatorname{supp}(U)=\operatorname{supp}\left(U \cap U^{\prime}\right) \cup\{\alpha\} \tag{4}
\end{equation*}
$$

$$
\begin{equation*}
\operatorname{supp}\left(U^{\prime}\right)=\operatorname{supp}\left(U \cap U^{\prime}\right) \cup\{\beta\} \tag{5}
\end{equation*}
$$

In view of $\operatorname{supp}(U)=\operatorname{supp}(E), \operatorname{supp}\left(U^{\prime}\right)=\operatorname{supp}\left(E^{\prime}\right)$, we set

$$
\begin{align*}
& \operatorname{supp}(E)=\left\{i_{1}, i_{2}, \ldots, i_{k}\right\} \text { with } \alpha=i_{r} \tag{6}\\
& \operatorname{supp}\left(E^{\prime}\right)=\left\{i_{1}^{\prime}, i_{2}^{\prime}, \ldots, i_{k}^{\prime}\right\} \text { with } \beta=i_{s}^{\prime} \tag{7}
\end{align*}
$$

where $i_{1}<i_{2}<\ldots<i_{k}$, and $i_{1}^{\prime}<i_{2}^{\prime}<\ldots<i_{k}^{\prime}$.
By symmetry, we may assume

$$
\begin{equation*}
\alpha \leq \beta \tag{8}
\end{equation*}
$$

Then we have

$$
\begin{align*}
\operatorname{supp}\left(U \cap U^{\prime}\right) & =\left\{i_{1}, \ldots, i_{r-1}, i_{r+1}, \ldots, i_{k}\right\} \\
& =\left\{i_{1}^{\prime}, \ldots, i_{s-1}^{\prime}, i_{s+1}^{\prime}, \ldots, i_{k}^{\prime}\right\} \tag{9}
\end{align*}
$$

with $r \leq s$ and

$$
i_{j}^{\prime}= \begin{cases}i_{j} & \text { if } 1 \leq j \leq r-1, \quad s+1 \leq j \leq k \tag{10}\\ i_{j+1} & \text { if } r \leq j \leq s-1\end{cases}
$$

Since $U=\operatorname{row}(E)$, the standard basis of U is $E_{1}, E_{2}, \ldots, E_{k}$ and $h\left(E_{j}\right)=i_{j}$. So the standard basis of $\operatorname{supp}\left(U \cap U^{\prime}\right)$ consists of

$$
\begin{equation*}
E_{j}+x_{j} E_{r} \quad(1 \leq j \leq r-1) \tag{11}
\end{equation*}
$$

and

$$
\begin{equation*}
E_{j} \quad(r+1 \leq j \leq k) \tag{12}
\end{equation*}
$$

for some $x_{j} \in \mathbb{F}_{q} \quad(1 \leq j \leq r-1)$.
Similiarly since $E_{1}^{\prime}, E_{2}^{\prime}, \ldots, E_{k}^{\prime}$ form the standard basis of U^{\prime} and $h\left(E_{j}^{\prime}\right)=i_{j}^{\prime}$, the standard basis of $\operatorname{supp}\left(U \cap U^{\prime}\right)$ consists of

$$
\begin{equation*}
E_{j}^{\prime}+x_{j}^{\prime} E_{r}^{\prime} \quad(1 \leq j \leq s-1) \tag{13}
\end{equation*}
$$

and

$$
\begin{equation*}
E_{j}^{\prime} \quad(s+1 \leq j \leq k) \tag{14}
\end{equation*}
$$

for some $x_{j}^{\prime} \in \mathbb{F}_{q} \quad(1 \leq j \leq s-1)$.
Since $U \cap U^{\prime}$ has a unique standard basis, we have the following equations :

$$
\begin{gather*}
E_{j}+x_{j} E_{r}=E_{j}^{\prime}+x_{j}^{\prime} E_{s}^{\prime} \quad(1 \leq j \leq r-1) \tag{15}\\
E_{j+1}=E_{j}^{\prime}+x_{j}^{\prime} E_{s}^{\prime} \quad(r \leq j \leq s-1) \tag{16}\\
E_{j}=E_{j}^{\prime} \quad(s+1 \leq j \leq k) \tag{17}
\end{gather*}
$$

