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Abstract 

We synthesized analogues modified in the ribose unit (ribose linked to N1 of adenine) 

of cyclic ADP-ribose (cADPR), a Ca2+-mobilizing second messenger. The biological 

activities of these analogues were determined in NG108-15 neuroblastoma x glioma 

hybrid cells that were pre-loaded with fura-2 AM and subjected to whole-cell 

patch-clamp. Application of the hydrolysis-resistant cyclic ADP-carbocyclic-ribose 

(cADPcR) through patch pipettes potentiated elevation of cytoplasmic free Ca2+ 

concentration ([Ca2+]i) at the depolarized membrane potential. The increase in [Ca2+]i 

evoked upon sustained membrane depolarization was significantly larger in 

cADPcR-infused cells than in non-infused cells, and its degree was equivalent to or 

significantly greater than that induced by cADPR or β-NAD+. 8-chloro-cyclic 

ADP-carbocyclic-ribose (8-Cl-cADPcR) and two inosine congeners (cyclic 

IDP-carbocyclic-ribose and 8-bromo-cyclic IDP-carbocyclic-ribose) did not induce 

effects similar to those of cADPcR or cADPR. Instead, 8-Cl-cADPcR together with 

cADPR or cADPcR caused inhibition of the depolarization-induced [Ca2+]i increase as 
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compared with either of cADPR or cADPcR alone. These results demonstrated that 

our cADPR analogues have agonistic or antagonistic effects on the depolarization- 

induced [Ca2+]i increase, and suggested the presence of functional reciprocal coupling 

between RyRs and VACCs via cADPR in mammalian neuronal cells. 

 

Keywords: cyclic ADP-ribose, cytoplasmic free Ca2+ concentration, β-NAD+, 

ryanodine receptor, neuroblastoma NG108-15 cells.  
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Introduction 

In neuronal cells, Ca2+ entry through voltage-activated Ca2+ channels (VACCs) 

causes Ca2+ release from intracellular Ca2+ stores by activation of ryanodine-sensitive Ca2+ 

pools and subsequent elevation of cytoplasmic free Ca2+ concentration ([Ca2+]i) (Berridge 

1998; Lee 2001; Galione and Churchill 2002). The mechanism by which increased [Ca2+]i 

induces further Ca2+ release from ryanodine receptor (RyR) Ca2+-release channels is called 

Ca2+-induced Ca2+ release (CICR) (Endo 1977; Lee 1997). Cyclic ADP-ribose (cADPR) 

may be a second messenger or endogenous modulator of CICR, acting on specific subtypes 

of RyRs (Lee 1997 and 2001; Galione and Churchill 2002; Higashida et al. 2001a,b): The 

cardiac and brain isoforms of type-2 RyRs and brain forms of type-3 RyRs are activated by 

cADPR (Sonnleitner et al. 1998, Kunerth et al. 2004). Experiments with islet microsomes 

suggested that cADPR binds to FKBP12.6 on the RyRs, and the subsequent dissociation of 

FKBP12.6 from RyRs changes channel kinetics to release Ca2+ (Noguchi et al. 1997). The 

role of the cADPR-FKBP12.6-RyR2 complex in excitation-contraction coupling was also 
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proposed in smooth muscle cells (Wang et al. 2004). However, the mechanism of action of 

cADPR on RyRs in neurons is not fully understood. 

 The use of specific agonists and/or antagonists provides a straightforward 

approach to decipher the intricate cellular mechanisms involving cADPR. Several partial 

agonists, hydrolysis-resistant agonists or antagonists have been described (Walseth and Lee 

2002; Huang et al. 2002). These agents were generated by enzymatic conversion from 

NAD+ analogs, which were characterized using the Ca2+ signaling system in invertebrate 

oocytes (Bailey et al. 1996; Bailey et al. 1997; Sethi et al. 1997; Ashamu et al. 1997). It 

was shown that some of non-hydrolyzable mimics of cADPR have more potent 

Ca2+-releasing activity than cADPR (Zhang et al. 1996; Wong et al. 1999). In addition, it 

was confirmed that the inosine congener of cADPR, cIDPR has Ca2+-releasing activity in 

intact T cells using the membrane-permeable form (Gu et al. 2004; Kunerth et al. 2004). 

