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Abstract. In this paper, we applied an improved Smoothing Particle Hydrodynamics (SPH) method
by using gradient kernel renormalization in three-dimensional cases. The purpose of gradient kernel
renormalization is to improve the accuracy of numerical simulation by improving gradient kernel
approximation. This method is implemented for simulating free surface flows, in particular dam
break case with rigid ball structures and the propagation of waves towards a slope in a rectangular
tank.
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1 Introduction

Computational Fluid Dynamics (CFD) using Smoothed Particle Hydrodynamics (SPH) has a wide
range of applications to solve problem in engineering and science. SPH is a mesh-free Lagrangian
method and well suited to the simulation of complex and free surface flows. The SPH method was
originally used to model astrophysical problems by Lucy [7] and Gingold and Monaghan [8]. Three-
dimensional SPH method has been studied numerically by Monaghan [6] in a field of astrophysical
fluid dynamics processes.

We obtain the SPH equations from the continuum equations of fluid dynamics by interpolating
from set of points which may be disordered. This interpolation is based on the theory of integral
interpolants using interpolation kernels which approximate the delta function. The interpolants
being analytic functions can be differentiated without using grids.

Monaghan [4] studied the application of the particle method SPH to free surface problems in
two-dimensional cases. In this paper, we applied an improved SPH method by using gradient
kernel renormalization in three-dimensional cases. The purpose of gradient kernel renormalization
is to improve the accuracy of the simulations [1].

In the following, first the general concept of SPH method is given. The improved SPH method
using gradient kernel renormalization is introduced and described in detail. This improved SPH
method is implemented for simulating free surface flows, in particular dam break case with rigid
ball structures and the propagation of waves towards a slope in a rectangular tank.

2 Smoothed particle hydrodynamics

The SPH equations are described in detail by Liu and Liu [2]. In this paper, we consider the
application of three-dimensional SPH to free surface problems. The SPH method represents con-
tinuous fluid using a set of particles. Each particle i has physical quantities, such as mass mi,
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position ri, velocity vi, density ρi, and pressure Pi. Each particle in the SPH method is associated
with a support domain. The SPH approximation, which consists of the particle approximation
and the kernel approximation, is performed within the current support domain. The value of a
function defining a physical quantity can be approximated by its values at a number of neighboring
particles. The SPH method uses the concept of integral representation of a field function f(x) by
the following identity

< f(r) >=

∫
Ω

f(r′)W (|r− r′|, h)dr′, (1)

where r and r′ are the position vectors, W is the smoothing function or kernel function, and h is
the smoothing length defining the influence radius of W .

Figure 1: The influence radius of W .

In SPH approximation, there are various kernel functions. Since it is affects the accuracy and
stability of numerical results, the choice of kernel function W is important to consider. The integral
representation should satisfies several conditons. That is the normalization condition∫

Ω

W (|r− r′|, h)dΩ = 1,

delta function property

lim
h→0

W (|r− r′|, h) = δ(|r− r′|),

moreover, often the compact support condition is required

W (|r− r′|, h) = 0 outside of support domain.

We converted the continuous integral representation (1) into discretized forms as a summation
over all the particles in the support domain. This process is also commonly known as particle
approximation in the SPH literature [2]. Writing the particle approximation as follows

< f(r) >=
N∑
j=1

mj

ρj
f(rj)W (|r− rj|, h),

where mj and ρj are the mass and density of the particle j, respectively, and j = 1, 2, . . . , N , where
N is the total number of neighboring particles in the influence domain Ω. In this paper, we use
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cubic spline kernel as follows [5]

W (q, h) =
1

πh3


1− 3

2q
2 + 3

4q
3, 0 ≤ q < 1

1
4 (2− q)3, 1 ≤ q < 2

0, otherwise,

where q =
|ri − rj|

h
is the relative distance of particle i and j.

3 Numerical model

3.1 The continuity equation

The continuity equation is based on the conservation of mass. We write the continuity equation in
the form

Dρ

Dt
= −ρ∇v, (2)

where v and ρ are velocity and density, respectively. Writing (2) in SPH discretization form as in
[3], we obtain

Dρi
Dt

= ρi
∑
j

mj

ρj
(vi − vj)∇riW (|ri − rj|, h), (3)

where ρk and vk are density and velocity of particle k (evaluated at k = i or k = j), respectively,
mj is mass of particle j and

∇riW (|ri − rj|, h) =
ri − rj
|ri − rj|

∂W

∂r
.

