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Abstract

This study was conducted to assess the frequencies of protein overexpression and gene
amplification of M y» ¢ and to identify the mechanisms of M y ¢ gene amplification,
especially with regards to its possible co-amplification with ERBB2 or EGFR in gastric
adenocarcionomas. By immunohistochemical analysis of a total of 300 formalin-fixed
and paraffin-embedded gastric adenocarcinomas, the nuclear overexpression of MYC
was found in 47 tumors (16%). A fluorescence in situ hybridization analysis revealed
that 9 (19%) of the 47 tumors with protein overexpression had cancer cells with high
levels of M y ¢ amplification, while only 7 (6%) of the 122 tumors without protein
overexpression showed high-level M y» ¢ gene amplification. Such Myc amplification
was significantly correlated with positive nuclear protein overexpression. The
co-amplification of ERBB2 or EGFR with M y ¢ that was found in six and four cases,
respectively, is believed to be non-incidental because those frequencies were
significantly higher than the individual frequencies observed for the total examined
cases (ERBB2: 7%; EGFR: 4%). The high levels of gene amplification of these three
genes, as visualized by fluorescence in situ hybridization, could be broadly classified
into two typical types, namely, “multiple scattered signals” and “large clustered signals”.
Using two-color fluorescence in situ hybridization, the coexistence of co-amplified Myc
and ERBB2, or Myc and EGFR, within single nuclei in various combinations of
amplification types and copy numbers, could be ascertained in all nine cases, including
one in which the synchronous “multiple scattered type” co-amplification of Myc and
ERBB2 was observed. In three tumors, co-amplification of ERBB2 and EGFR was
found; however, ERBB2- and EGFR-amplified cell populations were separate and
mutually exclusive. We propose that the non-incidental co-amplification of M y» ¢ and
either ERBB2 or EGFR occurred through translocation and subsequent rearrangement.
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Introduction

The concept that multiple genetic alterations affecting protooncogenes and
tumor suppressor genes are involved in the development of various human cancers is
now widely accepted. However, the identification of the genes that are responsible for
gastric cancer initiation and progression remains controversial. Thus far, genetic
alterations previously reported in gastric carcinomas include the amplification of the
ERBB2, FGFR2, EGFR, MET and Myc genes and point/frame shift mutations of the
KRAS, TP53, APC and mismatch repair genes (1-5).

The Myc located on 8924 encodes a transcription factor that is likely to
contribute to tumorigenesis via its up-regulation, which would result in unrestrained
cellular proliferation, blocking of differentiation, and promotion of genomic instability,
including gene amplification, karyotypic abnormality, and hypersensitivity to
DNA-damaging agents (6, 7). A number of alterations, including gene amplification,
chromosomal translocation, insertional mutations, altered transcriptional elongation
rates, and a prolonged mRNA half-life (7), affect MY C expression in various neoplasms.
Gastric carcinomas studies using Southern blot (8-10) or comparative genetic
hybridization (CGH) (11) revealed that Myc was amplified in a small fraction of gastric
cancers. However, there have been very few comprehensive studies simultaneously
examining protein expression and gene amplification of Myc in gastric cancer.

ERBB2 and EGFR, which are located at chromosome band 17g12-g21 and
7p12, encode the 185 kD and 170 kD plasma membrane glycoproteins, respectively.
They are members of the family of tyrosine kinase growth factor receptors (TKGFR),
share an approximately 50% overall homology, and are composed of an N-terminus
extracellular ligand-binding domain, a transmembrane lipophilic segment, and a
C-terminus intracellular region containing a tyrosine kinase domain (12). Stimuli
through these receptors, such as those initiated by high-affinity ligand binding, activate
a cascade of biochemical and physiological responses that are relayed to transcription
factors, resulting in changes in gene and protein expression. In our previous studies
combining immunohistochemistry and fluorescence in situ hybridization (FISH), we
demonstrated that ERBB2 and EGFR are overexpressed in 8-10% (4, 13), and 10% (3),
respectively, of gastic cancers, due primarily to gene amplification.