Conversely, if E, E^{\prime} are distinct elements of Y_{k} and satisfy the condition (6), (7), (8) for their supports and the equations (15), (16), (17) for some $x_{j} \in \mathbb{F}_{q}(1 \leq j \leq r-1), x_{j}^{\prime} \in \mathbb{F}_{q}(1 \leq j \leq s-1)$, then $\operatorname{dim}\left(U \cap U^{\prime}\right)=k-1$ holds, i.e., $U \sim U^{\prime}$, where $U=\operatorname{row}(E)$, $U^{\prime}=\operatorname{row}\left(E^{\prime}\right)$.

We treat the case of $\alpha=\beta$ first. If $\alpha=\beta$, then $\operatorname{supp}(E)=\operatorname{supp}\left(E^{\prime}\right)$ and $r=s$. Since $i_{j}=i_{j}^{\prime} \quad(1 \leq j \leq k)$ and $\alpha=\beta=i_{r}$, we have $E_{j}(\alpha)=E_{j}^{\prime}(\alpha)=0 \quad(j \neq r)$ and $E_{r}(\alpha)=E_{r}^{\prime}(\alpha)=1$. So we have $x_{j}=x_{j}^{\prime}(1 \leq j \leq r-1)$ from (15). The equation (15) becomes

$$
E_{j}-E_{j}^{\prime}=x_{j}\left(E_{r}^{\prime}-E_{r}\right) \quad(1 \leq j \leq r-1)
$$

The equation (16) is empty. Thus we have the following theorem.
Theorem 1. For $E, E^{\prime} \in Y_{k}$, assume $E \neq E^{\prime}$ and $\operatorname{supp}(E)=\operatorname{supp}\left(E^{\prime}\right)$. $\operatorname{Set} U=\operatorname{row}(E), U^{\prime}=$ $\operatorname{row}\left(E^{\prime}\right)$. Then $U \sim U^{\prime}$ in $\Gamma_{k}\left(U_{0}\right)$, i.e., $\operatorname{dim}\left(U \cap U^{\prime}\right)=k-1$ if and only if $\operatorname{rank}\left(E-E^{\prime}\right)=1$.

In the case of $n=2 k$, the assumption of $\operatorname{supp}(E)=\operatorname{supp}\left(E^{\prime}\right)$ always holds in the above theorem, since the support of every element of Y_{k} is $\{1,2, \ldots, k\}$.

We now treat the case of $\alpha<\beta$. In this case, $r<s$ holds in (9). We want to solve the equations (15), (16) under the conditions (6), (7), (10).

Since $\alpha=i_{r}$, we have $E_{j}(\alpha)=0(j \neq r)$ and $E_{r}(\alpha)=1$. Since $h\left(E_{s}^{\prime}\right)=i_{s}^{\prime}=\beta>\alpha$, we have $E_{s}^{\prime}(\alpha)=0$. From (15), we get

$$
\begin{equation*}
x_{j}=E_{j}^{\prime}(\alpha) \quad(1 \leq j \leq r-1) \tag{18}
\end{equation*}
$$

Since $\beta=i_{s}^{\prime}$, we have $E_{j}^{\prime}(\beta)=0 \quad(j \neq s)$ and $E_{s}^{\prime}(\beta)=1$. From (15), we get

$$
\begin{equation*}
x_{j}^{\prime}=E_{j}(\beta)+x_{j} E_{r}(\beta) \quad(1 \leq j \leq r-1) \tag{19}
\end{equation*}
$$