3.2 The momentum equation

The momentum equation is based on the conservation of momentum which is given by

Dv

Dt
= −1

ρ
∇P + F, (4)

where v, ρ and P are velocity, density, and pressure, respectively. Here, F is external force, in this
case gravitational acceleration. Writing (4) in SPH discretization form as in [3], we get

Dvi

Dt
= −

∑
j

mj

(Pi + Pj
ρiρj

+ Πij

)
∇riW (|ri − rj|, h) + F, (5)

where Pk is pressure of particle k (evaluated at k = i or k = j).
In SPH, there are various formulations for viscosity. In the momentum equation, the intro-

duction of a viscous term is necessary not only to consider viscid fluids and no slip boundary
conditions, but also to provide the stability to the system and to prevent inter-particle penetra-
tion. The artificial viscosity term Πij is added to pressure terms within the momentum equation
(5). The artificial viscosity Πij has the form [6]

Πij =


−αcµij + βµ2

ij

(ρi + ρj)/2
, (vi − vj).(ri − rj) < 0

0, (vi − vj).(ri − rj) > 0
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where

µij =
h(ri − rj).(vi − vj)

|ri − rj|2 + η2
.

In these expressions, c is the speed of sound, η = 0.001, α and β represent shear and bulk
viscosity, respectively. For the problems described here, we choose α = 0.03 and β = 0.

3.3 The equation of state

The equation of state is used to relate density to pressure. In this paper, the Tait’s equation of
state has the form

p =
ρ0c

2

γ

[( ρ
ρ0

)γ
− 1
]
,

where c, ρ0, and γ are the speed of sound, density reference, and the polytropic constant, respec-
tively. Note that γ = 7 is usually used for water simulations. The speed of sound c is approximately√

100gH and it is chosen in respect of a low Mach number (Ma < 0.1) to ensure low compressibility
effects [6].

4 Improvement of the SPH method

In this paper, we applied an improvement to the standard SPH method by using renormalization.
This technique is to improve the accuracy of the method [1].

4.1 Gradient kernel renormalization

The velocity gradient in (3) can be approached by using

∇v = ∇v − v∇1.

We can generalize this approach for any field f by using

∇f = ∇f − f∇1 (6)

and transforming (6) into its continuous convoluted form we have

〈∇f(r)〉 =

∫
Ω

f(r′)∇Wdr′ − f(r)

∫
Ω

∇Wdr′.

We recall the second order Taylor expansion∫
Ω

f(r′)∇Wdr′ = f(r)

∫
Ω

∇Wdr′ +
∂f(r)

∂r1

∫
Ω

(r′1 − r1)∇Wdr′︸ ︷︷ ︸
A

+

∂f(r)

∂r2

∫
Ω

(r′2 − r2)∇Wdr′︸ ︷︷ ︸
B

+
∂f(r)

∂r3

∫
Ω

(r′3 − r3)∇Wdr′︸ ︷︷ ︸
C

+O(h2).
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In order to ensure gradient interpolations of linear fields, it is necessary to ensure that the
discrete approximation of A, B, and C are

A =

1
0
0

 B =

0
1
0

 C =

0
0
1

 .

By the renormalization procedure [1], we modify ∇W as follows

∑
j

mj

ρj
(rj − r)

⊗
L(r)∇W (|r− rj |) =

(
1 0 0
0 1 0
0 0 1

)
,

where L(r) is a (d, d) correction matrix, d is the dimension of the case. In this paper, we consider
three-dimensional cases (d = 3) and calculate L(x) to increase the accuracy of gradient kernel
approximation. The continuity equation is discretized by the following manner

Dρi
Dt

= ρi
∑
j

mj

ρj
(vi − vj)L(ri)∇riW (|ri − rj|, h).

This discretized form ensures exact interpolations for both constant and linear fields. Note that
we can discretize the conservation of momentum by the following manner

Dvi

Dt
= −

∑
j

mj

(Pi + Pj
ρiρj

+ Πij

)
L(ri)∇riW (|ri − rj|, h) + F.