Co-amplification of Myc and ERBB2 has been intensively investigated in breast
cancers. In a FISH study on microarrays of more than a thousand breast cancers (14),
co-amplification of ERBB2 and Myc were found at a frequency of 2.4%. This was 2.6
times higher than expected based on the individual frequencies, with a worse prognosis



than tumors having only one of these amplifications. In gastric cancer, similar to breast
cancer, co-amplifications of Myc and ERBB2 (8), as well as Myc and genes encoding
other GFRTK family members such as EGFR (15), FGFR2 (16)(8) and MET (17), have
been reported in sporadic clinical cases or cell lines. However, it remains to be
elucidated whether (1) the co-amplification of the two non-syntenic genes observed in
previous studies occurred incidentally or not, (2) whether it occurred in single cells in a
tumor or not, and (3) if they are co-amplified in single cells, whether the co-amplified
genes are located on single amplicons or not. FISH has the potential to answer these
questions because it can reveal both gene amplification on a cell-by-cell basis and the
intranuclear topology of two amplified genes (18).

This study was conducted to assess the exact frequencies of Myc amplification and
to clarify the mechanisms of gene amplification of Myc, especially the possible
simultaneous amplification with ERBB2 or EGFR in gastric cancers.

Materials and Methods

Patients

A total of 300 patients with gastric adenocarcinoma who underwent surgery at
the Department of Surgery, Yamanashi Medical University between 1998-2005 were
examined. The clinicopathological data are summarized in Table 1. Cancer staging was
done according to the TNM cancer staging system of the American Joint Committee of
Cancer (19). The World Health Organization Classification of Tumors (20) was used to
determine histological classification. This laboratory study was approved by the
Institutional Review Board at the University of Yamanashi, and written informed
consent was obtained from all patients.

Serial sections cut from representative formalin-fixed, paraffin-embedded cancer
tissues and placed on MAS™-coated slides (Matsunami Ltd., Tokyo, Japan) were used
for hematoxylin-eosin staining, immunohistochemical detection, and a FISH analysis.

Immunohistochemistry

The immunohistochemical detection of MYC, ERBB2 and EGFR proteins was
carried out on all the primary tumors. Monoclonal antibody (9E10, Pharmingen, San
Diego, CA; working dilution, 1:30) against human MYC, a polyclonal antibody against
the internal domain of the human ERBB2 protein (Nichirei, Tokyo, Japan; working
dilution, 1:100), and a monoclonal antibody against the external domain of human
EGFR (Novocastra Lab, Newcastle, UK; working dilution, 1:20) were used. The




specificities and sensitivities of the antibodies against ERBB2 and EGFR have been
previously verified (3-5). For the immunohistochemical detection of these proteins, a
high-temperature antigen unmasking technique was used. Antibody binding was
visualized by the LSAB™ system (DakoCytomation, Kyoto, Japan). In each analysis of
ERBB2 or EGFR, a gastric cancer section in which overexpression had been previously
confirmed was included as a positive control.

The immunohistochemical analyses were reviewed by two examiners (FM, YD)
who were unaware of the gene amplification data. For the evaluation of MYC staining,
only nuclear immunostainings significantly higher than those of control cells of normal
gastric mucosa were considered to be positive. For evaluation of ERBB2 and EGFR
positivities, each tumor, or portion of tumor, was scored according to the criteria
recommended by Dako (Glostruo, Denmark) for the HercepTest, except that the
qguantity of positive cells was not considered: no discernible staining, or
background-type staining only; 1+, equivocal discontinuous membrane staining; 2+
unequivocal membrane staining with moderate intensity; 3+, strong and complete
plasma membrane staining. Samples exhibiting 2+ or 3+ immunostaining were
considered positive for overexpression.

FISH

A FISH analysis of Myc amplification was applied to all MY C-overexpressing
primary tumors (47), as well as 122 non-overexpressing tumors selected at random.
When primary tumors were amplification-positive, their metastatic lymph nodes, if any,
were also examined for Myc amplification. Primary tumors with positive
immunohistochemical staining (2+ and 3+) for either ERBB2 or EGFR were analyzed
for ERBB2/EGFR amplification using FISH, since we previously demonstrated that
only cases showing 2+ or 3+ positivity in immunohistochemistry, based on our criteria,
were associated with gene amplifications of ERBB2 and EGFR (3, 4, 21).

