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Abstract 

The aim of this study is to show the effects of estrogen upon its topical application on the 

wound healing process in young male mice. Forty-nine male mice aged 7 weeks old were 

divided into four groups: sham operation, castration, estrogen treatment after sham 

operation and estrogen treatment after castration. Wound healing was observed daily until 

day 14 after wounding. Specimens were harvested on days 3, 7, 10 and 14, and stained to 

evaluate re-epithelialization, inflammation, contraction and collagen accumulation. Wound 

healing periods of all groups were almost the same, although the concentration of serum 

estrogen in the estrogen-applied mice was very high and that in the non-applied groups was 

low. The numbers of macrophages in the castrated, estrogen-treated after sham operation 

and estrogen-treated after castration groups were significantly decreased compared with that 

in the sham group in the inflammatory phase; however, the ratio of wound area in these 

groups did not decrease, and other histological data did not reveal any effects of estrogen. 

These results indicate that estrogen may show limited effectiveness for full-thickness 

cutaneous wound healing in young male mice, and decreased inflammation may not always 

be associated with decreased wound area. 
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Introduction 

The skin, the largest organ in the body, undergoes numerous age-related structural and 

functional changes, including a delayed wound healing response. Delayed or failed healing of 

wounds poses a major problem, leading to increased morbidity and mortality, as well as 

increased costs for healthcare systems.1  

In recent years, the important role of hormones in age-related delayed healing has become 

apparent, and skin has emerged as a clear target of hormonal action. Cutaneous wounds heal 

more slowly in elderly males than in elderly females, suggesting a role of the sex hormones in 

the healing process.2-4 In the context of wound healing, hormonal factors act to mask 

underlying differences in repair. The influence on repair of intrinsic gender differences in 

such processes as tissue morphogenesis and perinatal hormonal imprinting may be exposed 

only when these hormonal factors are removed. 5 Estrogens, especially 17β-estradiol, have 

long been known to accelerate healing in females: 6 they decrease wound size, 7 affect 

macrophages by reducing the production of a range of pro-inflammatory cytokines including 

interleukin 6 (IL-6), tumor necrosis factor-α (TNF-α) and macrophage migration inhibitory 

factor (MIF),1,5 stimulate keratinocyte proliferation, and accelerate re-epithelialization and 

fibroblasts, increasing dermal collagen production. 1 On the other hand, wounds in 

ovariectomized (OVX) mice, by virtue of negligible systemic estrogen, take substantially 

longer to heal and contain significantly increased numbers of inflammatory cells compared 

with intact mice.1,8  

In contrast, androgens inhibit wound healing in males. Testosterone, the major androgen in 

circulation, which is mostly produced by Leydig cells in the testis, appears to modulate 

healing by directly altering wound cell populations and cytokine profiles, thereby enhancing 

the inflammatory response and reducing matrix deposition.1,9 In addition, recent studies 

demonstrated that androgen receptor (AR) suppressed wound healing by enhancing the 

inflammatory response through a localized increase in TNF-α expression via multiple 

mechanisms, including increasing the inflammatory monocyte population, enhancing 

monocyte chemotaxis and enhancing TNF-α expression in macrophages.2,10 Castrated mice 
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with reduced systemic testosterone display accelerated healing through a dampened 

inflammatory response, increased matrix deposition, downregulation of TNF-α3,4,11 and 

reduced wound area.5,9  

Many studies have suggested that estrogen promotes wound healing in females. However, 

there is little understanding of the roles of estrogen in wound healing in males. Ashcroft et al.7 

reported that estrogen treatment decreased wound size and neutrophil numbers, and increased 

collagen levels in elderly human males. On the other hand, Gilliver et al.6 reported that 

sustained exposure to estrogen markedly delays wound re-epithelialization, while estrogen 

minimally influences wound inflammation and reduces collagen accumulation by increasing 

gelatinase activities in the wounds of estrogen-treated male mice. Therefore, the role of 

estrogens in males remains to be established, and further studies on this issue are necessary. 

