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Abstract 

 

[Purpose] We examined mRNA levels of MyoD and myogenin in rat skeletal muscle after a single 

session of treadmill running. [Subjects] A total of 26 male Sprague-Dawley rats aged 4 weeks were 

used in this study. [Methods] Rats were run on a 16° decline for 30 min. Treadmill speeds were 0, 16, 

20, 24 and 28 m/min. At 72 h post-exercise, soleus (SOL) and extensor digitorum longus (EDL) 

muscles were extracted. The expression of MyoD and myogenin mRNA were analyzed by reverse 

transcription polymerase chain reaction (RT-PCR) and quantitative RT-PCR. [Results] MyoD and 

myogenin mRNA expression was detected in all groups. Significant differences in myogenin levels 

were apparent in SOL between 16 m/min and 28 m/min. MyoD levels in SOL at 16, 24, 28 m/min 

were lower, while myogenin levels at 20, 24 and 28 m/min were higher, when compared with the 0 

m/min group, although significant differences were not seen. [Conclusion] These results suggest that 

a single session of exercise has little effect on proliferation of satellite cells, or myotube production.  
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INTRODUCTION 

 

Muscle strength exercises are one of the most common techniques in physical therapy, and 

physical therapist experience has indicated that muscle hypertrophy can improve ability in walking 

capacity and activities of daily living. Satellite cells, quiescent myogenic precursor cells located 

between the plasma membrane and basal lamina in adult muscle, are responsible for the hypertrophic 

capacity of muscle1). Stimuli, which include treadmill running, stretching or tenotomy, induce 

satellite cell activation and proliferation2). Proliferating satellite cells fuse to produce new myotubes 

and/or fuse to existing myofibers, contributing to hyperplasia or increased numbers of muscle 

nuclei1). 

Conversely, myogenic regulatory factors (MRFs) are responsible for growth in embryogenesis1). 

MRFs include MyoD, myogenin, MRF4 and Myf5, the expression of which is able to transform any 

cell into a muscle cell. MRFs are also responsible for activating transcription of protein synthesis. 

MyoD is expressed when satellite cells are proliferating, and myogenin is expressed when satellite 

cells differentiate into myotube. MyoD and myogenin are expressed in both embryogenic muscle 

and adult muscle during overload3) and regeneration4). Numerous reports have described 

exercise-induced satellite cell activation. For example, Darr5) reported that running on a treadmill at 

a decline of 18% for 105 min at 16-24 m/min activates satellite cells. Tsivitse6) used a treadmill on a 

16% incline for 90 min at 17 m/min, while Armand7) subjected mice to a treadmill on a 14° decline 

for 150 min at 30-40 m/min. However, the conditions in these reports were aimed at producing 

myotrauma, and are not realistic for physical therapy. Furthermore, few reports have described 

MyoD and myogenin expression levels after treadmill running, or have attempted to clarify the 

threshold of satellite cell activation. 

In an effort to identify the most efficient exercise frequency, we examined the relationship between 

exercise intensity and satellite cell activation using MyoD and myogenin levels, as determined by 

reverse transcription polymerase chain reaction (RT-PCR) and quantitative RT-PCR (qRT-PCR), as 

markers. 

 

METHODS 

 

A total of 26 male Sprague-Dawley rats (age, 4 weeks; mean (± standard deviation (SD)) body 

weight, 119±10 g) were used for this study. Rats were run on a treadmill on a 16° decline for 30 min. 

The downward slope of 16° was in accordance with the Armstrong protocol8), which found that this 

angle was the steepest that could be used before the rats began to slide down the tread surface. While 

exercise period was set at 30 min in accordance with Smith9,10), we found that it was difficult for 



untrained rats to run constantly for more than 30 min. Treadmill speeds were set at 0, 16, 20, 24 

(n=5/group) and 28 m/min (n=6). These speeds were based on the report by Darr5) and were 

demonstrated to induce satellite cell activation. All rats were given access to standard laboratory diet 

and water under a 12-h light/dark cycle. All procedures for animal care and treatment were in 

accordance with the Guidelines for the Care and Use of Laboratory Animals at Kanazawa 

University. 