When Myc-amplification was positive, the primary tumors and their nodal
metastases then underwent FISH examination for amplification of ERBB2 and EGFR,
even if the IHC result was negative. The tumors exhibiting a co-amplification of Myc
and either ERBB2 or EGFR were further examined, by simultaneous hybridization with
two probes, for the co-existence of the amplified genes in single cells. For FISH probes,
P1-artificial chromosome clone RP1-80K22, specific to Myc, and bacterial artificial
chromosomes RP11-62N23 and RP11-339F13, specific to ERBB2 and EGFR,
respectively, were labeled with SpectrumOrange™ with a nick translation kit (Vysis,
Downers Grove, IL). For the detection of gene amplification, a



SpectrumGreen"—labeled pericentromeric probe (Wsis), specific to each chromosome
on which the particular gene was located, was co-hybridized in order to standardize the
chromosome number. For simultaneous hybridization with ERBB2 or EGFR, the Myc
probe labeled with SpectrumGreen™ was used.

The removal of protein from the tissue sections was conducted as previously
described (3, 4, 21). Denaturation, hybridization, and post-hybridization washing were
carried out according to VWysis’s protocol. The tissue sections were counterstained with
DAPI I (Mysis) and examined with a fluorescence microscope (Olympus, Tokyo, Japan)
equipped with a Triple Bandpass Filter set (Vysis) for DAPI 11, SpectrumOrange™ and
SpectrumGreen™, and a filter set specific to SpectrumGreen™. As positive controls,
gastric cancer tissue that had been previously confirmed to exhibit amplification of
ERBB2 or EGFR were used (3, 4). The FISH images were recorded through a cooled
charged coupled device camera (DP-70) linked to a computer software program (DP
manager, Olympus).

The copy numbers of each gene and centromere signals were counted,
respectively, in at least 30 cancer nuclei and evaluated as follows. Basically, a cell in
which the number of gene signals was greater than the number of centromeric signals
was interpreted as positive for amplification. Among these, i) a definite cluster of gene
signals or a total of 10 or more gene signals was scored as “high-level amplification”,
and ii) 3-9 signals in more than 60% of the tumor cells were “low-level amplification”.
In addition, iii) more than two signals accompanied by the identical number of
centromere signals in more than 60% of the tumor cells were “polysomy” (3, 4), and iv)
only two gene signals in more than 60% of the tumor cells were scored as “disomy”.
The extent (%) of such amplification of the cells was determined in a representative
section from each tumor.

Statistics

The association between the amplification and overexpression of MYC, and
any associations between the overexpression and amplification of Myc, and
clinicopathological profiles of the tumors were analyzed for significance using either
Fisher’s exact probability test or the chi-square test. In addition, the association between
the Myc amplification and either the ERBB2 or EGFR amplification was determined by
chi-square analysis.

Results



Myc

Overexpression of MYC protein was found in 47 (16%) of the 300 gastric
carcinomas, although IHC results were equivocal in several tumors. (Fig. 1A.) FISH
analysis revealed 16 tumors with Myc amplification (Table 2): 9 (15%) of the 47
tumors with protein overexpression had cancer cells with high-level amplification of
Myc, although among the 122 tumors without protein over-expression only 7 (6%) had
the gene amplification (three with high- and four with low-level amplification). The
Myc amplification was significantly correlated with positive nuclear immunostaining
(Fischer’s exact probability test, P=0.011)

Overexpression of ERBB2 was found in 23 of the 300 tumors (8%) (Fig. 1B).
Corresponding to the protein overexpression, high-level amplification of ERBB2 was
found in all cases except one, or 22 (7%) of the total 300 examined tumors overall.
Overexpression of EGFR was found in 24 of the 300 tumors (Fig. 1C), and EGFR
amplification was found in 12 of them (4%): 10 were high-level and 2 were low-level
amplification.

The high-level gene amplification of Myc, ERBB2, and EGFR, as visualized by
FISH, could be broadly classified into two typical types: multiple scattered signals
(“*MS”) (Fig. 2A) and large clustered signals (“LC”) (Fig. 2B), as reported in previous
FISH studies (3, 4, 21, 22). The clinicopathological profiles and results of IHC and
FISH for the 16 cases with MYC amplification are summarized in Table 3.
Amplification pattern of Myc was found to be a combination of “MS” and “LC” in four
cases (Fig. 2C). Among the total of 153 tumors without MYC amplification, 15 of 38
tumors with protein overexpression and 57 of 115 tumors without overexpression were
polysomy 8, and the remaining 81 tumors were disomy 8. Statistically, no significant
correlation was found between Polysomy 8 and MY C overexpression (Chi-square test)