Therefore, the aim of this study was to explore the effects of topically applied estrogen on the 

wound healing process in young male mice. 
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Methods 

Animals  

Fifty-six BALB/cCrSlc male mice aged 7 weeks (Sankyo Labo Service Corporation, Inc., 

Toyama, Japan) and weighing 16.9-21.8 g were used. They were caged individually in an 

air-conditioned room at 25.0 ± 2.0 oC with a 12 hour light/dark cycle. Water and laboratory 

chow were given ad libitum. The experimental protocol and animal care were in accordance 

with the Guidelines for the Care and Use of Laboratory Animals of Kanazawa University, 

Japan (AP-101739). 

Wounding   

Nine-week-old male mice that had undergone castration or sham operation 2 weeks 

previously were used for the experiments on wound healing. The mice were divided into 

four groups: sham-operated (Sham), castrated (CSX), sham-operated treated with 

17β-estradiol (Sham+E) and CSX treated with 17β-estradiol (CSX+E). They were 

anesthetized by an intraperitoneal (IP) injection of pentobarbital sodium (0.05 mg/g weight) 

and the dorsum was shaved. Two circular (4 mm in diameter) full-thickness skin wounds 

including the panniculus carnosus muscle on both sides of the dorsum of the mouse were 

made with a Kai sterile disposable biopsy punch (Kai Industries, Gifu, Japan). Wounds 

were covered with hydrocolloid dressing (Tegaderm; 3M Health Care, Tokyo, Japan) to 

maintain a moist environment, and then mice were wrapped twice with adhesive bandages 

(Mesh pore tape; Nichiban, Tokyo, Japan). They were changed every day. Wound healing 

was observed daily until day 14 after wounding. 

Estrogen treatment and measurement of hormone levels 

0.01mL of 17β-estradiol gel (l'estrogel 0.06%; Bayer, Tokyo, Japan) was dribbled on the 

sterilization gauze of 28 mm x 10 mm in size by using 1mL syringe tube without needle, 

which was topically applied on the left abdominal side (not on the wound site) every day 

until day 14. The gauze was wrapped with adhesive bandage (Mesh pore tape; Nichiban, 

Tokyo, Japan) so that it did not slip out of position. Serum 17β-estradiol and testosterone 
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levels on day 14 were determined by radio immunoassay (Mitsubishi Chemical Medience 

Corporation, Tokyo, Japan) on each mouse. The limit of detection of serum estradiol was 10 

pg/ml. Values of less than 10 pg/ml were regarded as 10 pg/ml. 

Macroscopic observation 

The day when wounds were made was designated as day 0, and the process of wound 

healing was observed from days 0 to 14 after wounding. Wounded edges were traced on 

polypropylene sheets and photographs were taken every day. The traces on the sheets were 

captured with a scanner onto a personal computer using Adobe Photoshop Elements 7.0 

(Adobe System Inc., Tokyo, Japan), and the areas of wounds were calculated using image 

analysis software Scion Image Beta 4.02 (Scion Corporation, Frederick, Maryland, USA).  

Tissue processing 

On days 3, 7, and 10 after wounding, 3 mice from each group were euthanized by a massive 

pentobarbital sodium intraperitoneal injection. On day 14 after wounding, 5 mice from each 

group were euthanized using the same method. The wounds and the surrounding intact skin 

were harvested, stapled onto transparent plastic sheets to prevent over-contraction of 

specimens and fixed in 4% paraformaldehyde in 0.2 mol/L phosphate buffer (pH 7.4) for 15 

hours. Specimens were dehydrated in an alcohol series, cleaned in xylene and embedded in 

paraffin to prepare 5 μm serial sections. These sections were stained with hematoxylin-eosin 

(H & E) or subjected to Azan staining, and immunohistologically stained with 

anti-neutrophil antibody (Abcam Japan, Tokyo, Japan) for detecting neutrophils, anti-mouse 

Mac-3 antibody (BD Pharmingen, Tokyo, Japan) for detecting macrophages or 

anti-α-smooth muscle actin (α-SMA) antibody, prediluted (Abcam KK, Tokyo, Japan) for 

detecting myofibroblasts. The procedure for unmasking antigens was antigen-dependent, as 

detailed below.  