Recently, we performed total-synthesis of cyclic ADP-carbocyclic ribose 

(cADPcR) (Shuto et al. 2001), its inosine congener (cyclic IDP-carbocyclic-ribose, 

cIDPcR) (Shuto et al. 1988), 8-chloro-cADPcR (8-Cl-cADPcR), and 8-bromo-cIDPcR 
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(8-Br-cIDPcR) (Fukuoka et al. 2000). These agents are hydrolysis-resistant mimics of 

cADPR with the oxygen atom in the N-1-ribose ring being replaced with a methylene 

group. Among these agents, cADPcR was shown to release Ca2+ more effectively than 

cADPR in sea urchin eggs (Shuto et al. 2001; Shuto et al. 2003), whereas an identical 

effect of cADPcR was not found in mammalian T cells (Guse et al. 2002). Alterations at 

the 8-position of the adenine ring of cADPcR markedly altered the Ca2+ release activity, 

which decreased efficiency for Ca2+ release or developed antagonistic activity (Shuto et al. 

2003). 

In mammalian neurons, Ca2+ entry through N- and/or L-type VACCs facilitates the 

action of RyR Ca2+-release channels, known as the orthograde signal (Hua et al. 1996). 

This signal is enhanced in the presence of cADPR (Hua et al. 1996; Empson and Galione 

1997; Hashii et al. 2000). Depolarization-induced Ca2+ entry augmented in the presence of 

cADPR, is inhibited by ryanodine in neurons (Hashii et al. 2000). Thus, we assumed that 

cADPR-activated RyRs and VACCs are linked in a retrograde fashion (Chavis et al. 1996; 

Nakai et al. 1996). However, more solid evidence is required to support this hypothesis. 
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Therefore, we examined reciprocal functional coupling between ryanodine receptors and 

VACCs in voltage-clamped NG108-15 cells in the presence or absence of cADPR and 

synthetic cADPR analogues. We also examined whether cADPcR has an effect in 

mammalian neuronal cells.  
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Materials and Methods 

Materials  

cADPcR, cIDPcR, and 8-Br-cIDPcR were prepared as described previously (Shuto et al. 

1988; Fukuoka et al. 2000), and synthesis of 8-Cl-cADPcR was performed as described 

(Shuto et al. 2003). 

 

Cell Culture  

NG108-15 neuroblastoma x glioma hybrid cells were cultured at 37˚C in 90 % air and 

10% CO2 in Dulbecco's modified Eagle's medium (DMEM) supplemented with 5 % fetal 

calf serum, 100 µM hypoxanthine, 0.1 µM aminopterin, and 16 µM thymidine 

(Higashida et al. 1990). Cells were differentiated in DMEM supplemented with 

hypoxanthine, thymidine, 1 % FCS and 0.25 mM dibutyryl cAMP for 7 days as described 

previously (Higashida et al. 1990). 

  

Measurement of [Ca2+]i  
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Concentrations of [Ca2+]i were determined microspectrofluorometrically using fura-2 

in differentiated NG108-15 cells cultured on polylysine-coated glass coverslips. The 

cells were loaded with fura-2 using 5 µM fura-2 acetoxymethylester (fura-2 AM). 

Fluorescence was measured at 36°C at determined sites through a pinhole (10 - 20 µm 

in diameter) with alternating excitation wavelengths of 340 and 380 nm (Grynkiewicz 

et al. 1985) using a Ca
2+

 microspectrofluorometric system (OSP-3 model, Olympus, 

Tokyo, Japan) (Hashii et al. 2000). 

