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Abstract. We have investigated the computational performance of the first principles molecular
dynamics code which employs planewave basis set and pseudopotential of electron-ion interaction.
The efficiency of task has been measured in terms of matrix multiplication (MM), fast Fourier
transformation (FFT). For the implementations of the OpenMP and GP-GPU utilities, the MM
was found to mark the considerable high score, whereas the FFT a fairly good one. Analyzing the
resulting whole performance, efficiency of the task other than the MM and FFT has to be improved
for a higher performance.
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1 Introduction

Electronic properties in the realistic system with a nano-size scale have been becoming a target
in the computational material science which explicitly includes effects on the quantum mechanics.
Such a calculation needs a large amount of computational source. This is why the higher com-
putational efficiency is required. The density functional approach has been playing an important
role in material science. Indeed, the target extends to many topics associated with the increase
of performance in both of hardware and software. The extension has been supported by parallel
computations, which are performed in many levels of computer wares.

It is important to use the parallel calculation code which is matched with its architecture.
Even when we develop the computational code for the density functional calculation, some tests
for new architectures are required for grasping a future efficiency in the computation. Following
the message passing interface (MPI), the OpenMP has been one of the central issues for the
improvement in the current computational code. Recently, the general purpose graphic processing
unit (GP-GPU) is also a choice for getting a higher performance. The test of hybrid calculations
could also be meaningful.

In this work, we have investigated the performance about computational time in the pseudopo-
tential planewave code for DFT calculation. The results on the matrix multiplication (MM) and
fast Fourier transformation (FFT) are reported individually in detail in the implementations of
the OpenMP and GP-GPU.

2 Computational circumstances

2.1 Properties of computer archtechture

We have used three kinds of machines for the performance investigation. Their properties are
summarized in Table 1. The names of machines are referred in the text.
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Table 1: Properties of the computers for investigation. The machine names are used in the text.

Machine Name CPU GPU CUDA
M1 Quad-Core,AMD,2.3GHz no device no install
M2 Intel Xeon X5590,3.33GHz Tesla C1060 CUDA Toolkit 2.3
M3 Intel Xeon X5680,3.33GHz Tesla M2050 CUDA Toolkit 3.1 and 3.2

The OpenMP is a parallel programming language by which the memory is shared in a node of
the machine. The message communication like MPI is unnecessary in the OpenMP calculation.
It is also unnecessary to make a major correction when rewriting the single processing code to a
parallelized one. However, the execution may not be secure even when there is no error. When
using two or more threads in the OpenMP calculation, the correspondence between a temporal
thread memory and real memory may not be secured. Therefore, it is required to make attension
to the synchronization between them. The speed-up factor is used for presenting parallelization
performances. This factor is estimated from the inversed ratio of the time by n’s processors with
respect to that by single one. Originally, GPU is a special set of many processors for graphical
processes. The CUDA Toolkit developed by NVIDIA has become available to the computation for
general purpose.

2.2 Properties of the target code

The calculation code used in the investigation is for the Car-Parrinello molecular dynamics (CPMD),
which is based on the density functional theory (DFT). Details of the scheme can be found in the
reference [1, 2]. The wave functions of dynamical variables are transformed by FFT between real
and inverse spaces. In the ultrasoft pseudopotential scheme, the MM can be a considerable part for
the time-consuming. In such a scheme of the DFT, the task of calculation is categorized to MM,
FFT and the others. The code used can employ a scheme of noncollinear magnetism, affording to
treat vector type spin density. Such scheme requires twice of memory for wave functions due to
the two component spinor [3]. The starting code is parallelized in k points (sampling wave vectors
in wave functions) with using MPI.

2.3 Sample systems

For investigating the computational time, the two sample systems have been considered. Both
of them are slab systems; one is non-magnetic and the other magnetic with noncollinear scheme
[3, 4]. Results of the former can be used for comparison with other codes and those of the latter
may provide us the perspective to the application to the magnetic system with the spin-orbit
interactions [5, 6]. The non-magnetic system, as shown in Fig. 1, consists of 13 monolayers (MLs)
in BaTiO3 with the inplane lattice constant (a = 3.94Å); 7 BaO MLs and 6 TiO2 MLs (32 atoms
in unit cell). In both sides of the slab, the vacuum layer with dv = 5.29Å is included. The
periodic boundary condition is taken into account due to the planewave basis in which the energy
cut-offs of 30Ry and 300Ry were used for the wavefunction and the density, respectively. The
6 special k points are used for MPI parallel computations. The magnetic system is a thin film
Fe(5MLs)/MgO(6MLs)/Fe(5MLs) like a magnetic tunnel junction (22 atoms in unit cell, a = 4.20Å,
the vacuum layer of dv = 5.29Å, the energy cut-offs of 30Ry and 300Ry, and 4 special k points).
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dv

dv dv

dv

Figure 1: Non-magnetic and magnetic slab systems for
the performance invesitigation; 13 monolayers (MLs)
of BaTiO3 (left) and the magnetic tunnel junction of
Fe(5MLs)/MgO(6MLs)/Fe(5MLs) (right). The dv indi-
cates the vacuum layer.