Immunohistochemical staining 

After deparaffinization and rehydration, antigen unmasking was accomplished by heating 

slides in a water bath containing sodium citrate buffer (10 mM sodium citrate, 0.05% 

Tween 20, pH 6.0) for 20 minutes near 100 °C. Slides for Mac-3 antibody and α-SMA were 

 



7 
 

washed with phosphate-buffered saline (PBS), and slides for anti-neutrophil antibody were 

washed with 0.3% TritonX-100 in PBS. Then, slides were incubated with anti-neutrophil 

antibody or Mac-3 antibody at a concentration of 1:100 in PBS, or undiluted anti-α-SMA at 

4°C overnight. Slides were again washed with PBS or 0.3% TritonX-100 in PBS. For 

detection of primary antibodies, slides for Mac-3 antibody and anti-neutrophil antibody 

were incubated with polyclonal rabbit anti-rat immunoglobulins/HRP (Dako North America, 

Carpinteria, CA) at a concentration of 1:300 in 0.3% mouse serum (normal) (Dako North 

America, Carpinteria, CA) in PBS for 30 minutes at 4°C, and slides for α-SMA antibody 

were exposed to Dako Envision+System-HRP-labeled polymer anti-rabbit (ready to use) 

(Envision+ System- HRP Labelled Polymer Anti-Rabbit, Dako North America, Carpinteria, 

CA) for 30 minutes at room temperature. Slides were again washed with PBS or 0.3% 

TritonX-100 in PBS and then incubated in brown chromogen (Dako Liquid DAB+ 

Substrate Chromogen System, Dako North America, Carpinteria, CA) for 5 minutes or until 

staining was detected at room temperature. Light hematoxylin counterstaining for 1 minute 

was applied for visualization of cell nuclei. Finally, slides were rinsed in distilled water, 

dehydrated, cleared and mounted for analysis. Negative control slides were obtained by 

omitting each primary antibody. 

Microscopic observations 

In accordance with Haryanto et al.12, for evaluation over the course of the wound healing 

process, photographic images were prepared, and quantifications of wound areas and the 

extent of re-epithelialization, as well as the cell numbers of each cell type per unit area 

(neutrophils and macrophages, central area of granulation tissue; myofibroblasts, average 

value from both edges of the wound and either top or bottom of the wound at ×400 

magnification), were undertaken using the microscope digital camera system (DP72, 

Olympus, Tokyo, Japan). Briefly, the wound area was defined as being the area bounded by 

the panniculus carnosus muscle at the base of the wound, the scab and migrating epithelium 

at the top of the wound and the margins of normal skin on either side. We measured the 

ratio of re-epithelialization (%) = length of new epithelium/length of wound between wound 
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edges, the number of neutrophils/mm2 granulation tissue, macrophages/mm2 granulation 

tissue, myofibroblasts/mm2 granulation tissue, and the ratio of collagen fibers in granulation 

tissue = number of pixels of collagen fibers/number of pixels of granulation tissue area 

using Adobe Photoshop Element 7.0. 

Statistical analysis 

Data are expressed as mean ± SD and analyzed with ANOVA and multiple comparison 

Tukey-Kramer using JMP 8.0.1 (SAS, Cary, NC). The differences were considered 

significant at P < 0.05. 
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Results 

Serum estradiol and testosterone levels on day 14 (Table 1) 

Estrogen-treated groups revealed significantly higher estradiol levels than the untreated 

groups: Sham+E and CSX (p < 0.0001), CSX+E and CSX (p < 0.0001), Sham+E and Sham 

(p < 0.0001), CSX+E and Sham (p=0.0001). These levels reached about three times those of 

the untreated groups (Table 1). Testosterone somewhat decreased in Sham+E on day 14 and 

this value was almost the same as in the castrated groups. There were trends between Sham 

and CSX (p=0.06), and Sham and CSX+E (p=0.071). These results suggest that estrogen 

treatment influences systemic androgen levels, while endogenous androgen does not affect 

exogenous estrogen levels. 

Effect of estrogen on wound areas  

In all groups, the wound healing processes seemed to be almost the same. New epithelium 

was observed at the wound edge on day 3 after wounding and, for some wounds, the whole 

wound surface was covered with new epithelium on day 10. On day 14, all wounds had 

completed re-epithelialization. 