By (16) we get

$$
\begin{equation*}
x_{j}^{\prime}=E_{j+1}(\beta) \quad(r \leq j \leq s-1) \tag{20}
\end{equation*}
$$

Thus we have the following conclusion.
Proposition 2. Let $E, E^{\prime} \in Y_{k}$ and set $U=\operatorname{row}(E), U^{\prime}=\operatorname{row}\left(E^{\prime}\right)$. If $U \sim U^{\prime}$ in $\Gamma_{k}\left(U_{0}\right)$, i.e., $\operatorname{dim}\left(U \cap U^{\prime}\right)=k-1$, then either $\operatorname{supp}(E)=\operatorname{supp}\left(E^{\prime}\right)$ or $\left|\operatorname{supp}(E) \cap \operatorname{supp}\left(E^{\prime}\right)\right|=k-1$.

Theorem 2. Fix $E \in Y_{k}$ arbitrarily and set $U=\operatorname{row}(E)$.
(i.) Pick $E^{\prime} \in Y_{k}$ that satisfies $\left|\operatorname{supp}(E) \cap \operatorname{supp}\left(E^{\prime}\right)\right|=k-1$ and set $U^{\prime}=\operatorname{row}\left(E^{\prime}\right)$. Define α, β, r, s $b y \operatorname{supp}(E)=\left(\operatorname{supp}(E) \cap \operatorname{supp}\left(E^{\prime}\right)\right) \cup\{\alpha\}, \operatorname{supp}\left(E^{\prime}\right)=\left(\operatorname{supp}(E) \cap \operatorname{supp}\left(E^{\prime}\right)\right) \cup\{\beta\}, \alpha=$ $h\left(E_{r}\right), \beta=h\left(E_{s}^{\prime}\right)$. Assume $U \sim U^{\prime}$ in $\Gamma_{k}\left(U_{0}\right)$, i.e., $\operatorname{dim}\left(U \cap U^{\prime}\right)=k-1$. If $\alpha<\beta$, then (15), (16), (17) hold for $x_{j} \quad(1 \leq j \leq r-1)$ in (18) and $x_{j}^{\prime} \quad(1 \leq j \leq s-1)$ in (19), (20).
(ii.) Conversely, for arbitrarily chosen $r, s \in \mathbb{Z} \quad(1 \leq r<s \leq k)$ and $x_{j} \in \mathbb{F}_{q} \quad(1 \leq j \leq r-1)$, define $x_{j}^{\prime} \quad(1 \leq j \leq s-1)$ by (19), (20). Set $\alpha=h\left(E_{r}\right)$. Choose an arbitrary vector $\mathbf{v} \in V=\mathbb{F}_{q}^{n}$ such that $h\left(E_{s}\right)<h(\mathbf{v})<h\left(E_{s+1}\right)$ and $\mathbf{v}(\beta)=1 \quad(\beta=h(\mathbf{v})), \mathbf{v}(\nu)=0 \quad(\nu \in$ $\left.\operatorname{supp}(E), \nu \neq \alpha=h\left(E_{r}\right)\right)$. Let E^{\prime} be a $k \times n$ matrix over \mathbb{F}_{q} such that $E_{s}^{\prime}=\mathbf{v}$ and $E_{j}^{\prime} \quad(j \neq s)$ are given by (15), (16), (17). Then $E^{\prime} \in Y_{k}$ and $U \sim U^{\prime}$ in $\Gamma_{k}\left(U_{0}\right)$, where $U^{\prime}=\operatorname{row}\left(E^{\prime}\right)$.

References

[1] A.E. Brouwer, A.M. Cohen, A. Neumaier . Distance-Regular Graph. Springer-Verlag. 1989.
[2] H. Kurihara . Character tables of m-flat association schemes. Adv. Geom. 11 (2011), no.2, 293-301.
[3] K. Wang, J. Guo, F. Li . Association Schemes Based on Attenuated Spaces. European Journal of Combinatorics. 31 (2010), 297-305.

