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Abstract 

Chest radiography using a dynamic flat-panel detector with a large field of view can 

provide sequential chest radiographs during respiration. These images provide 

information regarding respiratory kinetics, which is effective for diagnosis of 

pulmonary diseases. For valid analysis of respiratory kinetics in diagnosis of pulmonary 

diseases, it is crucial to determine the association between the kinetics and respiratory 

phase. We developed four methods to determine the respiratory phase based on image 

information associated with respiration, and compared the results in dynamic chest 

radiographs of 37 subjects. Here, the properties of each method and future tasks are 

discussed. The method based on the change in size of the lung gave the most stable 

results, and that based on the change in distance from the lung apex to the diaphragm 

was the most promising method for determining the respiratory phase. 

 

Keyword: respiratory phase, plat-panel detector (FPD), computer analysis, diaphragm, 

diagnosis 



Introduction 

Chest radiography using a recently developed dynamic flat-panel detector (FPD) with a 

large field of view can provide sequential chest radiographs during respiration. These 

images provide not only anatomical information but also respiratory kinetics, such as 

the diaphragmatic movement and respiratory changes in X-ray translucency in the local 

lung area.  

Many investigators have attempted to obtain such respiratory kinetics using 

image-based examinations, such as X-ray fluoroscopy,1,2 dynamic magnetic resonance 

imaging (MRI),3-5 and pulmonary computed tomography (CT).6,7 This kinetic 

information is effective for diagnosing chronic obstructive pulmonary disease (COPD) 

and restrictive pulmonary disease,6 for making decisions pertaining to lung volume 

reduction surgery (LVRS), and for observing postoperative progress.3-5 However, these 

methods are not practiced as routine examinations due to various limitations, such as the 

small field of view, temporal resolution, and high dose of exposure. 

Therefore, we investigated methods for quantifying respiratory kinetics on dynamic 

chest radiographs obtained easily using an FPD system.8,9 The results showed that 

imaging using dynamic FPD could capture the respiratory changes, such as 

diaphragmatic movement and respiratory changes in X-ray translucency in local lung 

area associated with ventilation. To establish this new system for diagnosis of 

pulmonary diseases based on respiratory kinetics, it was crucial to determine the 

association between the kinetics and respiratory phase.  

There is a need to increase the accuracy of radiation therapy of lung tumors, which 

move during respiration. This has been achieved by measuring the moving area of the 

lung tumor by fluoroscopy and setting an appropriate margin based on the moving area 



in radiation therapy planning.10 Real-time tumor tracking in radiation therapy using 

fluoroscopy has also been used.11,12 In this method, gold markers embedded near the 

target are traced under fluoroscopic guidance. We feel that computerized methods for 

determination of respiratory phase based on image information are also needed for 

radiation therapy. For example, computerized methods will assist in the planning of 

radiation therapy and in improving both its efficiency and accuracy, and will also 

improve the accuracy of tumor tracking by providing real-time direction from 

respiratory phase based on image information.  

As described above, the determination of respiratory kinetics represents important 

clinical information. However, the kinetics of respiration can only be evaluated 

subjectively by visual observation. Previously, we developed a method for determining 

respiratory phase based on diaphragmatic movement.9 However, there were still some 

issues to be resolved before this method could be used for determining respiratory phase. 

Respiration is a passive movement caused by the diaphragm and intercostal muscles, 

and many types of lung structure, i.e., the rib cage, pulmonary vessels, and bronchi, are 

also moved during breathing.13,14 Therefore, we attempted to determine respiratory 

phase based on many kinds of image information associated with respiration on 

sequential chest radiographs. 

The present study was performed to develop and investigate the accuracy of several 

methods for determining respiratory phase on sequential chest radiographs obtained 

using a dynamic FPD system. 

 

Materials and Methods  

Image acquisition  



Posteroanterior (PA) dynamic chest radiographs during respiration were obtained with 

30 frames in 10 seconds using a modified FPD system (CXDI-40G, Canon Inc., Tokyo, 

Japan), X-ray device (KXO 80G, Toshiba, Tokyo, Japan), and X-ray tube (DRX 

2724HD 0.6/1.2, Toshiba) (Fig. 1). The modified FPD was an indirect type made of 

GOS (Gd2O2S (Tb)), and was capable of taking images at up to 6 frames per second. 