  

Patch voltage-clamp and drug-application  

Fura-2 AM-loaded NG108-15 cells were patch voltage-clamped in the whole-cell 

configuration as described previously (Higashida et al. 1990). NG108-15 cells were 

superfused at 36°C with a bath solution of the following composition (in mM): NaCl, 

145; KCl, 5; CaCl2, 2; MgCl2, 1; glucose, 20; Hepes, 20, pH 7.3, buffered with NaOH. 

Patch electrodes contained the following solution (in mM): KCl, 150; MgCl2, 1; 

Na2ATP, 1; fura-2, 0.1; Hepes, 10, pH 7.2, buffered with KOH. The electrode 
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resistance was 8 - 16 MΩ. About 90 s after touching the cells, the electrode tip was 

sealed to the cell body by suction (seal resistance >1 GΩ), and the membrane in the 

patch electrode was disrupted by administration of negative potentials. After 

establishing a whole-cell recording, the cell was voltage-clamped with a 

single-electrode voltage-clamp amplifier (Axoclamp 2A, Axon Instruments Inc., Foster 

City, CA) in switching mode operation at about 1 - 3 kHz. [Ca2+]i increases were 

measured during depolarization maintained for 1.6 – 25 min (Hashii et al. 2000). 

Intracellular recording medium containing cADPR (10 µM), ADPR (10 and 300 µM), 

β-NAD+ (100 µM), α-NAD+ (100 µM), cADPcR (10 nM - 100 µM), 8-Cl-cADPcR (10 

µM), cIDPcR (10 µM), 8-Br-cIDPcR (10 µM), ruthenium red (10 µM) and 

8-Br-cADPcR (10 µM) was applied by diffusion into the cytoplasm from the patch 

pipette.  

 

Sources of compounds  
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cADPR was purchased from Yamasa Shoyu (Choshi, Japan).  Fura-2 and fura-2 AM 

were purchased from Dojindo Laboratories (Kumamoto, Japan). Ryanodine, ADPR, 

8-Br-cADPR and ruthenium red were purchased from Sigma Chemical Co. (St Louis, 

MO). Other chemicals were obtained from Wako Pure Chemicals (Osaka, Japan). 
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Results 

NG108-15 cells loaded with fura-2 AM were sealed with patch pipettes in the presence of 2 

mM extracellular Ca2+, and then membrane potential and [Ca2+]i were measured. The 

average resting membrane potential was –45 ± 3.5 mV (Mean ± S.E.M.) (n=12). The 

[Ca2+]i levels 1 min after application by diffusion through patch pipettes filled with 10 μM 

cADPcR, cIDPcR, 8-Cl-cADPcR, or 8-Br-clDPcR (Fig. 1a-c) were unchanged or increased 

slightly (not statistically significant): values were 110 ± 4.7, 107 ± 2.1, 100 ± 2.2, and 95 ± 

7.2% of the pre-injection level, respectively (n=3). Therefore, our results indicated that the 

cADPR analogues themselves did not evoke any apparent changes in [Ca2+]i, similarly to 

previous reports regarding cADPR in sympathetic neurons (Hua et al. 1996) and in 

NG108-15 cells (Hashii et al. 2000).  

We then examined the role of cADPR analogues in [Ca2+]i elevation at constant 

depolarization, in which [Ca2+]i increased due to Ca2+ influx through VACCs (Fig. 1d-f). In 

control cells, [Ca2+]i was increased by depolarization from -40 to -20 mV with an average 

peak value of 178 ± 15% (at the initial peak) and 130 ± 13% (after 5 min) of the 
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pre-depolarization level (n=3) (Fig. 1j). In cells injected with 10 μM cADPcR, the same 

membrane depolarization induced significantly greater and persistent increases in [Ca2+]i 

(Fig. 1d): the average [Ca2+]i level was 318 ± 17% (at the initial peak) and 246 ± 9.2% 

(after 5 min) of the pre-depolarization level (n=4). The increase by cADPcR was equivalent 

to or significantly greater than that evoked by 10 μM cADPR (Fig. 1g). In contrast, 10 μM 