On days 0 to 14, the ratios of wound areas to the initial wound area on day 0 were 

calculated. The wound area of CSX+E significantly increased on day 1 after wounding 

(Figure 1). There were significant differences between Sham and CSX+E (p < 0.0001), 

CSX and CSX+E (p=0.001) and Sham+E and CSX+E (p=0.003). Wound areas in all groups 

increased after wounding. In Sham, the wound area peaked on day 4 at 1.04 ± 0.35 

compared with that on day 0 after wounding, namely, initial wound area, and decreased 

gradually to 0.84 ± 0.40 on day 7 and 0.12 ± 0.06 on day 14. In CSX, the wound area 

peaked on day 2 after wounding at 1.12 ± 0.22 compared with the initial wound area, and 

decreased to 0.66 ± 0.14 on day 7 and 0.17 ± 0.06 on day 14. In Sham+E, wound area 

peaked on day 2 at 1.25 ± 0.25 compared with that on day 0 after wounding, and decreased 

to 0.82 ± 0.22 on day 7 and 0.18 ± 0.08 on day 14. In CSX+E, the wound area peaked on 

day 1 after wounding at 1.29 ± 0.27 compared with the initial wound area, and decreased 

rapidly to 0.74 ± 0.38 on day 7 and 0.12 ± 0.06 on day 14. There were no significant 
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differences between all groups on days 2 to 14. 

Effect of estrogen on re-epithelialization (Figure 2) 

There were no significant differences between all groups in terms of the ratio of 

re-epithelialization. On day 10 after wounding, the ratios of re-epithelialization were 91.3 ± 

17.4% in Sham, 87.0 ± 18.9% in CSX, 100 ± 0.0% in Sham+E and 98.7 ± 3.0% in CSX+E.  

Effect of estrogen on inflammation (Figure 3) 

On day 3 after wounding, the number of neutrophils in CSX+E seemed to be lower than 

those of Sham, CSX and Sham+E (Figures 3A-E). There was a trend between Sham and 

CSX+E (p=0.0926) on day 3. On day 10, the numbers of neutrophils/mm2 in Sham, CSX, 

Sham+E and CSX+E were 692.45 ± 523.33, 663.92 ± 453.84, 215 ± 226.65 and 85.59 ± 

134.13, respectively. There was a significant difference between Sham and CSX+E 

(p=0.0463), and a trend between CSX and CSX+E (p=0.0607) on day 10 (Figures 3F-I). 

On day 3 after wounding, the numbers of macrophages/mm2 in Sham, CSX, Sham+E and 

CSX+E were 1250.03 ± 235.71, 762.47 ± 364.43, 868.80 ± 230.26 and 894.73 ± 152.70, 

respectively (Figure 3J). The numbers of macrophages in CSX, Sham+E and CSX+E 

seemed to be lower than that of Sham on day 3 (Figures 3K-N). There was a significant 

difference between only Sham and CSX (p=0.0216), and trends between Sham and Sham+E 

(p=0.0707), and Sham and CSX+E (p=0.0996), on day 3. On day 7, there were significant 

differences between Sham and CSX (p=0.0248), Sham and Sham+E (p=0.0072) and Sham 

and CSX+E (p=0.0293). There were no significant differences between all groups on days 

10 and 14 (Figure 3O-R). 

Effect of estrogen on contraction 

On day 3 after wounding, a few myofibroblasts were observed along the wound edge in all 

groups (Figure 4A). On day 7, there were significant differences between Sham and CSX 

(p=0.0175), and CSX and CSX+E (p=0.0029). In this regard, CSX peaked on day 7, and the 

other groups did so on day 10 (Figures 4B-E). All groups decreased on day 14. There were 

no significant differences on days 3, 10 and 14. 

Effect of estrogen on collagen accumulation 
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On day 3 after wounding, collagen fibers were already synthesized in all wounds (Figure 

4F). There were significant differences between CSX and CSX+E (p=0.0285), and Sham+E 

and CSX+E (p=0.0228) on day 7 (Figures 4G-J), and between Sham and CSX (p=0.0232), 

and CSX and CSX+E (p=0.0175) on day 14 (Figures 4K-N). The ratio of collagen fibers in 

CSX+E rapidly increased (Figure 4J); however, it eventually decreased to half the peak 

value (Figure 4N). In CSX, it increased gradually and peaked on day 14 (Figure 4L). 
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Discussion 