ERBB2 and Myc

Amplification of ERBB2 was found in 6 of 16 tumors with Myc amplification.
In those tumors, the co-existence of amplified ERBB2 and Myc in single cells was
demonstrated. There were various combinations of amplification types between the two
genes, as shown in Fig. 3A-E and as is summarized in Table 3. The cancer cells with
co-amplification were major populations in two tumors (cases 9 and 10), whereas in the
other four cases (3, 6, 12 and 13) ERBB2-amplified cells occupied portions of the
Myc-amplified tumor cells, but Myc-amplified cells without ERBB2 amplification were
also found (Fig. 3B&C) In five of six tumors (case 10 being the exception), the
distribution and/or the signal numbers of ERBB2 and Myc in individual nuclei were




different, and only occasionally doublets consisting of ERBB2 and Myc were observed.
However, for case 10, FISH showed that almost all the amplified signals of Myc and
ERBB2 overlapped, implicating that the number and distribution of Myc and ERBB2
were almost the same, as shown in Figs. 3D&E.

EGFR and Myc

Amplification of EGFR was found in 4 of 16 tumors with MYC amplification.
In these four tumors co-amplification of EGFR and MYC in single nuclei was confirmed
by dual-color FISH. Almost all the cancer cells from case 16 had co-amplified Myc and
EGFR in MS (Figs. 3F&G); in the other cases EGFR amplification was found in a
portion of Myc—amplified cells. In all cases, amplification patterns and/or number of
copies of the two genes were dissimilar, as shown in Table 3.

ERBB2 and EGFR

Co-amplification of ERBB2 and EGFR within a single tumor was found in
three tumors, including case 6 which also had co-amplification of Myc. In these tumors,
ERBB2- and EGFR-amplified cell populations were separate and mutually exclusive,
and co-amplification in single cells was not detected.

Lymph nodes
Among the 16 cases exhibiting gene amplification of Myc in the primary

tumors, 10 had lymph node metastases, and from 9 of the 10 cases the metastatic nodes
were available for this study. When the gene amplification status of primary and
metastatic tumors was compared, the concordant was found in three cases, as shown in
Table 3. In case 13, ERBB2-amplified cells of “MS” type was the predominant
population, although the primary tumor had ERBB2-amplified cells with “LC* as a
minor tumor component.

Statistics

The clinicopathological profiles of the cases with MYC overexpression and
the cases with Myc amplification are compared with those of all examined cases in
Table 1. MYC overexpression was frequently observed among the well/moderately
differentiated tubular adenocarcinomas, however, no association was seen between the
gene amplification of Myc and the histology of the tumors or the clinical stages.

The frequencies of gene amplification of ERBB2 and EGFR were 7% (22
tumors) and 4% (12 tumors) out of the total of 300 tumors, respectively. Based on these



individual frequencies, the present rates of occurrence of ERBB2 amplification (6 of 16)
and EGFR amplification (4 of 16) among the cases with Myc amplification were highly
statistically significantly (chi square: p=0.00019 and 0.0017, respectively).

Co-amplification of ERBB2 and EGFR, found in three tumors, showed a
marginal trend but was not statistically significant (Fischer’s direct probability test,
p=0.08).

Discussion

Gene amplification is one of the important genetic changes found in cancer
cells. In the previous studies using Southern blot or CGH (8-11), the frequency of Myc
amplification in gastric cancers ranged from 4% to 7.2%, and ERBB2 amplification
from 2.0% to 8.9%. The amplification frequencies we estimated for Myc (5%) and
ERBB2 (7%) in the present FISH study were comparable to those obtained by other
authors. IHC detection of nuclear MY C significantly correlated with Myc amplification,
but unlike that of ERBB2, a clear concordance of protein overexpression and gene
amplification on a cell-by-cell basis was not observed. The discrepancy between the
percentage with MYC overexpression and Myc amplification implies that increased
expression is only partially due to gene amplification, and other mechanisms such as
altered transcription rate or post-transcriptional modification may be responsible for
sustained MYC overexpression. Another possible explanation is that MYC has a short
half-life (20-30 min) (23). In addition, immunohistochemical analysis may be
influenced by the amount of time taken between sampling and fixation, the length and
method of fixation, and the degree of antigen retrieval.