The parameters used in this work are reported in Table 2.
In these systems, the main parts for time consuming are MMs and FFTs. In the magnetic

system, the MM and FFT needs the 70% and 20% of the total cpu time in the single process-
ing calculation (without using MPI, OpenMP, and GPU). In this paper, we report the result in
computational performance for OpenMP parallelization and GP-GPU computation.

3 Testings for the elements

3.1 Matrix multiplication (MM)

For the OpenMP parallelization, the MM is performed as shown in Fig. 2. Figure 3 shows
parallelization efficiency for matrix multiplication. Using 8 cores, we obtain a high parallelization
efficiency of 94%. It was confirmed that the MM can be parallelized with a high efficiency.

The MM can be performed using the routines of xGEMM (x =S,D,C,Z) for the typical matrices
in the BLAS library. The CUDA Toolkit provides the library for the GPU. Figure 4 shows the
FLOPS (floating point number operations per second) in the MM for the various matrix sizes
[7]. The times of data transfer from the host computer to the device (GPU) and vice versa were
included for the estimation. For the architecture of Tesla C1060, the performance is not high
except for the single real matrices (SGEMM and CGEMM), whereas the performance becomes to
a much higher one in Tesla M2050 even for DGEMM and ZGEMM. The performance has become
to a high value in archiecture of Tesla M2050. The comparison with the performance of OpenMP
(see the data of ”8 thread” in Fig. 4) implies that the performance of CPMD becomes higher in
the GPU of Tesla M2050 instead of the OpenMP.
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Table 2: Characters and Parameters in sample systems.

Sample BaTiO3 Fe/MgO/Fe
lattice tetragonal lattice tetragonal lattice

lattice constants a=3.94Å, c=34.5Å a=2.98Å, c=37.1Å
number of k point 6 special points 4 special points
number of atoms 32 (Ba:7, Ti:6, O:19) 22 (Fe:10, Mg:6, O:6)

number of Kohn-Sham orbitals 148 264
Energy Cutoff for wave function 25Ry 25Ry

Energy Cutoff for density 300Ry 300Ry
Fourier mesh for wave function 24×24×216 18×18×240

Fourier mesh for density 48×48×360 32×32×400
number of plane waves 7697 4731

Figure 2: Parallelization schemes of matrix multiplica-
tion (MM) in the OpenMP parallelization.
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Figure 3: The parallelization efficiency (speed-up fac-
tor) of the matrix multiplication (MM) in the OpenMP
of M1 for the size of 5000×5000.

In the GPU calculation, the data transfer (host to device and vice versa) is time-consuming.
The typical ratios are presented in Fig. 5. In the larger sizes of matrix, the ratios of data transfer
become suppressed. This implies the efficiency of GPU in the application of larger systems. It
is interesting to see that the transfer from the host (CPU) to the device (GPU) needs more time
compared with that from the device to the host. Such feature of results is attributed to the amount
of data transfer and the bandwidth for up- and down-loading between the host and device.

3.2 Fast Fourier transformation (FFT)

In the target code, the physical value (wave functions and densities) is efficiently calculated by using
one of real and reciprocal spaces [2]. Requiring the conversion between them, three dimensional
FFT (3D-FFT) is used. The parallelization scheme of OpenMP for 3D-FFT is shown in Fig. 6. In
this, the 3D-FFT is divided to three times of 1D-FFTs so that the number of calculation tasks is
increased and we obtain the good load balance among the threads associated with the OpenMP.
This sometimes works well because in the application systems of typical size of CPMD calculation,
the size of FFT is not enough large. Such sizes are only several times or several score times of the
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(a) real number (M2)
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(c) real number (M3)
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(d) complex number (M3)
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Figure 4: Effective FLOPS values of the MM for various matrix sizes (256 ∼ 5120) by SGEMM, CGEMM, DGEMM
and ZGEMM routines in Tesla GPUs (Tesla C1060 and Tesla M2050). The upper and lower two panels are obtained
in the machines of M2 (a)(b) and M3 (c)(d) (see Table 1), respectively. The times for memory transfer are included
in the estimation.
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Figure 5: Data transfer ratio in DGEMM calculation for
various matrix sizes in M3.
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Figure 6: Parallelization scheme for three dimensional
fast Fourier transformation (3D-FFT) in the OpenMP.
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Figure 7: The parallelization efficiency (speed-up fac-
tor) of 3D-FFT in the OpenMP. The size of 48× 48 ×

216 is used.

number of available threads in OpenMP.

