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Abstract 

 

Objectives: Decreases in the apical and apex activities, namely “apical thinning”, are a well-known 

phenomenon in attenuation corrected (AC) myocardial perfusion. The aim of this study was to 

compare actual myocardial thickness derived from a multidetector-row computed tomography 

(MDCT) with AC myocardial perfusion count from a hybrid single-photon emission computed 

tomography (SPECT)/CT to investigate the cause of apical thinning. 

 

Methods: We enrolled 21 subjects with low likelihood of coronary artery disease (mean age 65 ± 21 

years, 13 male) from 185 consecutive patients and 11 healthy volunteers, who independently 

underwent Tc-99m sestamibi SPECT/CT and 64-slice MDCT scans. AC and non-AC myocardial 

perfusion counts and thickness were measured based on a 17-segment model and averaged at the 

apex, apical, mid and basal walls. 

 

Results: Myocardial thickness at the apex was significantly thinner than that at the apical and mid 

walls (5.1 ± 1.3, 7.3 ± 1.3, 9.9 ± 2.4 mm, respectively, p < 0.005). AC count at the apex was 

significantly lower than that at the apical and mid regions (76.0 ± 5.5, 82.8 ± 4.7, 85.6 ± 3.8, 

respectively, p < 0.002). Moderate relationship was observed between myocardial thickness and AC 

count (y = -10.5 + 0.22x, r = 0.54, p < 0.0001). No relationship was found between thickness and 

non-AC count (r = 0.16, p = 0.263). 

 

Conclusions: The low apex and apical counts were caused by anatomical thinning of the 

myocardium in AC myocardial perfusion imaging. AC provided accurate relationship between 

myocardial count and thickness due to the partial volume effect. 

 

Key Words: apical thinning, attenuation correction, myocardial thickness, SPECT, MDCT, partial 

volume effect 
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Introduction 

 

 Myocardial perfusion imaging with single-photon emission computed tomography (SPECT) 

is the most widely used method for the assessment of patients with suspected or known coronary 

artery disease (CAD). Recently, since a hybrid SPECT/CT scanner can simultaneously provide 

myocardial perfusion SPECT (MPS) and computed tomography (CT) images, attenuation 

correction (AC) is sought after for reducing attenuation artifacts [1-12]. The diagnostic accuracy for 

the detection of CAD may be increased when MPS image is attenuation corrected using patient-

specific non-uniform attenuation coefficient maps. 

 Attenuation correction, however, induces an artifactual myocardial perfusion defect at the 

apex, which is called “apical thinning” [11-14]. Subsequently, this phenomenon induces false-

positive hypoperfusion in normal perfusion and reduces specificity for the detection of CAD. Apical 

thinning would attribute to partial volume effect due to myocardial thickness at the apex region and 

misregistration between MPS and CT. Although it has been extensively described on the effects of 

misregistration between MPS and CT in the apical regions [15-19], the relationship between AC 

myocardial perfusion count and thickness has not been clarified. 

 To investigate the cause of apical thinning, we assessed the relationship between AC 

myocardial perfusion counts and actual myocardial thickness derived from a multidetector-row CT 

(MDCT) in clinical subjects with normal MPS. 

 

 

Methods 

 

Study population 

 

 We retrospectively identified 185 consecutive patients and 11 healthy volunteers who 

underwent gated 99mTc-sestamibi (MIBI) MPS using a hybrid SPECT/CT between July 2008 and 

March 2011 in Kanazawa University Hospital. Exclusion criteria were history of coronary events, 

valvular heart disease, cardiomyopathy and chronic kidney disease. Furthermore, patients in whom 

motion error was observed in MPS scan were also excluded. Of this initial population, 45 subjects 

including 11 healthy volunteers were visually determined as a normal perfusion. Subsequently, 21 

subjects underwent both MPS and MDCT scans in this group. 

The final study group was consisted of 19 patients and 2 healthy volunteers. Median age of 

the patients was 73 years (range, 19 - 89 years). Stress and rest MPS imaging were performed at 40 
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minutes after injection of 99mTc MIBI of 300-370 MBq and 700-900 MBq, respectively. 

Pharmacologic (n=18) and exercise (n=1) stress tests were performed with an infusion of adenosine 

and bicycle exercise stress up to 100 Watt, respectively. Only rest test was performed in the 2 

healthy volunteer. Table 1 summarizes subject characteristics. The institutional ethical committee 

approved the healthy volunteer study, and all volunteers gave informed consent. 

 

Image acquisition 

 

 MPS scan was performed with a circular 360-degree acquisition with 60 projections at 35 

seconds per projection by a dual-head gamma camera (Symbia T6, Siemens Japan, Tokyo, Japan) 

equipped with a low-energy high-resolution collimator. A pixel size was 6.6 mm for a 64 x 64 

matrix. A photopeak window of 99mTc was set as a 15% energy window centered at 140 keV, and 

low sub-window for scatter correction was set 7%. Division of RR interval was 16 frames in gated 

acquisition. Gated and non-gated SPECT scans were performed using step-and-shoot acquisition. 

Low-dose CT image for AC was acquired with a 6-detector row CT on the hybrid SPECT/CT 

scanner. Mean tube voltage and current were 130 ± 0 kV and 72 ± 26 mA in low-dose CT scans, 

respectively. Gantry rotation time was set at 0.6 second. Axial images were reconstructed with a 

thickness of 5.0 mm. MDCT images for the measurement of myocardial thickness were acquired on 

the 64-MDCT scanner (LightSpeed VCT, GE Healthcare, Tokyo, Japan). Electrocardiographically 

(ECG)-gated coronary CT angiography (CCTA) was performed in 4 subjects, and non-ECG-gated 

standard helical chest scan was performed in 17 subjects. Iodinated contrast agent was 

intravenously injected. Mean tube voltage and current were 120 ± 0 kV and 921 ± 316 mA for 

ECG-gated CCTA, and 120 ± 0 kV and 168 ± 74 mA for non-ECG-gated scan. 

