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Abstract We performed ab-initio electronic structure calculation in Co doped Fe/MgO interface
on the basis of density functional theory. Two different slab models are considered, depending on
the place of Co atom; at the interface and in the Fe layer. With using atomic forces, we obtained
the optimized structure at the interface and discussed the layer distance of interface and the local
structure around Co. Spin magnetic moments on Fe and Co atoms are also discussed. In the band
dispersion at the Fermi level, distribution of the angular orbital component shows the possibility
of perpendicular magnetic anisotropy.
Keywords: Fe/MgO interface, magnetic anisotropy energy, MRAM, density functional theory

1 Introduction

The Fe/MgO interface is well known as magnetic tunnel junction (MTJ) in magnetic random access
memory (MRAM). Current technology of MTJ has the limitation for high density memory due
to in-plane magnetization properties. Also large spin polarized currents are required in order to
reverse the magnetization in spin-transfer-torque MRAM. Fortunately, recent works on Fe/MgO
interface have alternatives for this problem, such as perpendicular magnetization or electric field
assisted magnetization reversal. Experimental and theoretical works [1, 2, 3, 4, 5] have proved that
this interface is one of the promising candidates for low powered memory devices, e.g. MRAM.

Maruyama et al. successfully showed that electric field can cause large MAE change in Fe/MgO
junction [1]. Later Shiota et al. also confirm magnetization control by electric field on FeCo/MgO
interface [2]. The CoFeB/MgO interface with large tunnel magneto resistance has successfully
grown by Ikeda et al. [3], which is very interesting for devices application. Last two experiments
used Co doping instead of pure Fe for magnetic materials such as FeCo [2], FeCoB [3]. These
experiments are also supported by the theoretical work [5] on FeCo monolayer which concludes
that MAE can be modified by changing the number of valence electrons, such as Co doping. Based
on this comparative result between experimental and theoretical view, we have investigated the
effect of Co atom in Fe/MgO interface by first-principles calculation based on the spin polarized
density functional theory. In this study, we consider two models of Co impurity placement; one
at the interface and other in the Fe layer. We found that, when Co is at interface instead of Fe,
Co is slightly drawn into the Fe substrate and that the analysis of angular orbital components of
Fe implies contributions to the perpendicular magnetic anisotropy energy. We will present spin
magnetic moments, density of states, and band dispersions.
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Table 1: Averaged Fe-O distance(Å) at FeCo/MgO interfaces.

System aMgO(L) aFe(S) Others
MgO/Fe3Co/Fe (model A) 2.179 2.161

MgO/Fe/Fe3Co/Fe (model B) 2.187 2.161
MgO/Fe/Au 2.16a

MgO/Fe/Pt 2.31b

MgO/Fe 2.09c

MgO/Fe/Au 2.08c

Fe/MgO/Fe 2.30d

aAu in-plane lattice constant [4]
bPt in-plane lattice constant [4]

cref. [11]
dref. [12]

2 Model and method

This work takes two minimum slab models; MgO(3ML)/Fe3Co(1ML)/Fe(2ML) and MgO(3ML)/
Fe(1ML)/Fe3Co(1ML)/Fe(1ML) (both are 36 atoms in 2×2 in-plane supercell configuration), as
shown in Fig. 1. In the former, the Co atom is placed at the interface (model A), and in the latter,
at the inside of Fe layers (model B) (see Figs. 1 (a) and (b)). We call all the magnetic atoms (Fe
and Co) with numbers, starting from 1 until 12, atom number 1 until 4 are located at the interface
as shown in Fig. 1 (c), then atom number 5 until 8 at the second Fe layer, finally atom number 9
until 12 at the bottom layer of system. The Co atom is occupied at atom number 4 and 5 for the
first (model A) and second (model B) slabs, respectively. Although the interface Fe/MgO has been
fabricated in experiment, the in-plane lattice constant has not been determined even in the clean
interface. Therefore, for these slab models, two different in-plane lattice constants 5.74Å (= aFe)
and 5.94Å (= aMgO), which correspond to the bulk lattice constants of Fe and MgO respectively.
There is a lattice constant difference by 3.4%. S and L suffixes are given for small (Fe) and large
(MgO) lattice constants, respectively, and totally we have four slab models.