It is well known that estrogen has a beneficial effect on cutaneous wound healing in 

females.1,5-7,13 However, its effect in males have remained unclear13; one report stated a 

beneficial effect of estrogen,7 while another reported a limited effect.6  

  Although some amount of the 17β-estradiol may be soaked up into the gauze, the serum 

estradiol levels in Sham+E and CSX+E groups are almost the same high as that in the 

proestrus of female mice, 20-30 pg/ml.14 Thus this indicates that the applied estradiol is 

absorbed enough to act on the wounds. Gilliver et al.6 reported that estrogen treatment from 

two weeks before wounding in 8-week-old male mice increased day 3 wound areas in intact 

male mice. Ashcroft et al.7 reported that estrogen treatment for 24 hours from wounding 

decreased wound size at day 7 in both elderly males and females. Our result revealed an 

increase in wound areas on day 1 in only CSX+E; subsequently, there were no significant 

differences between all groups (Figure 1). Considering these results, estrogen may be less 

effective at reducing wound areas, and it may increase wound area in castrated young male 

mice with low androgen levels. Moreover, Gilliver et al.6 reported that estrogen treatment 

greatly retarded wound re-epithelialization in castrated estrogen-treated mice compared with 

the level in castrated mice on day 3, while it did not affect the extent of re-epithelialization at 

that time in intact mice. In our results, there was no significant difference between all groups 

until day 14 (Figure 2A). This indicates that estrogen treatment does not retard or promote 

re-epithelialization in young male mice.  

  We evaluated the inflammation by counting the numbers of neutrophils and macrophages. 

According to Gilliver et al.6, the numbers of neutrophils were comparable in 

estrogen-treated and untreated castrated mice on day 3. Our result also supported this, and 

there were no significant differences between all groups on day 3 (Figure 3A). Estrogen 

impairs neutrophil chemotaxis, reducing the rate of migration to the wound site while 

increasing phagocytic function,1 while testosterone increases the production of 

pro-inflammatory mediator, TNF-α, by macrophages via AR and wound TNF-α production 

is down-regulated by castration.15 These facts indicate that acute estrogen treatment 
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decreases the numbers of neutrophils in castrated mice during the inflammatory phase; 

however, our result did not show a reduction in neutrophil numbers. Therefore, estrogen 

treatment in young male mice may be less effective for decreasing neutrophil numbers. 

Similarly, estrogens inhibit macrophages’ inflammatory functions.16 Gilliver et al. 6 showed 

that macrophage population sizes were unaffected by estrogen, and Ashcroft et al.1,3 stated 

that estrogen affects macrophages by reducing the production of a range of 

pro-inflammatory cytokines including interleukin 6 (IL-6), tumor necrosis factor-α (TNF-α) 

and macrophage migration inhibitory factor (MIF). In review, chronic exposure of 

peritoneal macrophages to estradiol in vivo was shown to increase their subsequent 

secretion of IL-1 and IL-6.16 Our results showed the reduction of macrophage population 

size in estrogen-treated mice and castrated estrogen-treated mice (Figures 3J~N). In 

addition, CSX decreased the number of macrophages on days 3 and 7. Our study supported 

previous studies,2-4 and these findings show us that macrophages were regulated by both 

androgen and estrogen, in particular, estrogen treatment in young males. However, the ratio 

of wound area did not decrease in the inflammatory phase, which suggests that decreased 

inflammation may not always be an index of decreasing wound area. 

  In vitro preliminary studies suggest that estrogen stimulates fibroblast matrix production.7 

However, Liman et al.17 reported that estradiol benzoate inhibits fibroblast proliferation in 

wound healing upon tracheal surgery by intramuscular administration for 4 weeks. In our 

results, the estrogen-treated group did not reveal an increase in myofibroblasts differentiated 

from fibroblasts; therefore, we think that estrogen treatment in young male mice has less 

effect on increasing myofibroblast numbers. On the other hand, castrated mice with reduced 

systemic testosterone display accelerated healing through a dampened inflammatory 

response and increased matrix deposition.4 The number of myofibroblasts in CSX peaked 

on day 7, and CSX significantly increased its number (Figure 4A). These data may indicate 

that the proliferation of myofibroblasts is promoted by castration rather than estrogen 

treatment. 
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  We calculated the ratio of blue collagen fibers on Azan staining to evaluate tissue 

remodeling. Estrogens, especially 17β-estradiol, have long been known to increase dermal 

collagen production. 1 Our results revealed increased collagen deposition in CSX+E on day 

7 (Figure 4F) and agreed with this previous study. However, this rate had decreased by 

about half on day 14 (Figures 4G-N) as opposed to the reduction of wound area. Gilliver et 

al.6 reported that the collagen of the lower dermis was highly disorganized in 

estrogen-treated castrated mice compared with that of castrated mice, which suggests that 

reduced wound collagen accumulation in estrogen-treated mice resulted from increased 

wound MMP-2 activity. Moreover, Liman et al.17 reported that estradiol benzoate inhibits 

massive collagen deposition in wound healing upon tracheal surgery by intramuscular 

administration. Therefore, it is suggested that estrogen reduces wound collagen 

accumulation in castrated estrogen-treated mice, but has less effect in estrogen-treated mice. 

