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Summary 

Autoimmune diseases including connective tissue diseases and bullous diseases are 

life-threatening diseases. Recent clinical and experimental approaches have 

demonstrated that B cells play critical roles in autoimmune disease manifestation by 

well-established autoantibody-mediated mechanisms but also by a variety of other 

functions. These B cell functions are under regulation of B cell antigen receptor 

(BCR)-induced signals and by specialized cell surface coreceptors, or "response 

regulators," which inform B cells of their microenvironment. These response regulators 

include CD19 and CD22. CD19 and CD22 do not merely regulate BCR signals 

independently, but they have their own regulatory network. CD19 regulates CD22 

phoshorylation by augmenting Lyn kinase activity, while CD22 inhibits CD19 

phosphorylation via SHP-1. Importantly, these molecules consisting of this “CD19/CD22 

loop” are significantly related with autoimmune phenotype in mice. Thus, CD19/CD22 

loop may be a potential therapeutic target in autoimmune disease by modulating B cell 

signaling. 
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1. Introduction 

Recent studies have revealed that B lymphocytes have more diverse functions in the 

immune system than were appreciated (1). Disruption of these functions leads to 

autoimmunity, in which B cells do not merely serve as passive producers of 

autoantibodies but also play a pivotal role via nonconventional mechanisms, including 

antigen presentation, cytokine production, and modulation of other immune cells. These 

functions of B cells depend on the activity of intrinsic and B cell antigen receptor 

(BCR)-induced signals. BCR signals are amplified, perpetuated, or suppressed through 

the regulation by specialized cell surface coreceptors, or "response regulators," which 

inform B cells of their microenvironment (2, 3). These response regulators include CD19, 

CD22, CD72, and Fcγ receptor IIb (FcγRIIb), and can be categorized into positive 

regulators or negative regulators. CD19 acts as a positive response regulator by 

establishing a Src-family protein tyrosine kinase (PTK) activation amplification loop that 

regulates basal signaling thresholds and intensifies Src-family PTK activity following 

BCR ligation as well as maintaining phosphatidylinositol (PI) 3-kinase and Vav 

activation (4). By contrast, CD22, CD72, and FcγRIIb provide negative feedback 

pathways to downregulate BCR signaling through the recruitment of tyrosine 

phosphatases including SHP-1 and/or SHIP (5, 6). Altering expression/function of these 

signaling components in mice can lead to autoimmune phenotypes. For example, a 

deficiency of Lyn, a Src-family PTK, leads to a severe lupus-like autoimmunity. This is 

likely to result from a failure of inhibitory feedback loops in which Lyn phosphorylates 

CD22 and CD72, triggering recruitment of SHP-1 to the plasma membrane, which then 

dampens BCR and/or CD19 signaling (5). Lyn deficiency also compromises an inhibitory 

pathway involving FcγRIIb and SHIP. In human, genetic and/or functional abnormalities 

have been found in these B cell signaling molecules as well. Herein we will discuss our 

current understanding of the molecular mechanisms of how B cell signaling components, 

especially CD19 and CD22, govern the emergence and intensity of BCR-mediated 
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signals, and of how alterations in these tightly controlled regulatory activities contribute 

to autoimmunity in mice and humans. Precise understanding of these mechanisms will 

enable us to develop new therapeutic approaches of targeting specific components in B 

cell signaling pathways that govern the autoimmunity. This review focuses on recent 

advances in B cell signaling and autoimmune diseases, especially in terms with CD19 and 

CD22. 

 

2. Roles of B cells in autoimmune diseases 

It is widely accepted that antibodies (Abs) produced by autoreactive B cells can directly 

contribute to the pathogenesis in various autoimmune diseases. This is especially obvious 

in organ-specific autoimmune diseases such as pemphigus in dermatology field. For 

example, production of anti-desmoglein Ab in pemphigus directly causes interference of 

keratinocyte adhesion, resulting in blister formation. In systemic autoimmune diseases, 

autoantibodies can also play a pathogenic role (1). In systemic lupus erythematosus 

(SLE), immune complex deposition containing anti-double-stranded DNA Ab cause 

nephritis. In addition, anti-SS-A Ab is considered to play a pathogenic role in neonatal 

lupus. Animal models of systemic autoimmune diseases have also provided new insights 

into possible roles of autoantibodies. K/BxN mice, a spontaneous model of rheumatoid 

arthritis (RA), have hyperactive B cells that cause an increase in B cell numbers, 

hyper-γ-globulinemia, and autoantibody production (7). Injection of serum from sick 