For these models, we have carried out first principles calculation which employs the density
functional theory [6] and ultra-soft pseudopotential [7]. Energy cutoffs for electron density and
wavefunction are 300Ry and 30Ry respectively [8]. Here we used the 4x4x1 mesh of k space
sampling. The generalized gradient approximation [9] was adopted for exchange correlation energy.
In this work, the calculation is within a collinear magnetic scheme. We optimized electronic
wavefunctions and atomic positions by minimizing the total energy functional. The structural
optimization has been performed by using atomic forces except for the in-plane lattice constant.
The ESM method [10] with zero external electric field condition was used to avoid artificial built-in
electric field in this repeated slab model; ESM/vacuum/slab/vacuum. For both vacuum layers,
the width of 5.29Å is taken. The atomic magnetic moment is estimated by integrating the spin
density in the atomic sphere with the radius (0.9Å for magnetic atoms).

3 Result and Discussion

We obtained the optimized structure after all the atomic forces reach equilibrium. Table 1 shows
details of the optimized interface distance compared to related works. We obtained distances of
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Figure 1: Fe3Co/MgO interface model with different Co placement: (a) (model A) Co at the interface, (b)(model
B) Co in the middle of Fe layer, (c) in-plane view of magnetic layer in model A.

2.18Å and 2.16Å for model A with aMgO and aFe lattice constants, respectively. In these results we
observe that the smaller lattice constant produces smaller interface distance. As another interesting
point, as shown in Fig. 2, we found that the Co atom moved from the Fe layer to the magnetic
substrate by 0.03Å and 0.04Å for the model A with aMgO and aFe, respectively. Even when we
put the Co in the middle of Fe layer, as indicated in Fig. 3, still we observed slight contracting
distortion of Co to the Fe layer. From these behaviors, we may deduce that Co prefers to be
surrounded by Fe. We also observed that the model B has a slightly lower total energy than the
model A by 3meV, implying that Co impurities in the middle Fe layer provides more stable system
than those at the interface.

The total magnetization and atomic magnetic moments are listed in Table 2. We observed that
the Fe magnetic moment at interface, whose average is 2.8µB, is much enhanced from the value of
second magnetic layer, the bulk value (2.2µB) [13], and the experimental value in the nano clusters
[14]. In contrast of this enhancement, the Co magnetic moments are similar to 1.8µB. Based on the
discussion in the previous work [12], the enhancement on Fe magnetic moment is not attributed
to the charge transfer to the oxygen at interface, but is understood as surface properties of Fe
layer. Indeed, the Co magnetic moment has a similar value obtained by the monolayer model [15].
At surface, electron wavefunction can be localized due to the lack of electron transfer to the open
space while the electron transfer to the neighbors make the wavefunction delocalized in the bulk.
This localized electron contributes to larger magnetic moment. Electrons at interface are also
easier to be localized compared to the middle layer and therefore, such interface accommodates
the magnetic atom to a larger magnetic moment. Discussion mentioned above on delocalized
electron also explains the smaller magnetic moment at the smaller lattice constant (see Table 2).
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Figure 2: Optimized structure of model A, with large [(a), (b), (c)] and small [(d), (e), (f)] lattice constant. Co
movement was found in all models.

Table 2: Total magnetization and atomic magnetic moment of all Fe and Co atoms.

Mag. Mom.(µB) Mag. Mom.(µB)
Co:interface Co:in-layer

(L) (S) (L) (S)
Total 33.50 33.40 Total 33.60 32.21
Fe 1 2.87 2.84 Fe 1 2.87 2.82
Fe 2 2.86 2.82 Fe 2 2.87 2.82
Fe 3 2.86 2.82 Fe 3 2.87 2.82
Co 1.85 1.81 Fe 4 2.87 2.82
Fe 5 2.55 2.50 Co 1.84 1.83
Fe 6 2.55 2.50 Fe 6 2.48 2.44
Fe 7 2.55 2.50 Fe 7 2.48 2.44
Fe 8 2.55 2.50 Fe 8 2.49 2.45
Fe 9 2.97 2.95 Fe 9 2.96 2.94
Fe 10 2.97 2.95 Fe 10 2.96 2.94
Fe 11 2.97 2.95 Fe 11 2.96 2.94
Fe 12 2.97 2.95 Fe 12 2.96 2.94
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Figure 3: Optimized structure of model B with small (a) and large (b) lattice constant, Co atom slightly moved in
-z direction.

Fig. 4 shows the partial density of states (DOS) on Co and Fe atoms at the first and second
magnetic layers with the smaller lattice constant (aFe). At interface, DOS’s near the Fermi level
on Fe’s mainly come from minority spin states, while in the middle layer, those on Fe’s are not
so large. The latter is a consequence of the splitting that some parts of states around the Fermi
level are made lowered and raised to the occupied and unoccupied energy regions, respectively.
Such behavior is consistent with the smaller magnetic moment in the middle layer. Similar to
the case of Fe, there is larger Co DOS around the Fermi level at interface than in the middle
layer. Compared with Fe, we observe smaller exchange splitting in the Co DOS. This observation
corresponds that the Co magnetic moment is smaller than Fe. In Fig. 5, the orbital-separated
contribution is depicted for both magnetic atoms (Fe1 at interface and Co). The partial DOS
from each angular orbital component in Fig. 4 shows that in the near Fermi level there is a large
contribution from 3dxy, 3dzx, 3dyz, and 3dx2−y2 orbitals. These four angular orbital components
in vicinity of the Fermi level hold important role to the magnetic anisotropy at the interface, as
discussed in the later paragraph.