8-Cl-cADPcR or 10 μM cIDPcR showed slight and statistically non-significant potentiating 

effects on the depolarization-induced [Ca2+]i rise (Fig. 1e and f): the average [Ca2+]i levels 

at the initial peak points were 204 ± 24% and 228 ± 13%, respectively. Intracellularly 

infused β-NAD+, the precursor of cADPR, did not have the immediate significant effect, 

but continuously enhanced the depolarization-induced increase in [Ca2+]i (Fig. 1h): the 

average [Ca2+]i level was 214 ± 4% (at the initial peak) and 172 ± 4% (after 5 min) of the 

pre-depolarization level (n=4). While α-NAD+, an inactive analogue of β-NAD+ (Clapper 

et al. 1987; Lee and Aarhus 1991), did not show an identical potentiating effect (Fig. 1i): 

the average [Ca2+]i level was 186 ± 6% (at the initial peak) and 140 ± 13% (after 5 min) of 

the pre-depolarization level (n=4). These results are in agreement with the previous report 
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in the sea urchin egg (Sethi et al. 1996), and suggest that β-NAD+-induced potentiation of 

[Ca2+]i elevation is mediated by its conversion to cADPR by the intrinsic ADP-ribosyl 

cyclase in NG108-15 cells (Higashida et al. 2000b; Hashii et al. 2000). Activation of the 

RyR by caffeine and ryanodine (Sitsapesan et al. 1995) also transiently potentiated 

depolarization-induced [Ca2+]i increases (Fig. 1k and l), suggesting that the potentiating 

effects of cADPR and its analogues are mediated through stimulation of the ryanodine 

receptor. cADPcR-elicited potentiation of depolarization-induced [Ca2+]i increases was 

concentration-dependent in the tested range between 0.01 – 10 μM. On the other hand, 

8-Cl-cADPcR, cIDPcR, or 8-Br-clDPcR at concentrations below 1 μM did not show 

apparent potentiating effects (Fig. 2). 

Fig. 3a shows an example of the marked increase in [Ca2+]i evoked by stimulation 

to seven different voltage steps from –40 mV to +30 mV in increments of 10 mV in 

cADPcR-infused cells. The increase was maximal at depolarization to –20 or -10 mV, 

decreasing with further depolarization. Fig. 4a shows the average [Ca2+]i plotted as a 

function of holding potentials. The level of [Ca2+]i at -10 mV was 279 ± 21% (n =4) of the 
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value at -40 mV in cADPcR-injected cells, while its equivalent in control cells was 156 ± 

11% (n = 4). Analyses were performed using the same protocol for 8-Cl-cADPcR, cIDPcR, 

8-Br-clDPcR, and results were shown in Figs. 3b, c and 4a. In cells infused with 

8-Cl-cADPcR, cIDPcR, or 8-Br-cIDPcR, the depolarization-induced increase was slightly, 

but not significantly, potentiated in this rank order, peaking at voltage steps to –10 mV, 

similarly to the observations in control cells: the corresponding levels of [Ca2+]i at -10 mV 

were 211 ± 26%, 198 ± 26%, and 173% ± 8%, respectively (n=4).  

In cADPcR-infused cells, the depolarization-induced [Ca2+]i increase was 

abolished by treatment with nifedipine as an L-type VACC antagonist (Figs. 3d and 4b), 

and with ruthenium red as an antagonist of the RyR (Figs. 3e and 4b): with these 

compounds, the [Ca2+]i levels at -10 mV were 108 ± 8% and 123 ± 12%, respectively (n=4). 

These results suggest that cADPcR amplified CICR triggered by the activation of VACCs, 

in the same manner as the action of cADPR in neuronal cells (Hua et al. 1996; Empson and 

Galione 1997; Hashii et al. 2000). 
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cADPR is hydrolyzed to ADP-ribose (ADPR) by cADPR hydrolases such as 

CD38 in neurons (Higashida et al. 2001b). It was recently demonstrated that free ADPR 

gates the calcium-permeable cation channels (LTRPC2/TrpC7) (Perraud et al. 2001; Kuhn 

and Luckhoff 2004), which is expressed at high levels in neurons (Perraud et al. 2001). 