After exercise, rats were returned to their cages and given ad libitum access to food and water. At 

72-h post-exercise, when MyoD and myogenin expression reportedly peaks in rat soleus (SOL) and 

extensor digitorum longus (EDL) after injection of notexin4), rats were injected with pentobarbital 

sodium (4.0-7.5 mg/100 g body weight) and intracardially exsanguinated. The right SOL and EDL 

muscles were extracted and placed in stabilization reagent (Takara Bio, Shiga, Japan) overnight at 

4°C. Muscles were stored at -70°C until processing.  

Total RNA was isolated from the central part of 20 mg of muscle extracts using a spin column 

(QIAGEN, Tokyo, Japan). DNAaseI was included in the process to increase RNA purity. Absorbance 

at 260 nm (A260) and 280 nm (A280) was measured to calculate the purity (A260/A280) and density of 

RNA using a spectrophotometer (TAITEC, Saitama, Japan). Total RNA with a purity of 1.7-2.0 was 

used for analysis. DNA was synthesized from 1.0 μg of total RNA using a first-strand cDNA 

synthesis kit (Takara Bio) with random hexamer primers. Reaction conditions followed standard 

protocols. 

RT-PCR and qRT-PCR were used for the analysis of mRNA expression. For RT-PCR, cDNA at a 

100-fold dilution were used as a sample. Each primer pair (Table 1) was synthesized by Nihon Gene 

Research Laboratories (Miyagi, Japan). Taq polymerase (Takara Bio) and amplification parameters 

were: denaturation for 10 s at 95°C; annealing for 20 s at 60°C; and extension for 30 s at 72°C. PCR 

products were analyzed on 3.0% agarose gel and were visualized by staining with Gelstar (Takara 

Bio). 

A Lightcycler® (Roche Diagnostic Corporation, Tokyo, Japan) was used for qRT-PCR using a 

SYBR® Premix Ex Taq (Takara bio) and the same primers as in RT-PCR (Table 1). Conditions were: 

initial step of 10 s at 95°C, followed by 5 s of denaturation at 95°C and 20 s of annealing and 

extension at 60°C. The melting curve was then prepared by increasing the temperature at +0.1°C/s, 

and was used to verify amplification product specificity. Relative expression levels of MyoD or 

myogenin were normalized by subtracting the corresponding levels of glyceradehyde-3-phosphate 

dehydrogenase (GAPDH). 

Results of qRT-PCR were determined using Smirnov-Grubbs analysis to exclude outliers, 

following Bartlett’s test. One-way analysis of variance (ANOVA) and Scheffe’s post-hoc test or 

Kruskal-Wallis test and Steel-Dwass’s post-hoc test were then performed. All data are reported as 

mean relative values when compared to 0 m/min. Values of P<0.05 were considered statistically 



significant. 

 

RESULTS 

 

RT-PCR confirmed both MyoD and myogenin mRNA expression in all groups in SOL and EDL 

(Fig. 1). Results for qRT-PCR are shown in Table 2. Kruskal-Wallis test was performed on MyoD 

data, and one-way ANOVA was performed on myogenin data. For MyoD mRNA expression, 

although no significant differences were seen between any groups for SOL or EDL, the levels in 

SOL for the 16, 24, 28 m/min groups were lower when compared with the 0 m/min group. For 

myogenin, a significant difference was only seen in SOL between 16 and 28 m/min groups. 

Myogenin levels at 20, 24 and 28 m/min were higher when compared with the 0 m/min group, 

although no significant differences were seen. 

 

DISCUSSION 

 

We examined the intensity of exercise that activated satellite cells by measuring mRNA levels of 

MyoD and myogenin. MyoD is a marker of satellite cell activation and proliferation, while 

myogenin is a marker of myotube production.  