4.2 Numerical time integration with renormalization

As the other explicit hydrodynamic methods, different numerical time integrations can be applied
in SPH simulation, such as Leap-Frog, predictor-corrector, Runge-Kutta, and Beeman schemes.
The advantages of the Leap-Frog algorithm are its low memory usage on storage and its com-
putational efficiency. We applied it in this paper with its improvement by using gradient kernel
renormalization. Therefore,

r∗i = rni +
dt

2
vn
i ,

pni =
ρ0c

2
0

γ

[(ρni
ρ0

)γ
− 1
]
,

,

v
n+1/2
i = v

n−1/2
i − dt

∑
j

mj

(pni + pnj
ρni ρ

n
j

+ Πij

)
L(r

n+1/2
i )∇riW (r

n+1/2
ij , h) + F

n+1/2
i ,

ρ
n+1/2
i = ρ

n−1/2
i + dtρi

∑
j

mj

ρj

(
v
n+1/2
i − v

n+1/2
j

)
L(r

n+1/2
i )∇riW (r

n+1/2
ij , h),

rn+1
i = r

n+1/2
i +

dt

2
v
n+1/2
i .

129



ISCS 2013 Selected Papers R. D. Prayogo, C. F. Naa

5 Implementation

In the following section, the results of numerical simulations for improved SPH method are given.
This method was implemented in dam-break problem with rigid ball structures and water waves
generated by oblique piston type wave-maker.

5.1 Dam-break and structure

In this implementation, we consider a rectangular tank with three-dimensional problem, in particu-
lar on interaction between waves and structures. Here we examine the impact of a single wave with
rigid ball structures over the slope by means of a three-dimensional SPH method. A rectangular
tank contains fixed structures and we used 10075 particles for this simulation. The geometry is
shown in Fig. 2.

Figure 2: Sketch of dam-break problem considered, side view (upper panel) and top view (lower panel).

Fig. 3 shows the motion of a single wave which moves through rigid ball structures in a
rectangular tank. The frame at T = 0.0 s shows the initial configuration. In the next frame at
T = 0.11175 s, the wave generated by the dam break and the initial layer of water on the bottom
collides with the front of the rigid ball structures and at T = 0.1425 s the wave wraps around the
rigid ball structures. At T = 0.1725 s, the waves collide from both sides of the rigid ball structures
then continue moving toward the right vertical wall. The wave reflects after colliding with the
opposite wall of the tank at T = 0.3255 s. The last movement, at T = 0.47625 s, the reflected
wave hits the back of rigid ball structures.
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Figure 3: (T = 0.0 s) initial configuration; (T = 0.11175 s) wave hitting the rigid ball structures; (T = 0.1425 s)
wave wrapping around the rigid ball structures; (T = 0.1725 s) waves colliding after passing the rigid ball structures;
(T = 0.3255 s) wave colliding with the opposite wall of the tank; (T = 0.47625 s) reflected wave hitting the back of
the rigid ball structures.

5.2 Oblique piston type wave-maker

In this implementation, we consider a rectangular tank with three-dimensional problem, in particu-
lar the propagation of waves towards a slope. This simulation involves a wave-maker in the form
of an oscillating oblique piston on the left-hand side and used 80682 particles. The geometry is
shown in Fig. 4.

Figure 4: Sketch of oblique piston type wave-maker, side view (upper panel) and top view (lower panel).
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Figure 5: (T = 0.0 s) initial configuration; (T = 0.2865 s) the wave is generated by the oscillating oblique piston
type wave-maker; at (T = 0.823125 s), (T = 0.917625 s), and (T = 0.9915 s) the water wave propagates onto the
slope; (T = 1.18575 s) the water wave reaches shallow water area and hits the right wall.

Fig. 5 shows the simulation of free surface flows. The water waves generated by oscillating
piston type wave-maker were simulated. In Fig. 5 the waves are shown propagating onto the slope.
The frame at T = 0.0 s shows the initial configuration with water lying on the slope. In the next
frame at T = 0.2865 s, the wave is generated by the oscillating oblique piston type wave-maker.
At T = 0.823125 s, T = 0.917625 s, and T = 0.9915 s the water wave propagates onto the slope.
Finally, at T = 1.18575 s the water wave reaches shallow water area and hits the right wall.

6 Summary

This paper presents the application of an improved SPH method by using gradient kernel renormal-
ization for simulating free surface flows. We have implemented this method on three-dimensional
cases, in particular on the interaction between waves and structures; and the propagation of waves
towards a slope for waves generated by oblique piston type wave-maker. The three-dimensional
case of the model has been shown to produce three-dimensional phenomenon, i.e., the collision of a
single wave with rigid ball structures and its passing around the obstacle. In summary, an improved
SPH model based on renormalization can be successfully used to simulate three-dimensional wave
problems.
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