In the present study, not only the non-incidental co-amplification of ERBB2 or
EGFR with Myc occurred in gastric cancers, but also the co-localization of the
co-amplified genes in single nuclei was demonstrated. Although FISH on a tissue
section has limited resolving power, it demonstrated the clonal heterogeneity of the gene
amplification within single tumors and the intranuclear topologies of the amplified
genes. This enables us to put forward several ideas about the cytogenetic mechanism of
gene amplification, especially co-amplification of nonsyntenic oncogenes.

First, it is known that in mammalian cells high-level amplification is detected
in two forms on the metaphase structures: homogeneously staining regions (HSR) and
centromere-free extrachromosomal double minutes chromosomes (DM) (24). In
addition, it is also known that in FISH on interphase nuclei, the amplified gene of
interest in HSR appeared as one or two large clusters of signals (LC), while those in
DMs appeared as multiple scattered signals (MS) (5, 25). As a result, the “MS” and



“LC” signals found in this study mostly, although not exclusively, correspond to the
amplified genes in DM and HSR, respectively. Although the mechanisms of gene
amplification and generation of DM and HSR in tumor cells are still somewhat obscure,
at least two different initial gene amplification mechanisms are known: HSR is
considered to be formed by breakage-fusion-bridge cycles (BFB) while DMs are
explained by looping out (LO) of extra-chromosomal sequences. DMs can also be
formed in HSR breakdown (24, 25) and they also relocate in a genome to form HSRs
(26). Concerning MYC, it has been shown that amplified Myc in DMs, seen in direct
tumor cell preparations from a colon cancer or a leukemia in later passage, were found
intrachromosomally integrated within an HSR or an abnormally banded region (27, 28).
On the other hand, in a murine pancreatic tumor cell line TD2, amplified Myc exists in
the transition between being present in the form of DMs or a single HSR in
chromosome 6. Interestingly, these DMs were demonstrated to have a minute fragment
from chromosomes 6 near the Myc. This finding raises the possibility that these DMs
derived from the HSR on chromosome 6 (29). In the present study, as shown in Table 3,
Myc amplification of “HSR” and “DM” types were found to be mixed in four cancers.
This fact supports the hypotheses that both types of amplification seem to be closely
related and that amplicons can change their forms in clinical tumors, similar to that
observed in cultured cells. The clinical significance of these different amplification
patterns remains to be clarified; however, one study using a human tumor cell line
demonstrated that in response to chemotherapy, amplified Myc located on DMs
decreased, correlating with a dramatic reduction in tumorigenesis in nude mice. In
contrast to this, the same therapy had no effect on gene copy number or tumorigenesis
in a closely related cell line containing the same number of intra-chromosomally
amplified Myc genes (30).

One of the cellular functions implicated by the action of MYC is
destabilization of the cellular genome, (6, 31) which could facilitate the accumulation of
subsequent genetic or chromosomal aberrations. In cases 3, 7, 12, 13, and 15, Myc
amplification-positive populations contained both amplified and non-amplified
subpopulations of ERBB2 or EGFR. These findings suggest that the amplification of
ERBB2 or EGFR occurred after the Myc amplification in those particular tumors. A
study using cell lines of various cell type and species showed that elevated levels of
MYC protein affect subsequent gene amplification in a non-random manner (31).
Among the hematopoietic tumors induced in transgenic mouse by the conditional
expression of MYC, the chromosomal gain of chromosome 11, or of HSR loci on
chromosome 11, were the frequent chromosomal changes (32). Although the amplified
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genes were not specified in that study, mouse ERBB2 and EGFR, which are located on
chromosome 11, (33) may be involved in these lesions.