Exposure conditions were 110 kV, 80 mA, 6.3 ms, 2.0 mm Al filter, 3 frames per second, 

and SID = 2 m. The matrix size was 1344×1344 pixels, the pixel size was 320×320 µm, 

and the gray-level range of the images was 4096. Low pixel values were related to dark 

areas in the images and these in turn were related to high X-ray translucency in this 

system. The investigation was performed in 37 subjects, including 29 healthy controls 

and 8 subjects with pulmonary diseases (Table 1). The subjects were instructed to 

respire according to an automated voice (Fig. 2), and the manner of breathing was 

practiced before imaging. The total entrance surface dose, measured in air without 

backscattering, was approximately 0.4 mGy, which was 1.5-fold greater than that of 

conventional PA chest radiography using a Fuji Computed Radiography system (Fuji 

Medical Systems Co., Ltd., Tokyo, Japan) in our hospital. Approval for this study was 

obtained from our institutional review board, and each of the patients gave their written 

informed consent to participation.  

 

Image analysis 

The analysis was performed on a personal computer (Operating system, Windows 2000, 

Microsoft, Redmond, WA, USA; CPU, Pentium 4, 2.6 GHz; Memory, 1 GB) with our 

algorithm described below (Development environment: C++Builder; Borland, Scotts 

Valley, CA, USA). The movement of the diaphragm and chest wall directly reflects the 



respiratory phase, because respiration is a passive movement caused by the diaphragm 

and intercostal muscles.13 Therefore, we developed methods to quantify the following 

four measures associated with respiration and then determined respiratory phase based 

on the results.  

1. Distance from the lung apex to the diaphragm 

2. Summation of pixel values in the region of interest (ROI) covering both lung fields 

� Size of lung fields  

3. Correlation coefficient between each frame and a minimum intensity projection 

(MINIP) image created from dynamic chest radiographs 

4. Summation of respiratory vectors in the area near the diaphragm 

 

Method 1: Measurement of the distance between the lung apex and diaphragm 

Respiration is a passive action caused by the diaphragm and intercostals muscles. 

Thus, descent of the diaphragm indicates inspiration and ascent of the diaphragm 

indicates expiration. This method based on the distance from the lung apex to the 

diaphragm level measured by the edge detection technique consisted of two steps, i.e., 

determination of the points for measurement on the first frame and subsequent tracing 

of the points (Fig. 3). This method might be sensitive because it involves direct 

measurement of the diaphragm. The rib cage and mediastinum edge locations in the first 

frame were determined from the first derivatives of the horizontal signature in the 

middle of the image (Fig. 4a). The diaphragm edge locations were then determined from 

the first derivatives of the vertical signature on the midpoint between locations of the 

peripheral rib cage edge and the mediastinum edge (Fig. 4b). The lung apex edge 

locations were determined continuously from the first derivatives of the vertical 



signature on the midpoint between locations of the mediastinum edge and the 

diaphragm edge (Fig. 4c). In determination of the lung apex edge locations, the three 

largest edges were selected as candidates and then the uppermost edge was determined 

as the lung apex edge to prevent incorrect determination of clavicle edges. Figure 4d 

shows the points used to determine the distance from the lung apex to the diaphragm. 

After the second frame, dynamic chest radiographs were processed with a 7×7 Sobel 

filter to enhance the edges of the diaphragm (Fig. 5a). The points for measurement 

decided in the first frame were traced after the second frame with the sequential 

similarity detection algorithm (SSDA)15, where the ROIs including the points for 

measurement in the previous frame were used as a template (Fig. 5b) (eq. 1). The sizes 

of the ROIs were 50×50 for the lung apex and 50×100 for the diaphragm, and those of 

the search areas were 70×70 for the lung apex and 58×180 for the diaphragm, because 

the movement of lung structures along the cephalocaudal axis is more extensive than 