K/BxN mice into healthy animals induces arthritis within days and the target of this 

arthritogenic Abs is shown to be glucose-6-phosphate isomerase, a ubiquitously 

expressed glycolytic enzyme (8). Furthermore, a potion of patients with RA, especially 

active patients, possess pathogenic autoantibodies reactive with glucose-6-phosphate 

isomerase that is expressed on the surface of the synovial lining as well as on the 

endothelial cells (9, 10). Thus, K/BxN mice model demonstrates that arthritis can be 

provoked by pathogenic autoantibodies.  
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Nonetheless, recent studies have clarified that B cells have more functions 

other than producing autoantibodies. Abnormalities of these B cell functions are likely to 

contribute to the induction or development of systemic autoimmune diseases. These 

functions include antigen-presentation, production of various cytokines, lymphoid 

organogenesis, differentiation of T effector cells, and influence of antigen-presenting 

dendritic cell function (11) (Fig. 1). For example, in lupus-prone MRL/lpr mice, 

elimination of B cells results in a complete abrogation of nephritis, vasculitis, and skin 

disease (12). Furthermore, MRL/lpr mice with B cells that cannot secrete Abs still 

develop nephritis and vasculitis (13). Therefore, these results suggest that, independent of 

autoantibodies, B cells are essential for disease expression by serving as 

antigen-presenting cells or by contributing to local inflammation through secreting 

cytokines (14). Thus, B cells play a critical role in systemic autoimmunity and 

manifestation of autoimmune diseases via a variety of functions.  

Recent clinical observations that B cell depletion is therapeutically beneficial 

in autoimmune disease patients have directly proved significant pathogenic roles for B 

cells in the initiation and progression of human autoimmune diseases. Treatment with 

monoclonal Ab against CD20, which is expressed by mature B cells, depletes B cells in 

vivo and ameliorates the manifestations of RA, SLE, idiopathic thrombocytopenic 

purpura and hemolytic anemia, as well as other immune-mediated diseases (15).  

 

3. B cell signaling and response regulators 

To facilitate protective immunity to pathogens while avoiding self-reactivity and 

autoimmunity, B cell responses to antigens are tightly regulated through intracellular 

signaling pathways. Importantly, this balanced regulation is achieved by signals 

generated through BCR and other cell-surface molecules that provide a context in the 

specific circumstances. Such response regulators can either positively or negatively 

regulate the context of BCR signaling, and thus establish signaling thresholds that control 
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the magnitude and duration of B cell activation. Positive response regulators that augment 

signals through BCR include CD19, while CD22, CD72, and FcγRIIb are among negative 

response regulators that dampen BCR signals (2, 16) (Fig. 2). 

 

4. CD19: a positive response regulator 

CD19 serves as a major positive response regulator in B cells. CD19 expression 

is restricted to the B cell lineage and follicular dendritic cells which function as 

antigen-presenting cells located in the murine spleen. CD19 is a 95-kDa immunoglobulin 

(Ig) superfamily member which has an extracellular region consisted of two C2-type 

Ig-like domains and a cytoplasmic region of ~240 amino acids including 9 conserved 

tyrosine residues. On B cell surface, CD19 forms a complex with CD21, CD81, and 

Leu-13 (CD225). CD21 is a receptor for complement C3 cleavage fragments and 

Epstain-Bar virus. Upon CD21 ligation, CD19 serves as a signal-transducing element of 

the complex. CD81 expression is critical for optimal CD19 expression and localization 

within lipid rafts (17). Accordingly, CD81-deificent mice exhibit a phenotype which 

resembles but is milder than that of CD19-deficient (CD19-/-) mice (18).  

The cytoplasmic region of CD19 contains 9 tyrosines, which are critical for 

CD19 function as a signaling molecule. While CD19 does not have enzymatic activity, 

CD19 acts as a cell-surface adapter protein that recruits signaling molecules through the 

interaction with phosphoryated tyrosines. CD19 tyrosines are phosphorylated by Lyn, a 

dominant Src-family PTK member in B cells (19, 20). CD19 regulates a variety of 

extracellular stimuli since CD19 is phosphorylated not only upon CD19/CD21 ligation 

but also BCR, CD38, CD40, or CD72 ligation as well as lipopolysaccharide stimulation 

(4, 21). Furthermore, simultaneous stimulation of CD19 with BCR, CD72, or CD40 

induces synergistic transmembrane signals. Tyrosine-phosphorylated CD19 provides 

SH2 recognition motifs that serve as docking sites for Src-family PTKs, Vav, and PI 

