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Abstract. By using tight-binding molecular dynamics with Fermi operator expansion, we study
vacancy defects in Silicon. The code has been developed for checking silicon crystal, point defect
formation energies, etc. The crystal configuration for checking varies among the systems of 64,
216, 512, and 1000 atoms. We have also checked the expansion condition of Fermi operator; the
smearing width (∆ε), the maximum order of expansion polynomials. The testing shows the good
results, compared with the ab initio results. The dynamical behaviors of defects both in the liquid
state and the non-self-diffusion state, are still being investigated. In order to support the data
analysis, a visualization of multi-vacancy is also constructed.
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1 Introduction

Silicon has great economic and technological importance, even nowadays when the limitation of
silicon electronic device is claimed. The defects in crystal silicon have been argued and properties
of vacancy have interested researchers for a long time in the view point for controlling the defect in
electronic devices. In order to investigate silicon defects system, a large system is required. Classical
potentials can be applied to large system. However, since they do not treat electronic structure
deeply, they are relatively inaccurate when predict many properties. First principle calculations, or
ab initio, can be quite accurate, but their calculation cost are very high, so that the great computer
resources are required. Tight-Binding (TB) method offers a reasonable advantage between these
other methods. TB calculation can be faster than first principle calculation and also can handle
large system. Compared with classical potentials, TB also gives better accuracy because it treats
electronic structure.

In order to investigate dynamical properties of the system, TB method can be applied with
molecular dynamics (MD) simulation. Tight-binding molecular dynamics (TBMD) [5, 6] is widely
used to investigate dynamical properties of clustering atoms and disordered material and, espe-
cially, expected to be able to reveal processes of bond breaking or re-bonding. However, there
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are situations where a huge number of time steps in a MD simulation is required. In these cases,
even with TBMD simulation, computational time can become a problem if we use standard diag-
onalization techniques. The present work employed the Fermi operator expansion method [8, 9]
which has an order-N property in the computational cost and is suited in massively parallelized
computation.

Previously, the TBMD with a Fermi operator expansion (FOE) [11] has been developed and
successfully applied to investigate liquid carbon. It will be adapted to investigating defects in
silicon system, especially vacancy defects. We also need, however, a potential form. Previous
study [10], optimized potential for silicon has been obtained by fitting from experimental reference
data and ab initio data. This potential describes many properties very accurately and should be
useful for this recent work.

2 Tight Binding Molecular Dynamics Model

Adapted from previous study [11], total energy Etot of a crystalline system of nucleus and valence
electrons for our TBMD model can be written as

Etot =
∑
i

1

2
miṙ

2
i + Epot + µ (Nele − 2 Tr[f(x)]) , (1)

with Epot = Etb +Erep +Eent. First part of equation (1) is total kinetic energy of electrons. Second
part is total potential energy, which is represented by three terms of energies: band structure energy
Etb, effective repulsive potential Erep, and electronic entropy energy Eent. Nele, µ, and f(x), in
the last part, are the number of total valence electron, chemical potential, and Fermi distribution
function, respectively. This part is added to satisfy charge neutrality. When the charge neutrality
is satisfied, it should be vanish.

To calculate band structure energy Etb, it could be obtained from the sum over all the eigen-
values up to Fermi level with the weight of the Fermi distribution:

Etb = 2
∑
i

εi f

(
εi − µ

∆ε

)
, (2)

where εi is the i-th eigenvalue of the TB Hamiltonian Htb and ∆ε is the smearing width of the
Fermi level. Equation (2) can also be expressed in terms of trace of Htb with any basis sets:

Etb = 2 Tr

[
Htb f

(
Htb − µ

∆ε

)]
. (3)

Using a linear combination of orthogonal atomic orbitals {φlα}, equation (3) can written as

Etb = 2
∑
l α

∑
l′α′

〈φl α|Htb|φl′α′〉〈φl′α′ |f(x)|φl α〉, (4)

where, x = (Htb − µ)/∆ε, l is quantum numbers index and α is label of nuclei.
As shown in equation (4), matrix elements of Htb and f(x) are required to obtain the band

structure energy. Construction of Htb for silicon system is different with construction of Htb for
carbon system. For silicon system, according to Slater and Koster [4], matrix elements of Htb can
be evaluated as two-center integrals. However, potential parameters are required, such as εs, εp,
hssσ, hspσ, hppσ, and hppπ. According to Lenosky et al. [10], these can be obtained by fitting
experiment or ab initio data. Some data of gα = r2 hα, with α = ssσ, spσ, ppσ, ppπ, is fitted
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Figure 1: Localization region scheme.