that along the horizontal axis. The difference (D) between the search area in the next 

frame, fn+1(xi+dx, yj+dy), and the ROI in the current frame, fn(xi, yj), was expressed as 

follows: 
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The smallest D resulted from the matching ROI of the current frame on the most similar 

search area in the next frame. The distance of the measured points from frame # n to 

frame # n+1 was determined as dx and dy by minimizing D and the coordinates of the 

points after movement were expressed as (xni + dx, ynj + dy). The template was also 



renewed with every frame, as x(n+1)i = (xni + dx) and y(n+1)j = (ynj + dy), so that accurate 

tracking could be achieved readily.  

 

Method 2: Summation of pixel values in ROI covering both lung fields 

This method was based on summation of pixel values in the region of interest (ROI) 

covering both lung fields, which were proportional to the sizes of the lung fields (Fig. 6). 

The lung volume increased in inspiration and decreased in expiration, these changes 

were expressed as the changes in the sizes of the lung fields. This method was simple 

throughout the whole process except for location of a large ROI. Thus, relatively stable 

results were expected. In the first frame, the rib cage edge locations were determined 

from the first derivatives of the horizontal signature in the middle of the image, and then 

a large ROI was located on the lung fields as shown in Fig. 7. The sum of the pixel 

values in the ROI was calculated throughout 30 frames. The respiratory phase was 

determined based on the first derivatives of the summation of the pixel value curve (Fig. 

8).  

 

Method 3: Correlation coefficient between each frame and the minimum intensity 

projection (MINIP) image 

This method was based on the correlation coefficient (r) between each frame Fn(i, j) 

and a template image Mn(i, j) created from dynamic chest radiographs (Fig. 9):  

( ) ( ){ } ( ) ( ){ }

( ) ( ){ } ( ) ( ){ }

301,13440,13440

)2(
,,,,

,,,,

22

<<<<<<

−−

−−
=

∑∑∑∑

∑∑

nji

jiMjiMjiFjiF

jiMjiMjiFjiF
r

ij
nn

ij

nn
ij

 

The MINIP image represented the maximum inspiratory phase, and the maximum 



intensity projection (MIP) image represented the maximum expiratory phase (Fig. 10). 

Thus, respiratory condition was estimated as the maximum inspiration when the 

correlation coefficient using the MINIP image as a template was at the maximum value, 

and respiratory condition was estimated as the maximum expiration when the 

correlation coefficient using the MIP image as a template was at the maximum value 

(Fig. 11). This method is advantageous in terms of simple process freeing of edge 

detection, which is accompanied by a larger risk of detection error. 

 

Method 4: Summation of respiratory vectors in the area near the diaphragm 

This method was based on summation of the respiratory vectors of lung structures 

near the diaphragm (Fig. 12). Lung vessels and bronchi near the diaphragm show a large 

degree of movement in the cephalocaudal direction during respiration. This method had 

the ability to catch even small respiratory motion of lung vessels and bronchi as 

compared to other methods, because smaller local areas were used for detecting 

respiratory vectors. These respiratory vectors were represented as their summation, and 

used to determine respiratory phase.  

First, the respiratory vectors (dx, dy) were measured by the block matching technique. 

The local area (50×50 pixels) in the frame being examined was searched for the most 

similar local area in the range of 82×110 pixels in the previous frame as described 

elsewhere in detail.9 The difference (D) between the previous local area, f n-1 (xi + dx, yj 

+ dy), and that being examined, f n (xi, yj), was expressed as follows: 
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The smallest D value resulted when there were more similarities in the previous local 

area and that being examined. The respiratory vectors (dx, dy) in the local area were 

determined by minimizing D. The respiratory vectors calculated by equation (3) show 

the directions of movement and distance of the local area from the previous frame to 

that being examined. Second, the diaphragm edge locations were determined by the 

same procedure as described in “Method 1,” and then the summed respiratory 

momentum in the cephalocaudal direction (dy) was calculated in the ROIs centered on 

the diaphragm edge locations as shown in Fig. 13. One side of the ROI was 250 pixels, 

which was about the same size as the width of the lung field. Figure 14 shows the 

summation of dy throughout all frames. Negative and positive values were taken to 

indicate respiratory phase and inspiratory phase, respectively.  