Magnetic anisotropy energy (MAE) is the internal characteristic of magnetic materials, which
can be estimated from the total energy difference between out-of-plane and in-plane magnetiza-
tions. The contribution of MAE comes from magnetostatic dipole-dipole interaction and electronic
structures around the Fermi level. When considering the situation involved in a practically applied
electric field, MAE change in the dipole contribution may be negligible due to few variation of
magnetic moment. Here we consider the contribution from spin-orbit interaction, which can be
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Figure 4: Partial density of states on magnetic atoms (Fe and Co) in models A and B with smaller lattice constant
(aFe) : (a) A Fe1, (b) B Fe1, (c) A Co, (d) B Fe4, (e) A Co, (f) B Fe5, (g) A Fe8, (h) B Fe8. The solid (red)
and dashed (blue) curves represent Co and Fe atoms, respectively, and the upper and lower panels indicate spin-up
(majority), and spin-down (minority) states.
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Figure 5: Partial density of states (PDOS) of (a) Co and (b) Fe1 in model A with aFe, also PDOS of (c) Co and
(d) Fe1 atom in model B with aFe. The solid (red) and dashed (blue) curves represent Co and Fe, respectively.

represented with the second order perturbation theory as follows [16],

MAE ∝
∑
k

∑
o,u

|⟨k, o |lz|k, u⟩|2 − |⟨k, o |lx|k, u⟩|2

εk,u − εk,o
, (1)

where |k, o⟩ and |k, u⟩ represent occupied and unoccupied states with the wave vector k and
εk,o(u) the respective eigenvalue. The lz and lx are the angular momentum operators of z- and
x-components, respectively. The formula involves vertical (same k) coupling between occupied
and unoccupied states and their eigenvalue difference. As such difference becomes smaller, the
contribution becomes more important in MAE. At the numerator in equation (1), coupling between
the same magnetic angular momentum (dxz–dyz, dxy–dx2−y2) contributes to the element by lz,
while those between neighboring magnetic angular momentum (d3z2−r2–dyz, dxy–dxz, dyz–dx2−y2)
to the element by lx. Consequently, the former and latter will contribute to a positive and negative
MAE, respectively.

In order to investigate the possibility of MAE, we draw band dispersions with angular orbital
component marking, as shown in Figs. 6 and 7. The angular orbital component in the band
structure implies the possibility of contribution to positive MAE due to 3dxy and 3dx2−y2 orbital
coupling below and above the Fermi level, for example, at the 1

3 of M̄ and X̄ in Fig. 6 and coupling
between 3dxy and 3dx2−y2 near M̄ in Fig. 7. These couplings are very near in energy scale,
therefore we can predict that the couplings have significant effect in MAE. This property could
be a candidate of the reason why the magnetization is perpendicular to the interface plane [3], in
addition to the discussion that the hybridization of 3d3z2−r2 with oxygen 2p orbital can enhance
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Figure 6: Band dispersion in model A with aFe. The colored symbol indicates the component of angular orbitals
on Fe1; red symbol represents 3d3z2−r2 in the left panel, orange 3dxz , yellow 3dyz in the middle panel, blue 3dxy ,
green 3dx2z2 in the right panel.

Figure 7: Band dispersion in model B with aFe. The colored symbols indicate the component of angular orbitals on
Fe1; red represents 3d3z2−r2, orange 3dxz , yellow 3dyz , blue 3dxy , green 3dx2z2 .
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the favor of perpendicular magnetic anisotropy [17].

4 Summary

We have investigated FeCo/MgO interface properties by using the first-principles electronic struc-
ture calculation. The optimized structure has been obtained, showing the contracting movement
of Co to the Fe substrate. Our result indicates that the Co impurity prefers the situation sur-
rounded by Fe rather than bonded with O at the interface. We discussed the possible origin of
perpendicular magnetic anisotropy by analyzing the angular component in vicinity of the Fermi
level. However, estimation of the practical MAE value at FeCo/MgO interface is left in a future
study in which the spin-orbit interaction is taken in electronic structure calculation. Although we
obtained the preferable movement of Co at the interface, effect of the impurity has been unclear
in the relation with Fe electronic structure. The detail investigation is needed.
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