This finding prompted us to examine the involvement of ADPR in our system. ADPR 

slightly potentiated the depolarization-induced increase in [Ca2+]i, although the effect was 

not statistically significant: The level of [Ca2+]i at -10 mV was 168 ± 12% of that at -40 mV 

(n = 5). ADPR had no effect on hyperpolarization-activated Ca2+ influx in NG108-15 cells 

(Fig. 3g and 4c). Thus, no relationship was found between ADPR and CICR in NG108-15 

cells.   

The interfering effects of 8-Cl-cADPcR and 8-Br-cADPR were examined in 

co-infused cells, as several cADPR analogues modified at the 8-position of the adenine 

group have antagonistic activities against cADPR-induced Ca2+ release (Walseth and Lee 

1993).  Depolarization-induced increases in [Ca2+]i were significantly decreased by 

co-injection of 8-Cl-cADPcR or 8-Br-cADPR from the potentiated level by cADPcR alone 
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(Fig. 5a and c). In addition, the depolarization-induced increases in [Ca2+]i were 

significantly decreased by co-injection of 8-Cl-cADPcR or 8-Br-cADPR from the 

potentiated level by cADPR alone (Fig. 5b and c). 
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Discussion 

The present results show that a stable analogue of cADPR, cADPcR, applied through a 

patch pipette did not trigger the [Ca2+]i increase by itself under the clamp conditions used 

in the present study, but potentiated [Ca2+]i increases induced by activation of VACCs, 

similarly to the endogenous ligand, cADPR (Sitsapesan et al. 1995). Thus, we concluded 

that cADPcR is an agonist and that 8-Cl-cADPcR is an antagonist of the 

ryanodine-involving reaction in mammalian neuronal cells. The results of the present study 

indicate that the NG108-15 cell system is unique and useful for characterizing analogues, 

although the structure-activity relationships of cADPR analogues have not been fully 

characterized, in comparison with that of sea urchin egg microsomes or T-lymphocytes 

(Guse et al. 1999 and 2002; Walseth and Lee 1993 and 2002).   

 The data for holding membrane potential - [Ca2+]i relationship in Figs. 3 and 4 

indicated that cADPcR-induced potentiation was maximal at –20 mV. On the other hand, 

cADPR and β-NAD+ augmented depolarization-induced [Ca2+]i elevation due to the 

activation of L-type VACCs, peaking at –10 or 0 mV (Hashii et al. 2000). Thus, the peak 
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induced by cADPcR was shifted to the left by more than –10 mV. This indicates that 

L-type VACCs are considerably sensitized by cADPcR, and suggests that cADPcR is more 

active than cADPR. However, although it is less likely, the present study did not exclude 

the possibility that the cADPcR-induced potentiation of Ca2+ increases is due to the 

recruitment of different types of VACCs, such as T- or N-types found in NG108-15 cells 

(Higashida et al. 1990). 

The cADPcR-induced augmentation in rodent NG108-15 cells is similar to that in 

sea urchin eggs (Shuto et al. 2001). However, injection of cADPcR itself can induce 

increases in [Ca2+]i in sea urchin eggs, but not in NG108-15 cells. This is not surprising 

because cADPR can act as a direct ligand to induce [Ca2+]i increases in sea urchin eggs, 

while in mammalian neurons, cADPR is not a direct ligand, but is an indirect modulator of 

Ca2+ increases (Hua et al. 1996; Empson and Galione 1997; Hashii et al. 2000). The 

increase induced by the derivative was 5 to 7-fold greater than that induced by native 

cADPR in the sea urchin, although it was less than 2-fold in mammalian neurons. Thus, the 

peak level of cADPcR-evoked Ca2+ concentrations reached 3 μM in sea urchin eggs (Shuto 
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et al. 2001), whereas it reached only 200 – 300 nM in the present study. These observations 

indicate that the non-hydrolytic property of cADPcR is effective in neuronal cells. Ca2+ 

release in permeabilized T cells was also directly activated by cADPcR, but was much less 

effective than that by cADPR (Guse et al. 1999 and 2002). The discrepancy in the 

sensitivity of cADPcR between different cell types may be explained in part by the 

diversity of cADPR binding proteins.  