 

Manual measurement 

Three experts determined the respiratory phase based on the movement of the 

diaphragm, rib cage, lung vessels, and ribs by observing the images in each frame 

(Table 2). When there were differences between their determined frame number of 

transition from expiratory phase to inspiratory phase or vice versa, the averaged frame 

number was adopted. 

 

Evaluation of the results 

We evaluated the results obtained by the four methods by comparison to the results of 

manual measurements. We used the transition of respiratory phase as reference frames 

to assess errors. “Non-error” was defined when there were no differences between 

reference frames decided by manual measurement and those determined by 



computerized methods. We also defined “One error” when there was only a difference 

in one frame between them, and “Within three frames” when there was a difference 

within 3 frames between them. “Within three frames” was based on the observation that 

there were slight differences in three frames around breath-holding. 

 

Results 

The results obtained by our four methods are shown in Table 3. Method 1 was capable 

of determining the points for measurement almost exactly except for the left diaphragm, 

and the points could be traced with a high degree of accuracy (Table 4). However, the 

overall results obtained by these two procedures, i.e., determination and subsequent 

tracing of the points for measurement, did not achieve a high score. The points for 

measurement that were corrected manually were traced, and this method was shown to 

be able to determine the respiratory phase accurately in 36 of 37 cases (97.3%) within 3 

frames of error as shown in Table 3. On the other hand, method 2 was capable of 

determining the respiratory phase with an accuracy of 91.9% within 3 frames of error. In 

contrast to our expectations, the accuracy of method 3 was poor; respiratory phase could 

be determined with an accuracy of only 45.9% within 3 frames of error. Although the 

maximum inspiratory phase was determined accurately, the maximum expiratory phase 

was determined with 3~7 frames of error. Method 4 was able to determine the 

respiratory phase accurately in 28 of 37 cases (75.7%) within 3 frames of error.  

 

Discussion and conclusion 

Method 1 could determine not only respiratory phase but also respiratory level 

because the diaphragm level was measured directly. However, it is still necessary to 



improve the accuracy in determining the lung apex and diaphragm points used for 

measurement. In particular, for the left diaphragm, many errors occurred due to 

incorrect detection of gas in the stomach, the edge of the heart, and edges of the breast 

in female subjects instead of the diaphragm edge. Some other measures are needed for 

correction of these errors. Furthermore, in the subject with pneumonia, the interstitial 

pattern made it difficult to recognize the diaphragm edge locations. The results 

suggested that it was possible that the performance of this method would be decreased 

in cases with an interstitial pattern. However, the points traced during respiration 

achieved a high degree of accuracy. Thus, if the accuracy of determination of the points 

for measurement could be improved, method 1 would be promising for determination of 

the respiratory phase.  

In method 2, there was no need to determine edge locations as this method had less 

error than that involving direct measurement of diaphragm movement. However, this 

method could not detect subtle differences in respiratory level, such as the end of 

expiration or inspiration. In such phases, there was little movement of the diaphragm 

and rib cage, and so the results were affected by the heartbeat. Measurement by a ROI 

hollowed-out the mediastinum area may be effective to overcome this problem. This 

method is expected to be effective for subjects in whom the diaphragm is visually 

imperceptible. Thus, method 2 might be suitable for rough estimation of respiratory 

phase.  

In contrast to our expectations, method 3 did not show satisfactory accuracy. The 

MINIP image was unsuitable as a template. The MINIP image represented the image in 

the maximum expiratory phase, but there were some differences in imaging gas of the 

stomach and the waist in the MINIP image in comparison with the maximum expiratory 



image. These differences resulted in the concave part of the correlation coefficient curve 

indicated by the arrow in Fig. 12, which should actually be convex because this is in the 

maximum expiratory phase. As shown in Fig. 12, a concave curve in this part was often 

observed in many subjects. This method would thus be suitable only for ROI locations 

not including the abdomen area.  

The accuracy of method 4 was affected markedly by movement of the heart and ribs. 