3-kinase (22). Furthermore, through the interaction with Src-family PTKs, CD19 
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upregulates and maintains Src-family PTK activity, and also facilitates and prolongs 

phosphorylation of other binding proteins, Vav and PI 3-kinase. Phosphorylated Vav can 

also recruit other SH2-domain-containing signaling molecules to this CD19 complex, 

which leads to downstream activation of mitogen-activated protein kinase family 

cascades. PI 3-kinase is another important effector molecule that interacts with CD19 

(23). PI 3-kinase is necessary for Bruton’s tyrosine kinase (Btk) activation. CD19 

deficiency results in decreased and transient Btk activation induced by BCR ligation, 

suggesting an important role of CD19 in maintaining activation of PI 3-kinase/Btk 

pathway (24, 25).  

CD19 expression is intrinsically and tightly regulated through B cell 

differentiation. CD19 is expressed by early pre-B cells from the time of Ig heavy chain 

rearrangement until plasma cell differentiation. CD19 expression gradually increase 

during the development, and B-1 cells express higher levels of CD19 than B-2 cells. By 

contrast, CD19 expression is not affected by B cell activation. Moreover, intrinsic CD19 

expression levels may determine a genetic predisposition to autoimmunity. CD19 

functions in vivo have been clarified using CD19-/- mice and CD19-transgenic 

(CD19-TG) mice that overexpress CD19 by ~3-fold (26-28). In general, CD19-/- mice are 

immunodeficient, while CD19-TG mice are autoimmune-prone (16). B cells from 

CD19-/- mice exhibit reduced proliferation to a variety of transmembrane signals, while B 

cells from CD19-TG mice show augmented proliferation to them. Serum Ig levels are 

decreased in CD19-/- mice and are increased in CD19-TG mice. CD19 expression on B 

cells also closely correlates with autoantibody production. Serum autoantibodies, such as 

anti-DNA Ab and rheumatoid factor, are decreased in CD19-/- mice, while they are 

increased in CD19-TG mice. Analysis using transgenic mouse model of autoreactive B 

cells and peripheral tolerance has revealed that CD19 overexpression disrupts peripheral 

tolerance in B cells and thereby induces autoantibody production (29).  
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5. CD19/CD22 signaling loop 

CD22 is another B cell-specific transmembrane molecule critical for B cell survival and 

activation (30). CD22 is a 130-140-kDa protein that belong to “SIgLec” subclass of Ig 

superfamily. Extracellular domain of CD22 contain 5 (CD22α) or 7 (CD22β) Ig domains, 

while the cytoplasmic domain has 141 amino acids including 6 tyrosine residues, which 

are phosphorylated by Lyn (31). Amino acid sequences surrounding some of CD22 

tyrosines are considered as immunoreceptor tyrosine-based inhibitory motifs (ITIMs), 

which recruit potent tyrosine phosphatase SHP-1. CD22 phosphorylation also induces 

formation of a CD22/Shc/Grb-2 ternary complex (32). Therefore, CD22 plays an 

inhibitory role in cellular tyrosine and phospholipid phosphorylation via SHP-1 and SHIP 

activation. 

By contrast to the role of CD19 as a positive regulator, CD22 is generally 

categorized as a negative response regulator. Importantly, these two response regulators 

do not merely regulate BCR signals independently, but they have their own regulatory 

network (33) (Fig. 3). B cells from CD19-/- mice exhibit modest CD22 phosphorylation 

following BCR ligation, while CD19 tyrosine phosphorylation is increased in B cells 

from CD22-/- mice following BCR ligation (33). These evidences suggest that CD19 

expression facilitates CD22 phosphorylation and that CD22 expression inhibits CD19 

phosphorylation (4). CD19 positively regulates CD22 phsophorylation by augmenting 

Lyn kinase activity. Phosphorylated CD22 recruits SHP-1, which dephosphorylates 

CD19 in turn. Thus, CD19 and CD22 establish a loop that reciprocally regulates each 

other’s functions to modulate cellular tyrosine and phospholipid phosphorylation.  

Analysis of CD19/CD22 double-deficient (CD19-/-CD22-/-) mice has 

demonstrated that CD19 is upstream of CD22 function during B cell activation in most 

cases; CD22 deficiency does not influence the reduced serum Ig levels or the impaired Ab 

responses to T cell-dependent antigens that occurs in CD19-/- mice (33). Furthermore, 

numbers of splenic B cells and peritoneal B1 cells in CD19-/-CD22-/- mice are similarly 
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reduced as in CD19-/- mice (34, 35). Therefore, CD19 regulation on Src-family PTK 

activation is critical for the initiation of inhibitory regulation by CD22, and in turn CD19 

itself is a primary target of CD22/SHP-1. 