 We demonstrated an antagonistic effect of 8-Cl-cADPcR against both cADPcR 

and cADPR (Fig. 5). Generally, substitution with amino (8-NH2), azido (8-N3), or bromo 

(8-Br) groups at the 8-position of the adenine ring produces an antagonistic effect on 

cADPR-induced Ca2+ release in various biological systems (Walseth and Lee 2002), 

including sea urchin eggs (Walseth and Lee 1993) and T lymphocytes (Guse et al. 1999 

and 2002). This is also true of cADPcR with 8-Cl substitution.  Our findings in Fig. 5 

suggest that cADPcR acts on the same site as cADPR, and that 8-Cl-cADPcR competes for 

the cADPR/cADPcR binding site. The antagonistic activity of 8-Br-cADPR against 

cADPcR-induced Ca2+ release, as shown in Fig. 5, support this idea. Although not 
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significant, 8-Cl-cADPcR seemed to have slight agonistic activity (Figs. 1,2, and 4). 

Further studies are required to determine if 8-Cl-cADPcR behaves as a partial agonist as 

described previously in the sea urchin (Shuto et al. 2003). 

Another stable mimic, cIDPcR, differs structurally from cADPcR in that the 

adenine ring has been replaced by hypoxanthine linked to the “Northern ribose” via N-1 

(Fukuoka et al. 2000). As the conformation of cIDPcR was considered to be similar to that 

of cADPcR, cIDPcR should play a role in Ca2+ mobilization. It was recently reported that 

stable cIDPR mimics have strong Ca2+ release activity in rat brain microsomes and intact 

HeLa cells (Huang et al. 2002). However, cIDPcR did not cause such strong amplification 

in NG108-15 cells as far as we tested at 10μM. As cIDPR analogues are anticipated as 

therapeutic agents (Huang et al. 2002), it is necessary to define the efficiency of other 

stable cIDPR mimics in this neuronal system. 

In conclusion, cADPcR, a stable mimic of cADPR, enhances the 

depolarization-induced Ca2+ increase that is antagonized by co-injection with 8-Cl-cADPcR. 
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These results indicated the presence of functional reciprocal coupling between RyRs and 

VACCs via cADPR, which was revealed by cADPcR and antagonized by 8-Cl-cADPcR.  
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Figure legends 

Fig. 1. Structures of cADPR and its analogues, and the effects of cADPcR on 

membrane depolarization-evoked [Ca2+]i increases in patch-clamped NG108-15 cells.  

Structures of cADPR (a), cADPcR (b), 8-Cl-cADPcR (b), cIDPcR (c), and 8-Br-cIDPcR(c) 

are shown. (d-i) Traces show [Ca2+]i changes in fura 2-loaded cells infused with test 

compounds. At about 2 min before the beginning of each trace, cell membranes were 

ruptured with pipettes filled with the indicated concentrations of cADPcR, 8-Cl-cADPcR, 

cIDPcR, cADPR, β-NAD+, and α-NAD+. Then, the membranes were voltage-clamped at 

-40 mV, followed by depolarization to -20 mV at time zero. (j-l) Traces show [Ca2+]i 

changes in control cells without drugs (j), those treated with 25 μl of 10 mM caffeine 

applied extracellularly (k), and those treated with 25 μl of 200 μM ryanodine applied 

extracellularly (l); the arrow indicates the time of application.  