In addition, many errors were caused by physical motion in some frames. It is necessary 

to develop a method for differentiating between respiratory movement and movement 

caused by the heartbeat. It is also necessary to investigate the location and size of the 

ROIs.  

 In this study, we developed several methods primarily to determine respiratory phase 

on sequential chest radiographs during respiration for diagnosis of pulmonary diseases. 

From the results, we concluded that the method based on summation of pixel value in 

the ROI (Method 2) was most stable, and that based on distance from the lung apex to 

the diaphragm (Method 1) was the most promising method for determining respiratory 

phase. Information about respiratory phase obtained from the above methods would 

improve the accuracy of image analysis, such as sequential lung recognition and the 

tracing of certain targets in the lung. We are also considering applying these techniques 

in a clinical setting, such as in radiation therapy tracing a target in the lung under 

respiration.  

Further studies are required to improve the accuracy of determination of respiratory 

phase by developing a complex method with method 2 as pre-processing and method 1 

as the main processing. For example, method 2 could be used for rough estimation of 

respiratory phase. Images emphasizing the moving area of the diaphragm can then be 



produced by subtraction from those in the maximum inspiratory phase and in the 

maximum expiratory phase. This moving area of the diaphragm will be useful for 

judging errors in determination of the diaphragm edge locations in method 1. 
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Legends for illustrations 

Fig. 1 Dynamic chest radiographs in a healthy subject 

Fig. 2 Imaging method.  

Fig. 3 Flowchart of method 1. 

Fig. 4 (a) Determination of the edge locations for the ribs and mediastinum. 

Determination of the points for measurement in (a) the lung apex and (b) the diaphragm. 

(c) The points for measurement. 

Fig. 5 (a) Dynamic chest radiographs with edges enhanced by Sobel-filter. (b) Tracing 

the points for measurement. 

Fig. 6 Flowchart of method 2. 

Fig. 7 Location of a large ROI. 

Fig. 8 Summation of pixel value curves. 

Fig. 9 Flowchart of method 3. 

Fig. 10 (a) MIP image and (b) MINIP image created from 30 frames of dynamic chest 

radiographs. (c) Image in the maximum expiratory phase. (d) Image in the maximum 

inspiratory phase. 

Fig. 11 Correlation coefficient curve 

Fig. 12 Flowchart of method 4. 

Fig. 13 Locations of two ROIs centered on the diaphragm edge locations. 

Fig. 14 Summation of the respiratory vectors curve. 

Table 1 Subjects in the present study. 

Table 2 Standards for deciding respiratory phase 

Table 3 Total results. 

Table 4 Separate accuracy of determination of the points for measurement and tracing 



of the points in method 1. 
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Subjects                              Number 
Healthy subjects                      29 (21~55 years old, Mean: 31.0, M:F=25:4) 
Subjects with pulmonary diseases      8  (31~75 years old, Mean: 57.6, M:F=5:3) 
  Pneumonia                         4 
  Emphysema                        2 
  Bronchial asthma                   1 
  Nodular pulmonary disease          1 

Table1 
 

 Moving direction of 
diaphragm 

Moving direction of 
rib cage 

Moving direction of 
Lung vessels 

Inspiratory phase Downside Outside Downside 
Exspiratory phase Upside Inward Upside 
Breath-holding Non Non Non 
Table 2 
 

              Complete     With one frame error    Within three frames error 
Method 1      75.7 (28/37)       91.9 (34/37)           97.3 (36/37) 
Method 2      43.2 (16/37)       70.3 (26/37)           91.9 (34/37) 
Method 3       2.7 (1/37)        18.9 (7/37)            45.9 (17/37) 
Method 4      59.5 (22/37)       67.6 (25/37)           75.7 (28/37) 

Table 3                                                            Unit (%) 
 

                                Lung apex        Diaphragm 
                               Right   Left      Right   Left 
Determination of the points    81.6     76.7      84.2     42.1 
Tracing the points             100     100       97.4     78.9 
As a whole                    81.6    76.7       82.0     33.2 

Table 4                                                  Unit (%) 
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