The parallelization efficiency in OpenMP is presented in Fig. 7. Using 8 cores, we obtain
the efficiency of 65%. The parallelization efficiency has decreased compared with the MM (see
Fig. 3). This may be because in the scheme the temporal memory for 1D-FFT, as the overhead
of calculation, is stored discontinuously from the original memory area of 3D-FFT. As another
investigation for 3D-FFT, the automatic parallelized version of FFTW [8] in OpenMP are tested
(not reported here), resulting the parallelization efficiency of 25% for using 8 cores.

In this work, we have carried out the test of CUFFT for 3D-FFT. The computational times are
presented in Fig. 8. The efficiency is found to depend on the size of FFT (spiky structure in the
figure). There are many sizes where the efficiency is worse than that of FFTW [8]. This implies
the 3D-FFT by CUFFT is not appropriate for the CPMD code in which the size of FFT depends
on the input parameters.

4 Results on CPMD code

4.1 MPI+OpenMP (Hybrid)

The hybrid version of code is organized with k point parallelization on MPI, the OpenMP cal-
culation both in MM and FFT, and other minor parallelizations. The efficiencies are presented
with those of the MPI version in Fig. 9. Using 16 cores (2 MPI+ 8 OpenMP), the performance
amounts to 37%. This value is still fearly well, but the additional improvement must be required
for an more efficient calculation.

4.2 MPI+GPU

The MPI+GPU version of CPMD code has been checked mainly in M2, which has 8 cores and 3
GPUs. The BaTiO3 system is used for the computation. The time report is presented in Figs. 10
and 11. In the latter, the times for MM, FFT are included. In these figures, the labels of BLAS
and FFTW indicate the single processing calculation for the MM and the FFT, respectively. The
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Figure 8: The computational times with respect to the
various sizes for the CUFFT routine of 3D-FFT (GPU)
in M2.
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Figure 9: Parallelization efficiency for the MPI and
Hybrid versions for BaTiO3 system.
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Figure 10: Conputational times (single CPMD iter-
ation in second) with respect to the number of MPI
threads for MPI+GPU (Tesla C1060) version. The
single MPI thread can access to a single GPU in M2.
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Figure 11: Conputational times (single CPMD itera-
tion in second) of MM, FFT, and others for BaTiO3

by MPI+ GPU (Tesla C1060) version (3MPI+3GPU).

GPU calculation for the MM (CUBLAS) is improved considerably, whereas the FFT by CUFFT
is more time-consuming than the FFTW, as expected from the result in Fig. 8.

4.3 MPI+OpenMP+GPU

In the experience which is encountered in the previous sections, the FFT by GPU cannot be carried
out so high performance. Taking into account this, the MPI+OpenMP+GPU (hybrid+GPU)
version is organized with the MPI (k point parallelization), the MM by GPU, the FFT by OpenMP
(6 threads in OpenMP), and other minor parallelization. This is tested in the magnetic system
(Fe/MgO/Fe) with M3 (4 threads in the MPI and 2 GPUs). The result with the CUDA Toolkit
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Figure 12: Computation times (single CPMD iteration in
second) for the slab of Fe(5MLs)/MgO(6MLs)/Fe(5MLs)
in M3.

3.1 is represented in Fig. 12. In the MPI+GPU calculation, the FFTW is used in the 3D-FFT for
each k point sampling. The hybrid+GPU calculation marks the highest score among the versions
investigated. By introducing OpenMP and GPU, the time ratio of MM has become to 24% from
70% in the single processing calculation and from 60% in the calculation. If preparing one GPU per
MPI thread, instead of one GPU per two MPI threads, the MM can be accelarated. Introducing
the MPI, OpenMP, and GPU to the CPMD code, the computation other than the MM and FFT
becomes to the major part of time-consuming. It should be improved in future.

5 Conclusions

We have investigated computational performance of the CPMD code for the OpenMP paralleliza-
tion and the GPU architecture in addition to the MPI parallelization. Our test has succeeded to
reduce the computing time considerably, compared with the MPI version for the magnetic slab
system which is an accesible model for typical magnetic tunnel junction. Based on such develop-
ment of the code which accords with the new architectures, we may approach electronic structures
and molecular dynamics for larger realistic systems with the high performance computation.
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