In cases 9, 10, and 16, the co-amplified cells consisted as a single major population,
although the amplification types and copy numbers of co-amplified genes were different
in cases 9 and 16. On simple theoretical grounds, amplification of the two genes in a
large population would occur more easily through the propagation of a progenitor cell
with co-amplified genes than by two-step amplification. Along this line, case 10, in
which the synchronous amplification of Myc and ERBB2 was found in almost all
amplification-positive cells in the primary and metastatic tumors, is noteworthy. The
overlapped FISH signals means the two genes are very close together, and probably are
located on the same amplicons. A possible mechanism of the co-amplification deduced
from this case is that the chromosomal fragment constituting both genes is amplified
after both genes come close together by gene translocation, as shown in Fig. 4. Because
two-color FISH is a sensitive and rapid means of identifying such a translocation, use of
this technique in several in vitro studies showed that originally nonsyntecal genes in fact
amplified in DMs or HSRs: some alveolar rhabdomyosarcomas contained a fusion of
PAX3 (2935), or PAX7 (1936), and FKHR (13q14) in DMs (34); Myc and ATBFI
(16922) genes were found to be amplified on DMs in the neuroblastoma cell line
SNB12; CCND1(11g13) and FGFR1 (8p12) were co-amplified on two HSRs in the
breast cancer cell line MDA-MB-134. Similarly, clustered co-amplification of CCND1
and FGFR1 was demonstrated by dual-color FISH using touch smear specimens
obtained from six clinical breast cancers, and furthermore, with treatment to extend
chromatin the overlapping clustered signals were demonstrated to be an arrangement of
amplified genes (35). All the above results strongly suggest that the two genes come
closely together by translocation before starting amplification by BFB or LO, as shown
in Fig. 4.

The different amplification types (“HSR” type or “DM?” type) and/or the different
copy number of co-amplified genes in individual cancer cells that was observed in all
cases except for case 10 may be explained by differences in the distance between the
two translocated genes. For case 10, the genes were so closely located that they were
not segregated as a result of chromosomal rearrangement. In the other cases, however,
the two genes may be translocated closely but separately enough to produce variations
in the amplification type and/or different copy number of genes following chromosomal
rearrangement, as shown in Fig.4. Actually, ERBB2 and TOP2A, which reside very
close to each other at chromosome 17912 (36) and are separated by approximately
690kb (NCBI human genome data base), are occasionally co-amplified in breast and
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gastric cancers. Similarly, KIT, VEGFR2 and PDGFR, originally located adjacently
within a range of approximately 360Kb on chromosome 4q11-13, are co-amplified in
some glioblastomas (37). However, in either tumors, dual-color FISH images of
co-amplified genes were not simply overlapped signals or repetitive signal doublets (18,
37, 38). At the present time, it is most likely that Myc and ERBB2, or Myc and EGFR,
amplification occurs simultaneously after translocation, although whether or not this is
the only cytogenetic mechanism operating still remains to be elucidated.

Cancer progression occurs in a process in which different clones or subclones are
produced by genetic instability and at the same time subject to selective forces. Thus,
co-amplification of Myc and either ERBB2 or EGFR may be a kind of collaboration that
produces a growth advantage, although we could not find any clinical significance
resulting from such co-amplifications. For example, Myc and KRAS synergistically
function to induce the full malignant transformation of normal cells in vitro (39). The
Ras/Raf/mitogen-activated protein kinase is one of the signaling cascades triggered by
TKGFR activation. Thus EGFR or ERBB2, both members of TKGFR, and Myc may
synergistically function in the development, maintenance and/or progression of gastric
cancers. In contrast, both EGFR and ERBB2 were found amplified in single tumors, but
in mutually exclusive cancer cells, in three cases in the present study. This observation
could be explained by ERBB2 and EGFR sharing the same downstream signal
transduction systems, thus action of the two molecules might be functionally redundant.
Recently, monoclonal antibodies to ERBB2 (trastuzumab) and EGFR have been
clinically used for the treatment of patients with breast or colon cancers (40, 41).
Interestingly, while patients with breast cancer with co-amplification of Myc and ERBB2
had worse outcomes when treated with chemotherapy alone, addition of trastuzumab
reversed this trend. This is suggested to be due to cancer apoptosis, because
pro-apoptotic function of dysregulated MYC counterbalanced by anti-apoptotic signals
provided by amplified ERBB2 is set free by trastuzumab (42).

It conclusion, Myc amplification was found in 5% (16 of 300) gastric carcinoma
and was significantly correlated with nuclear overexpression of MYC protein. Dual
color FISH revealed that i) the co-amplification of Myc with ERBB2 or EGFR occurred
non-incidentally, ii) this co-amplification occurred in single cells, and iii) this
co-amplification probably involved single amplicons, at least in the initial stages. The
knowledge of genetic heterogeneity in gastric cancers obtained by FISH may be useful
for determining the optimal treatment targets and therapeutic schedules.
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Figure legends

Figure 1

Results of the IHC. Cancer nuclei were immunostained for MYC (case9) (A). Cell
membranes of intestinal type cancer cells were immunostained for ERBB2 (case 13) (B)
and those of diffuse type cancer cells for EGFR (case 16) (C).

