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Abstract. A matrix diagonalization is one of the most time-consuming parts of the ab-initio
molecular dynamics programs. The bigger system to be simulated, the bigger matrix needs to be
diagonalized to obtain the eigenvalues and eigenvectors. To raise this matter, we have applied ma-
trix diagonalization provided by Scalable Linear Algebra PACKage (ScaLAPACK) to the ab-initio
molecular dynamics program. We analyzed the efficiency of RS routine provided by EISPACK and
PDSYEVX and PZHEEVX by ScaLAPACK.
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1 Introduction

Approach based on quantum mechanics is an essentially important tool in the analysis for materials.
The calculations using ab-initio methods involve inter-atomic interaction that able to get more
accurate result [1]. However, the problem is that the ab-initio calculations require considerable
computer resources. This is the one of reasons why the high-speed computer is needed. At present,
the only high-speed computer is still not enough to meet these computing needs and then these
computers can run in parallel to be able to work faster [2].

Car-Parrinello (CP) method [3] is one of ab-initio molcular dynamics (MD) methods. This
has contributed for long time the study on structural and electronic property in crystal, clusters,
biological matter, etc.. The CP method uses a classical Lagrangian, and envolves the electronic
wavefunction and the ionic coordinates. This Lagrangian has to be solved with the Lagrange mul-
tiplier which is introduced to realize the constraint of orthonormalixation among wave functions.

In the original method, such Lagrange multiplier can be solved in relatively simpler way [3],
while in the formulation with the ultrasoft pseudo potential or similar scheme, the multiplier forms
the matrix equation given by

S + λR+R†λ† + λTλ† = 1, (1)

where λij is propotional to the Lagrange multiplier Λij [4, 5], The square matrices of R,S, T have the
size of dimention to the number of electronic states included. Definition of R,S, T can be refered to
the original work [4]. Solving the equation (1), eigenvalues and eigenvectors for the Hermitian part
of R are needed as numerical values. This matrix diagonalization is time-consuming in application
of large system, then it is necessary to reduce the time consumption. There are so many methods
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Table 1: Properties of computer in investigation

Computer Name Num. of Proc. Used Proc. Specifications Memory
Kaga100 8 Intel (R) Xeon(R) CPU X5680 3.33GHz 24 GB

Table 2: Target routines for investigation

Name of subroutine Package Matrix type Data type Computation
RS EISPACK Symmetric Real Single
PDSYEVX ScaLAPACK Symmetric Double Parallel
PZHEEVX ScaLAPACK Hermitian Double complex Parallel

that can be used to solve the problem of matrix diagonalization, which can run on a single computer
or in a parallel computer.

Irrespective of method, the matrix diagonalization which contains the matrix multiplication
needs a number of operations propotional to the cubic of system size. The goal of this work is
to solve the problem of time consuming that occurs in the matrix diagonalization in our archi-
tecture. This paper describes the work when we have applied matrix diagonalization provided by
Scalable Linear Algebra PACKage (ScaLAPACK)[6] to our ab-initio molecular dynamics program
[7]. We reported efficiency of ScaLAPACK compared with EISPACK [8] and the growth pattern
in consumption time for diagonalizing matrix.

2 Investigation of running time on package routine

The properties of computer machine that used for our investigation are summarized in the Table 1
and the routines investigated are listed in Table 2. EISPACK contains nine subroutines from nine
classes of matrices for calculating the eigenvalues and eigenvectors. From them we investigated
one subroutine, RS, for real symmetric matrix. ScaLAPACK contain routines for solving systems
of linear equations, least squares problems, and eigenvalue problems. We use two subroutines
from ScaLAPACK; PDSYEVX and PZHEEX. The former is for solving eigenvalue problems for
symmetric double matrix and the latter for Hermitian matrix. ScaLAPACK will run on any
machine where both the Basic Linear Algebra Subprograms (BLAS) and Basic Linear Algebra
Communications Subprograms (BLACS) are available.

The time consumption is shown in Figure 1. In RS routine, time consumption is growing as
the bigger dimension of matrix. The PDSYEVX and PZHEEVX have similar time consumption
with RS in small size dimension where less equal than 2560. But starting from 2816 matrix
dimension, the time consumption is decreased then grows again. It is shown that the parallelization
of ScaLAPACK have main advantage, compared with EISPACK. During the test we encountered
memory problems in large matrix dimension. This problem appears while the dimension matrix is
6144 in PDSYEVX and 7168 in PZHEEVX, and does not occur while the dimension until 7168.

In Figure 2, the log-log plot for the growing time is also presented, showing interesting properties
on time growth clearly. The time growth follows the formular,

time growth ∼= αNA, (2)

where the N and the scaling factor A repredent matrix size and gradient of the line in the figure,
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Figure 1: Running time of symmetric eigensystems in EISPACK (RS), symmetric eigensystems and Hermitian
eigensystems (PDSYEVX and PZHEEVX) in ScaLAPACK. Enlargement (lower panel) at small dimensions.
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Figure 2: Running time in log-log plot scale for Symmetric Eigensystems in EISPACK (RS), Symmetric Eigensystems
and Hermitian Eigensystems in ScaLAPACK (PDSYEVX and PZHEEVX).

Table 3: Scaling factor,A, estimated from the gradient of line found in Figure 2.

Matrix Dimension A(RS) A(PDSYEVX) A(PZHEEVX)
8-64 2.92 0.13 0.23
128-768 2.92 2.06 2.17
1024-2560 2.92 3.46 3.40
2816-7168 2.92 3.12 3.22

respectively. In Table 3 the gradient is listed for the range of matrix dimension. In RS, the scaling
factor (A=2.92) does not change in the range investigatted. It means that the time growth is
proportional to the scale near the cubic one. The latter scale is a consequence of standard one
in the algorithm of matrix diagonalization. Different with RS, PDSYEVX and PZHEEVX show
that, the value of A increases from a small number for the small matrix to higher for the bigger
matrix then stable around 3.

3 Discussion

As shown by the present investigation on scaLAPACK the routine gets efficiency at larger matrix
dimensions, when the matrix dimension of 3000 is allowed, for example, the 1500-atoms Si system
in which every atom needs the couple of orbitals at least, can be a target on study. Following a
similar consideration the efficency on diagonalization will be offered also in systems which contains
750 water molcules (four valence orbitals in a water), the Fe(5ML)/MgO(5ML)/Fe(5ML) film [9]
with 4 × 4 in-plane superlattice configuration, three small peptides which hold the transition metal
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clusters [10], 6 units of MOR type zeolite network [11], liquid oxygen with 250 molecules, etc.. It
is noted that the limitation on application is not only at the size of matrix dimention, but also at
the computational time for preparing matrices (R,S, T ), in equation (1).

4 Summary

We have investigated efficiency of the routine for matrix diagonalization; RS from EISPACK and
PDSYEVX and PZHEEVX from scaLAPACK. The time growth with respect to the size of matrix
clearly shows the cubic scaling feature which is built in the procesure of matrix diagonalization.
In the present work, the ScaLAPACK showed the advantage after the dimension of matrix reaches
to 2816 or more, when taking 8 degrees in parallel computation. The ScaLAPACK have a good
opportunity to improve CP-MD performance for the large systems with more than about 3000
matrix dimension.
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