by cubic spline method [1]. These parameters is only fitted for radius range 1.50–5.24 Å, which
is correspond to the first four neighbor shells in the diamond structure. Each matrix element
will go smoothly to zero between the third and fourth neighbor shells. For matrix elements of
Fermi operator f(x), we can calculate directly by Fermi operator expansion [9, 11], as described
in Appendix A.

For electronic entropy energy could be calculated by

Eent = −2∆εTr[s(x)]

with

s(x) = −{f(x)lnf(x) + (1− f(x)) ln (1− f(x))} .

To construct the matrix elements of s(x), we can use the same procedure as for matrix elements
of Fermi f(x) with another set of expansion coefficients. And for repulsive energy, it calculated by

Erep =
∑
i,j

1

2
φ(rij),

where, φ(r) can be obtained also from previous work [10].
For MD implementation, the equation of motion, which is derived from Lagrangian of the

system, can be written as

mi
d2ri
dt2

= Fi = −2Tr

[
dHtb

dri
f(x)

]
− d

dri
Erep. (5)

Equation of motion as shown in equation (5) is integrated with Verlet algorithm to update the
position and velocity of atoms. During we calculate the force, a localization region (LR) are
introduced, which is associated with each atom. The number of atom will be determined by
cut-off radius rcutoff of the region (see Figure 1). This feature allow us to reduce the number of
Tight-Binding bases without lossing the accuracy of the calculations. This feature also allow us to
parallelize the calculation because force calculation for each atom is totally independent.
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3 Result and Discussion

Before investigating the silicon system, because of LR is used, the best cut-off radius rcutoff should
be chosen to optimize the calculation. Cut-off radius rcutoff related with the number of atoms, and
number of atoms related with accuracy and time of the calculations. For 4× 4× 4 silicon system,
cut-off radius rcutoff should be chosen in range 0.85 − 1.1 nm, because point defect energies are
saturated (see Figure 2). In this range, point defect energy for each rcutoff quite similar, but time
of calculation is different. Time cost can be saved by choosing the best cut-off radius.

Figure 2: Dependence of cut-off radius rcutoff to accuracy and time of calculation.

In this investigation, we determine point defect formation energy. Point defect formation energy
is important to know the stability of the system while the complete system losses some atom. From
previous study [2], point defect formation energy is written by

Ef = Evacancy −
(
N − 1

N

)
Ebulk + qµ, (6)

where, Ef is point defect formation energy, Evacancy is total energy of vacancy defect system, Ebulk

is total energy of complete system, q is charge, and µ is chemical potential. We use equation (6) to
determine point defect formation energy for several smearing (∆ε). Because of charge neutrality,
the last part should be neglected. Figure 3 showed us point defect formation energy for several
smearing (∆ε) and also for several size of silicon system: 2 × 2 × 2 (64 atoms), 3 × 3 × 3 (216
atoms), 4× 4× 4 (512 atoms), and 5× 5× 5 (1000 atoms). When larger smearing is used, we will
get smaller point defect formation energy compare with calculation with small smearing. This case
comes from electronic entropy energy, because when smearing is increase (temperature increase),
possibility to find electrons above Fermi level is also increase. To calculate point defect formation
energy with small smearing, high accuration is required. Degree of polynomial (npl) should be
increase to handle that situation.

In zero temperature case (∆ε = 0), point defect formation energy is calculated in unrelaxed
and relaxed defect configuration. Compare with previous models [10, 3] and ab initio result [7],
our model show good results (see Table 1 and Tabel 2).
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Figure 3: Point defect formation energy for several smearing (∆ε).

Table 1: Point defect formation energies (in eV) in unrelaxed defect configuration.