Figure 2

Dual-color FISH of Myc (orange signals) and centromere 8 (green signals).

Amplified Myc gene (orange) appears as multiple scattered signals “MS” (case 9) (A),
or as large clusters “LC” (case 3) (B). The co-existence of cancer cells with both “MS”
and “LC” (case 9) (C).

Fig 3

Dual color FISH of ERBB2 (orange signals) and Myc (green signals) (A-E), and EGFR
(orange signals) and Myc (green signals) (F&G). Co-amplified signals were found in
single nuclei in various combinations of amplified patterns: Myc was amplified in LC
and ERBB2 in MS in case 3 (A), and Myc in MS and EGFR in LC in case 13 (B). Case
13 also had Myc-amplified cells without ERBB2 amplification (C). In cases 10 and 16,
through the triple-band filter Myc signals (green fluorescence) were not well discernible
(D&F), but using a SpecrumGreen"™-specific filter, the green fluorescence of the Myc
gene was clearly observed (E&G). The number and distribution of Myc and ERBB2
were almost the same in case 10 (D&E). In case 16, EGFR (orange signals) and Myc
(green signals) were amplified in MS, however, differently distributed in the nuclei
(F&G).

Figure 4

The proposed mechanisms leading to a co-amplification of Myc with either ERBB2 or
EGFR.
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Speculated mechanism of the coamplification
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Table 1. Statistical Analysis

Correlation with
% of MYC % of MYC

Variable No. of tumors overexpression amplification
Histologic type
wel 102 19 7
mod 69 26 7
por 81 g —I9| oo 4
muc 7 14 0
sig 4 5 2

P value 065" 0.42%
Stage

IA 140 14 3

IB 42 12 okl : 5

II 31 29 7 oka)

IIIA 30 23 3

IIIB 20 10 15

v 37 11 : 11

P value 0.20” 0.16”
2 Fisher's exact probability test * p<0.01 ** p<0.05

|D)Chi—square for independent test



Table 2 Correlation between protein overexpression (IHC) and
gene amplification (FISH) of the Myc

Nuclear overexpression
positive negative

Gene amplification positive 9 7
negative 38 115

p=0.0076



Table 3. Pathological Classification and Results of IHC and FISH Analysis of 16 Gastric Carcinomas with Myc Amplification

Macroscopic | Histologic Myc ERBB2 EGFR Amplification status of
Case No. classification | Classification stage IHC FISH (%a) IHC FISH (%a) IHC FISH (%a) nodal metastases

1 lic wel IA + MS (90) - D - D None
2 lic sig 1A + LC>MS (90) - D - D None
3 b +lla mod 1A + LC>MS (60) 3+ MS (30) 1+ P None
4 lic wel 1A - MS-LA(20) - D - P None
5 2 mod 1B - LA(20) - D - D None
6 3 mod IB - LA (30) 2+ LC (30) 2+ LC (20) None
7 llc mod I - LA (30) - D 3+ MS (15) Myc (LA) /EGFR (-)
8 2 wel I + LC>MS (90) - P 1+ P Myc (MS)
9 3 mod A + MS>LC (80) 3+ MS (80) 1+ D Myc (MS) /ERBB2 (MS)
10 2 mod A + MS (80) 3+ MS (80) - P Myc (MS) /ERBB2 (MS)
11 3 pap 1B - MS(20) - P 2+ P Myc (MS)
12 3 mod 1B - LA (20) 3+ LC (5) - P Myc (LA)/ ERBB2 (LA)
13 3 mod 1B + MS (60) 3+ LC (5) 1+ D Myc (=) / ERBB2 (MS)
14 4 por IV - MS(30) - P - D Myc (=)
15 3 por Y + MS (80) - P 2+ MS (10) Myc (MS)/ EGFR (-)
16 3 por v + MS (90) - P 3+ MS (90) Not obtained

%" % of cancer cells with amplification

Abbreviations: wel, well-differentiated tubular adenocarcinoma; sig, signet-ring cell carcinoma; mod, moderately differentiated tubular adenocarcinoma;

pap,papillary adenocarcinoma; por, poorly differentiated adencarcinoma; MS, multiple scattered signals;

LC, large clustered signals; LA, low grade amplification; D, disomy; P, polysomy; None, no nodal metastasis