This issue should be examined by further study. 

  In summary, we have shown the effects of estrogen upon its topical application during the 

wound healing process in male mice. Estrogen reduced macrophage number in the 

inflammatory phase; however, its effects did not lead to a reduction in wound area. Our 

results suggest that estrogen treatment in young male mice has less effect on the promotion 

of wound healing in terms of reducing wound area, promoting re-epithelialization, 

increasing contraction and accumulating collagen fibers.  
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Tables

Table 1: Serum estradiol and testosterone levels following topical application.

Values are expressed as mean ± SD. Statistical significance was determined by ANOVA and 

Tukey-Kramer. There are significant differences between “a” and “b” in the estradiol 

column and in the testosterone column (P < 0.05). The limit of detection for estradiol levels 

was 10 pg/ml. Less than 10 pg/ml was regarded as 10 pg/ml. n = 3 in sham, sham + E, and 

CSX + E; n = 5 in CSX for serum estradiol levels; n = 3 in sham; n = 5 in CSX, sham + E 

and CSX + E for serum testosterone levels.
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Figure Legends 

Figure 1  

The ratio of wound area to initial area on day 0. Values are expressed as mean ± SD, as 

determined by ANOVA and Tukey-Kramer *p < 0.05 **p < 0.01. n=8 in Sham, n=10 in 

CSX and CSX+E, n=6 in Sham+E. 

Figure 2 

Effect of estrogen on re-epithelialization. This graph shows the ratio of re-epithelialization. 

Values are expressed as mean ± SD, ANOVA, Tukey-Kramer *p < 0.05 **p < 0.01. There 

were no significant differences between all groups. n=4-6 in Sham, n=4-7 in CSX, n=4-5 in 

Sham+E, n=5-7 in CSX+E.  

Figure 3 

Effects of estrogen on inflammation. Values are expressed as mean ± SD, ANOVA, 

Tukey-Kramer *p < 0.05 **p < 0.01. A: The number of neutrophils in granulation tissues. 

n=5-7 in Sham, n=6-8 in CSX, n=5-6 in Sham+E, n=6-10 in CSX+E. B-I: Immunostaining 

for the neutrophil marker anti-neutrophil in day 3 and 10 wounds from all groups (B & F: 

Sham, C & G: CSX, D & H: Sham+E, E & I: CSX+E). J: The number of macrophages in 

granulation tissues. n=5-8 in Sham, n=5-8 in CSX, n=4-6 in Sham+E, n=5-6 in CSX+E. 

K-R: Immunostaining for the macrophage marker Mac-3 in day 7 and 10 wounds from all 

groups (K & O: Sham, L & P: CSX, M & Q: Sham+E, N & R: CSX+E). Arrows (B-I, K-R) 

identify cell immunostaining. 

Figure 4 

Effects of estrogen on contraction and collagen accumulation. Values are expressed as mean 

± SD, ANOVA, Tukey-Kramer *p < 0.05 **p < 0.01. A: The number of myofibroblasts in 

granulation tissues. n=4-6 in Sham, n=4-5 in CSX, n=4-6 in Sham+E, n=5-6 in CSX+E. 

B-E: Immunostaining for the myofibroblast marker α-SMA in day 7 wounds from all groups 

(B: Sham, C: CSX, D: Sham+E, E: CSX+E). Arrows (B-E) identify cell immunostaining. F: 

The ratio of collagen fibers in granulation tissues. n=4-5 in Sham, n=5-6 in CSX, n=3-5 in 

Sham+E, n=4-6 in CSX+E. G-N: Azan staining for collagen fibers in day 7 and 14 wounds 
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from all groups (G & K: Sham, H & L: CSX, I & M: Sham+E, J & N: CSX+E). Arrows 

(G-N) define the granulation margins. 
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