Our model Lenosky et al. [10] Kwon et al. [3] Ab initio [7]
64 216 512 1000 64 216 64 216

3.645 3.989 4.076 4.102 3.639 3.984 4.720 5.570 4.400

Table 2: Point defect formation energies (in eV) in relaxed defect configuration.

Our model Lenosky et al. [10] Kwon et al. [3] Ab initio [7]
64 216 512 1000 64 216 64 216

3.505 3.801 3.897 4.102 3.949 3.397 3.780 3.390 3.600
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We also interest to consider the dynamical behaviors of defects both in the liquid state and
the non-self-diffusion state. First we use 5× 5× 5 (1000 atoms) silicon system and then 10 atoms
is removed from this system. In the other hand, we have multi-vacancy system with 990 atoms.
Temperature above melting point is chosen when consider behavior of defects in the liquid state,
and temperature below the melting point for non-self-diffusion state. In order to support the data
analysis, a visualization of multi-vacancy is also constructed. In the real system with vacancy
defects, defects are represented by holes. In order to consider the dynamical behavior of defects,
we should reprensent the hole with a visualization form. Test points are used to visualize the hole.
First we put test points so that fulfill the superlattice (see Figure 4(a)) and then make the selection
(see Figure 4(b)). This selection method is quite similar with localization region. In this part, we
choose a cut-off range associated with each test point. If silicon atom is exist inside the region, the
test point will be removed, otherwise will be kept.

(a)

(b)

Figure 4: (a) Test points configuration, (b) Test points selection scheme.

Using this method, we can consider the dynamical behaviors of defects quite easily. As shown
in Figure 5, for liquid state case, the hole will be disappear because atoms near hole will be diffused
to fill the hole. For non-self-diffusion case (see Figure 6), the hole looks vibration. In our opinion,
long time simulation will has possibility to find the movement of the hole. Checking the energy
convergence is required to satisfy the calculation. From Figure 7(a) and Figure 7(b), we can see
the temperature control by Nose termostat has worked properly, and from Figure 8(a) and Figure
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8(b), we can see both in liquid state case and non-self-diffusion case, total energies are convergen.

Figure 5: Dynamical behavior of defects in liquid state (1700 K).

Figure 6: Dynamical behavior of defects in non-self-diffusion (1100 K).

4 Summary

TMBD with FEO has been applied to crystal silicon system (with defects) and the results (point
defect formation energies) show the value comparable to ab initio result and other previous works.
For Condition of Fermi operator also has been checked. Better result has been obtained, especially
when we consider zero temperature case. In this case, however, high degree of polynomial is
required to increase the accuracy. To consider behaviors of the defects in multi-vacancy system,
a visualization has been constructed. The movement of the hole will be possible to found in non-
self-diffusion with long time calculation. For liquid state case, the hole will be disappear because
atoms near the hole will be diffuse to fill the hole.
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(a) Liquid state case (b) Non-self-diffusion case

Figure 7: Time evolution of temperature system.

(a) Liquid state case (b) Non-self-diffusion case

Figure 8: Time evolution of total energy system.
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Appendix A : Fermi Operator Expansion

Fermi distribution function is expanded by Chebyshev as following equation

f(x) ≈ p(t) =
c0
2

+

npl∑
j=1

cj Tj(t). (7)

We need to rescale t from x with this relation:

x =
xmax − xmin

2
t+

1

2
(xmax + xmin),

where, xmax and xmin are the maximum and the minimum eigenvalues of x, respectively. With this
scaling, the eigenvalues of t should be in the range between -1 and 1. The degree of polynomial in
equation (7), can be chosen by following relation:

npl = C
W

∆ε

where W ∼ 2∆ε max (xmax, |xmin|) represent a bandwidth of the electronic structure, and C is a
constant. For expansion coefficients, it can be obtained by this following formula:

cj =
2

π

∫ 1

−1

f [p]Tj(p)
dp√

1− p2
. (8)

Practically, however, we used xmin = −xmax and the expansion coefficients can be obtained by

cj =


1 for j = 0
4

π

∫ p1
0

(
f [p]− 1

2

)
Tj(p)

dp√
1− p2

− 4

π

sin(jθ1)

2j
for j = odd

0 otherwise

where p1 = cos θ1 with 0 ≤ θ1 ≤ π/2.
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