 

6. Switching off CD22 negative pathway by CD19 

While CD19 can function independent of the ligation of CD19 itself, co-engagement of 

CD19/CD21 complex with BCR results in synergistically enhanced signaling in response 

to complement-tagged antigens. Recent studies have shown that antigen binding leads to 

the translocation of BCR into plasma membrane lipid rafts that serve as platforms for 

efficient signal transduction. The binding of complement-tagged antigens stimulates the 

translocation of both the BCR and the CD19/CD21 complex into lipid rafts, resulting in 

prolonged residency in and signaling from the rafts, as compared to BCR cross-linking 

alone. When coligated to the BCR, the CD19/CD21 complex retards the internalization 

and degradation of the BCR (36).  

A mechanism for augmented signaling by simultaneous BCR and CD19 

ligation is explained by a finding that simultaneous BCR and CD19 ligation inhibits 

tyrosine phosphorylation of CD22, as well as SHP-1 recruitment to phosphorylated CD22 

(37, 38). Thus, activation occurs without engagement of CD22 inhibitory pathway. 

Simultaneous CD19 and BCR engagement may sequester the functionally available pool 

of Lyn away from CD22. Especially, the spatial relationship between the BCR, CD19 and 

CD22 is likely to be important to this process since CD22 locates outside of lipid rafts. 

Consistent with this, B cells from CD22-deficient and Lyn-deficient mice exhibit 

augmented BCR-induced [Ca2+]i responses, although simultaneous CD19 engagement 

does not further enhance the BCR-induced [Ca2+]i responses in Lyn- or CD22-deficient B 

cells (37). Thus, CD19 recruitment of Lyn and their preferential localization within 

detergent-insoluble lipid raft domains may preferentially activate selected signaling 

pathways regulated by the CD19/Lyn complex to the exclusion of other downstream 

 - 9 - 



regulatory and effector pathways. 

 

7. CD19/CD22 autoimmune loop 

CD19/CD22 is not only important for normal B cell function, but increasing evidences 

have suggested that this unit serves as a critical signaling device to regulate the balance of 

autoimmunity in B cells. The components of the CD19/CD22 signaling loop, 

CD19/CD21, Lyn, CD22, and SHP-1, appear closely linked to autoimmune disorders (39, 

40) (Fig. 4). Altering their expression/function in mice leads to the manifestation of 

autoimmune phenotype. For example, Lyn-deficient mice and transgenic mice with 

hyperactivated form of Lyn both result in lupus-like disease (41). Transgenic mice that 

overexpress CD19 by ~3-fold lose tolerance and generate high titer of autoantibodies 

spontaneously including anti-double-stranded DNA Ab (40). Mice lacking CD22 have 

chronically activated B cells with various spontaneous autoantibody production including 

anti-cardiolipin Ab and anti-myeloperoxidase Ab (42). Motheaten viable (mev/mev) mice 

that have SHP-1 mutations produce elevated levels of spontaneous autoantibodies 

including anti-topoisomerase I (topo I) Ab, hyper-γ-globulinemia, and tissue deposition 

of immune complexes (43). Therefore, this “CD19/CD22 autoimmune loop” may be a 

potential therapeutic target in autoimmune disorders. 

 

8. Tight-skin mouse and CD19/CD22 autoimmune loop 

The Tight-skin (TSK) mouse, originally identified as a spontaneous mutation, is 

an animal model for human systemic sclerosis (SSc) (44). A tandem duplication within 

the fibrillin 1 gene is considered to responsible for the TSK phenotype (45). Fibrillin 1 is 

a major structural protein of a widely distributed class of connective tissue microfibrils. 

Homozygous mutation (TSK/TSK) results in embryo lethality, while heterozygous 

(TSK/+) mice survive, but develop cutaneous hyperplasia, pulmonary emphysema and 

cardiac hypertrophy.  
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The phenotype of TSK/+ mice appears regulated not only by fibrillin 1 mutation 

alone, since transgenic mice expressing a mutated fibrillin 1 gene develop subcutaneous 

hyperplasia, but not pulmonary emphysema and myocardial hypertrophy (46). Especially, 

an immunological component appears to influence the phenotype significantly. In 

addition to the fact that TSK/+ mice produce autoantibodies against SSc-specific target 

autoantigens including topo I, fibrillin 1, and RNA polymerase I, the lack of CD4 

expression in TSK/+ mice decreases subcutaneous hyperplasia but does not influence 

lung emphysema (47). Additionally, disruption of one or both IL-4 alleles allows survival 

of 29 and 47%, respectively, of homozygous TSK/TSK mice (48). These mice do not 

exhibit subcutaneous hyperplasia but develop pulmonary emphysema. Collectively, these 

suggest that abnormal immune functions contribute to the complex phenotype of TSK 

mice. Consistent with this, polymorphisms of the transforming growth factor-β1 

promoter in TSK mice have been also described (49). 