No significant differences in MyoD mRNA expression were seen for SOL or EDL, thus 

suggesting that this intensity of exercise scarcely activates satellite cells. This is supported by the 

observation that treadmill exercise at a decline of 16° at 15 m/min for 30 min, did not affect the 

number of BrdU-labeled myonuclei10). 

A significant difference in myogenin mRNA expression was only seen between the 16 and 28 

m/min groups in SOL, and expression levels in the 20, 24 and 28 m/min groups were higher when 

compared with the 0 m/min group. A treadmill speed of 20 m/min is near the lactate threshold (LT)11), 

and this intensities at or above the LT may activate myotube production. Conversely, no significant 

differences in EDL were identified. Thus, eccentric exercises, such as downhill running, induce 

muscle injury in SOL8). 

As noted above, a significant difference was seen in myogenin expression, but not in MyoD 

expression. MyoD and myogenin mRNA expression differ with fiber type12), and changes in MyoD 

(about 3-fold) and myogenin (>40-fold) mRNA expression during regeneration of denervated 

myotrauma13) may be involved. However, few significant differences were seen in MyoD and 

myogenin mRNA expression after treadmill exercise. Increased expression of MRFs in 

representative hypertrophy and regeneration models after functional overload3) and notexin 

injection4) have been clearly identified, and similar findings have been confirmed in humans14). In 

addition, treadmill running activates satellite cells and increased expression of MRFs in rats6) and 



mice7). However, the conditions to achieve those results clearly differ from those of muscle strength 

exercises in physical therapy, and thus a relatively low intensity of exercise, when compared with 

these reports, was adopted in this study. The present results using this low-intensity treadmill 

exercise suggest that a single session of exercise has little effect on activating or initiating 

proliferation of satellite cells, and scarcely activates production of myotubes.  

However, these results do not suggest that hypertrophy is not induced, as the role of satellite cells in 

skeletal muscle hypertrophy remains unclear15,16). Therefore, the effects of exercise intensity, age and 

timing of muscle extraction must be examined further.  
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LEGENDS TO FIGURES 

 

Figure 1: Expression of MyoD and myogenin mRNA were analyzed by RT-PCR in SOL and EDL. 

GAPDH mRNA expression was used as a control. These 3 products were detected in all groups in 

SOL and EDL. Groups of 0, 16, 20, 24, 28 m/min are expressed sequentially from the left by the 

right in each SOL and EDL. 
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TABLES 

 

Table 1: Primers used for RT-PCR and qRT-PCR 

Gene Sequence (5'-3')* Position (5') 

ACT ACA GCG GCG ACT CAG AC 782 
MyoD 

ACT GTA GTA GGC GGC GTC GT 884 

TGA ATG CAA CTC CCA CAG C 514 
Myogenin 

CAG ACA TAT CCT CCA CCG TG 658 

GCA GAT GTA CCC CTT GTT GT 753 
PCNA 

CAG AAA AGA CCT CAG AAC ACG  953 

AAC GGG AAA CCC ATC ACC A 1051 
GAPDH 

CGG AGA TGA TGA CCC TTT TG 1191 
* Upper = forward primer; lower = reverse primer. 

 



 

 

 

 

 

 

 

 

 

 

 

Table 2: MyoD and myogenin mRNA levels in rat SOL and EDL after treadmill exercise 

Treadmill MyoD Myogenin 

speed SOL EDL SOL EDL 

0 m/min 100.0±23.4 100.0±13.6 100.0±18.8 100.0±16.9 
16 m/min 56.6±12.6 87.4±26.3 71.5±14.0a 81.3±16.9 
20 m/min 93.5±36.5 107.0±34.6 128.8±59.5 102.0±24.0 
24 m/min 72.5±7.1 92.2±24.6 124.4±22.4 101.2±21.1 
28 m/min 57.8±14.9 104.2±22.3 129.8±34.1a 107.6±32.0 

Values represent mean ±SD, expressed as relative expression levels normalized by dividing 
by the GAPDH level. a16 m/min< 28 m/min (p<0.05). 

 