 

Fig. 2. Action of various concentrations of cADPR analogues in NG108-15 cells.  
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(a) Cells were infused with the indicated concentrations of cADPcR, 8-Cl-cADPcR, 

cIDPcR, and 8-Br-cIDPcR, and then membrane potentials were depolarized from -40 mV 

to -20 mV at time zero, as shown in Fig. 1d-l. (b) Concentration-response curves for the 

action of cADPR analogues. Cells were infused with the indicated concentrations of 

cADPR analogues, 10 μM cADPR ( ), or without drugs ( ). Each plot indicate [Ca2+]i 

levels at peak after depolarized to -20 mV. [Ca2+]i levels are represented as percentages of 

[Ca2+]i relative to that at -40 mV. Each symbol shows mean ±  S.E.M. of 3 - 6 

experiments. *, Significantly different from drug-free control value (P<0.05). 

 

Fig. 3. Effects of cADPR analogues, co-application of various inhibitors, and ADPR on 

[Ca2+]i at various holding membrane potentials in NG108-15 cells.  

Time courses of holding membrane potentials are shown at the top of each panel. Traces in 

the middle show fluorescence-ratio signals for [Ca2+]i. The lowest squares indicate the 

duration of whole-cell mode, with intracellular injection of 10 μM of cADPcR through the 

patch pipette (a), 10 μM cIDPcR (b), 10 μM 8-Br-cIDPcR (c), 10 μM cADPcR with 
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extracellular application of 10 μM nifedipine (d), 10 μM of cADPcR infused with 10 μM 

ruthenium red (e), without treatment (f), or 300 μM ADPR through the patch pipette (g). 

Bar, 100 s. 

 

Fig. 4. Effects of cADPR analogues, nifedipine, ruthenium red, and ADPR on [Ca2+]i 

at various holding membrane potentials in NG108-15 cells.  

Average [Ca2+]i as a function of holding membrane potential was measured as described in 

the legend to Fig. 3. The [Ca2+]i levels were determined 100 s after stepping to the specified 

potential, and are expressed as percentages of the values at -40 mV. (a) The [Ca2+]i levels 

are shown for cells infused with 10 μM cADPcR ( ), 10 μM 8-Cl-cADPcR ( ), 10 μM 

cIDPcR (Δ), 10 μM 8-Br-cIDPcR ( ), or non-infused control cells ( ). Values in cells 

exposed to cADPcR from -30 to +30 mV were significantly higher than those in control 

cells at P<0.05. Each point shows mean±S.E.M. of 3 - 4 cells. (b) The [Ca2+]i levels shown 

for cells infused with 10 μM cADPcR ( ), cADPcR +10 μM ruthenium red ( ), or 

cADPcR +10 μM extracellular nifedipine ( ), or non-infused control cells ( ). (c) The 
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[Ca2+]i levels are shown for cells infused with 300 μM ADPR ( ), 10 μM ADPR ( ), or 

non-infused control cells ( ). 

 

Fig. 5. Inhibitory effects of 8-Cl-cADPcR and 8-Br-cADPR on [Ca2+]i increases 

evoked by membrane depolarization in NG108-15 cells infused with cADPcR or 

cADPR.  

(a, b) Traces show [Ca2+]i changes in fura 2-loaded cells. At about 2min before the 

beginning of each trace, cell membranes were ruptured with patch pipettes containing 

(a) 10 µM cADPcR, 10 µM cADPcR+10 µM 8-Cl-cADPcR, 10 µM cADPcR+10 µM 

8-Br-cADPR, or (b) 10 µM cADPR, 10 µM cADPR+10 µM 8-Cl-cADPcR, or 10 µM 

cADPR+10 µM 8-Br-cADPR. Membranes were voltage-clamped at -40 mV, followed 

by depolarization to -20 mV at time zero, as shown in Fig. 1. (c) [Ca2+]i levels were 

plotted at the peak after depolarization to -20 mV, and are given as percentages of that 

at -40 mV. Each symbol is mean ± S.E.M. of 3 - 4 experiments. *, Values in cells 
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pretreated with 8-Cl-cADPcR or 8-Br-cADPR were significantly lower than those in 

cells treated with cADPcR or cADPR alone at p<0.05. 
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