Analyses of B cells from TSK/+ mice have also demonstrated their skewed 

phenotype (50, 51). As in human SSc, TSK/+ B cells are persistently activated, 

characterized by reduced cell surface IgM level as well as upregulated MHC class II and 

CD23 density. B cells from human SSc patients show increased surface CD19 expression 

(52-54), while CD19 expression is not altered in B cells from TSK/+ mice. Nonetheless, 

remarkably, CD19 tyrosine phosphorylation is constitutively augmented (50), suggesting 

that the CD19 signaling pathway is intrinsically activated in TSK/+ B cells.  

Furthermore, TSK/+ B cells are hyperresponsive to BCR signaling. They exhibit 

exaggerated calcium responses and augmented activation of extracellular 

signal-regulated kinase (ERK) upon BCR crosslinking (51). BCR-induced CD19 

phosphorylation is also augmented compared with wild type B cells. Among many 

signaling molecules assessed, CD22 phosphorylation was specifically impaired in TSK/+ 

B cells. Decreased tyrosine phsphorylation of CD22 is consistent with CD19 

hyperphosphorylation in TSK/+ B cells, since CD19 is considered as a major target of 
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CD22 negative regulation via dephosphorylation by SHP-1 (33). Furthermore, 

CD22-deficient TSK/+ mice and CD22-deficient mice without TSK mutation showed 

identical [Ca2+]i response and ERK activation (51), suggesting that disruption of 

inhibitory signal provided by CD22 is the dominant mechanism of hyperactivated TSK/+ 

B cells. 

 Remarkably, CD19 deficiency in TSK/+ mice results in ~40% reduction of 

subcutaneous fibrosis (50). Therefore, B cells contribute to skin fibrosis in TSK/+ mice 

through a CD19-dependent pathway. TSK/+ mice exhibit hyper-γ-globulinemia and 

elevated autoantibody levels including anti-topo I Ab, both of which are also eliminated 

by CD19 deficiency. Reciprocally, anti-topo I Ab levels are significantly augmented in 

TSK/+ mice carrying CD19 transgene (51). Nonetheless, subcutaneous fibrosis does not 

increase in TSK/+ mice overexpressing CD19 or TSK/+ mice with CD22 deficiency (51). 

Therefore, while silencing B cell hyperactivation can reduce skin fibrosis, exaggerating B 

cell hyperactivation does not lead to further fibrosis. While the precise mechanism of how 

silencing B cell hyperactivation by CD19 pathway can influence skin fibrosis is yet to be 

solved, CD19 loss inhibits IL-6 production by TSK/+ B cells, which produce higher 

amount of IL-6 compared with wild type B cells when stimulated with anti-IgM Ab plus 

anti-CD40 Ab (50). Since recent reports have suggested that CD19 is a key regulator of 

cytokine production from B cells (55), CD19 expression may influence fibrosing process 

by controlling cytokine production such as IL-6.  

 

9. Conclusion 

Therapy using anti-CD20 Ab in human autoimmune diseases have elucidated pathogenic 

roles of B cells in various aspects and have provided a new paradigm how to treat them. 

Future therapeutic directions include modifying B cell signaling functions such as 

CD19/CD22 loop.  
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Figure Legends 

 

Figure 1. B cell functions that may contribute to autoimmunity. 

 

Figure 2. Positive and negative “response regulators” of B cells. Positive regulators 

include CD19, while negative regulators includes CD22, Cd72, and FCγRIIb. Each 
mnolecule has tyrosine residues that recruit signaling molecules upon phosphorylation. 

Particularly, specific tyrosine sequences in negative regulators are designated as ITIMs, 

which recruit phosphatase such as SHP-1 and SHIP. 

 

Figure 3. Regulation of CD19 and CD22 on BCR signaling.  

BCR ligation induces initial activation of Lyn, which phosphorylates CD19. 

Phosphorylated CD19 enhances and maintains Lyn activation, resulting in CD22 

phosphorylation. Phosphorylated CD22 recruits SHP-1, which then dephosphorylates 

CD19. 

 

Figure 4. CD19/CD22 autoimmune loop. 

Mice and human abnormalities of each molecule that are related to autoimmunity are 

shown in the square.  
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