 

Data analysis 

 

AC short-axis images were reconstructed by ordered-subset expectation maximization 

(OSEM) with three-dimensional resolution recovery and scatter corrections using attenuation 

coefficient maps derived from the hybrid SPECT/CT scanner. Reconstruction parameters were set 

as 10 iterations and 10 subsets. A 13.2-mm Gaussian filter was applied to the reconstructed images. 

Non-AC (NC) short-axis images were reconstructed by filtered back projection (FBP) method with 

a Butterworth filter (cutoff, 0.68 Nyquist; order, 8). Resolution recovery and scatter corrections 

were not applied to NC images. Both reconstructions of AC and NC images were processed on 

e.soft workstation (Siemens Japan, Tokyo, Japan). After applying an automatic co-registration to 
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MPS and CT data sets [20], all sets were manually modified by the operator. AC and NC short-axis 

images were analyzed with quantitative perfusion SPECT (QPS) (version 2008) on the 17-segment 

model, and with which AC and NC normal databases were created. For the assessment of MDCT 

images, axial images were reconstructed with thicknesses of 0.63 mm (n = 11) and 1.25 mm (n= 10). 

Short-, horizontal long- and vertical long-axes images were reformatted from axial images. 

Myocardial thickness was manually measured with the reformatted images based on a 17-segment 

model. All measurements of myocardial thickness were performed on the dedicated workstation 

(Virtual Place Fujin, AZE Co., Ltd., Tokyo, Japan). 

 

Statistical analysis 

 

All continuous values were expressed as mean ± standard deviation (SD) unless otherwise 

noted．A paired t test was used to analyze the differences in paired continuous data. Tukey-Kramer 

method was also used to analyze the multiple comparison data. All statistical tests were two-tailed, 

and a p value of less than 0.05 was considered significant. The Pearson correlation analysis test was 

used for evaluating the relationship between myocardial perfusion count and thickness. These 

analyses were performed by using MedCalc software version 11.2.1.0 (Mariakerte, Belgium).  

 

 

Results 

 

 The polar-map displays of mean AC MPS, NC MPS and myocardial thickness are shown in 

Fig. 1. Increases in the inferior and septal activities were visually observed in the AC normal 

database in comparison with the NC normal database, whereas decreases in the apex and anterior 

activities were also observed. Mean AC myocardial uptakes differed significantly at the anteroseptal, 

septal and inferior walls from NC myocardial uptakes in the quantitative assessment (p < 0.016). 

Myocardial thickness showed smallest value of 5.1 mm at the apex in the whole myocardium, and 

increased gradually toward to the basal myocardium. 

 Myocardial thickness in the apex, apical, mid and basal myocardiums are shown in Fig. 2. 

Myocardial thickness at the apex was significantly thinner than those at the apical, mid and basal 

regions (5.1 ± 1.3 mm for the apex, vs. 7.3 ± 1.3 mm for the apical region, p = 0.0005, vs. 9.9 ± 2.4 

mm for the mid region, p < 0.0001, vs. 10.9 ± 2.1 mm for the basal region, p < 0.0001). Apical 

myocardial thickness was also significantly thinner than those at the mid and basal regions (p = 

0.0005, < 0.0001, respectively). AC myocardial uptakes in the apex, apical, mid and basal 
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myocardiums are shown in Fig. 3. AC myocardial uptake at the apex demonstrated significant lower 

values than those at the apical and mid regions (76.0 ± 5.5 for the apex, vs. 82.8 ± 4.7 for the apical 

region, p = 0.0002, vs. 85.6 ± 3.8 for the mid region, p < 0.0001). Since the basal myocardial uptake 

indicated the edge of the myocardium and the aortic valve, lowest uptake was observed at the basal 

myocardium. NC myocardial uptakes in the apex, apical, mid and basal myocardiums are shown in 

Fig. 4. There were no significant differences among the apex, apical and mid regions. 

 The relationships between myocardial uptakes of AC and NC, and myocardial thickness at 

the apex, apical and mid regions are shown in Figs. 5 and 6. When the relationship between AC 

myocardial uptake (x) and thickness (y) was examined, moderate correlation was observed: y = -

10.5 + 0.22 x, r = 0.54, p < 0.0001. However, there was no correlation between NC uptake and 

thickness (r = 0.16, p = 0.263). 

 An example of a patient with apical thinning is shown in Fig. 7. Apical thinning was 

visually observed in the polar map and horizontal long-axis image after AC. The thinning point at 

the left ventricular (LV) apex was measured as 4.4 mm on the MDCT image. Furthermore, the 

thickness and count of AC myocardium were corresponded better to that of MDCT image as 

compared with NC myocardium. 

 

 

Discussion 

 

 We successfully observed and identified the moderate correlation between AC myocardial 

perfusion count and myocardial thickness in normal MPS subjects. In addition, both low AC 

myocardial uptake and myocardial thinning were recognized at the apex. Finally, “apical thinning” 

on the AC image may be caused by anatomical thinning of the myocardium. AC method would 

provide accurate relationship between myocardial count and thickness due to the partial volume 

effect. 

Johnson et al. measured myocardial thickness of LV at the apex in 64 consecutive patients 

[21]. Myocardial thickness was less than 4.3 mm, and the average thickness was 1.2 mm. Frencik et 

al. also reported mean thickness of LV myocardium was 1.7 ± 0.7 mm in the apical thinnest point 

[22]. Our measurement showed slightly thicker myocardium in comparison with the previous 

reports. Grossman et al. studied AC normal databases of 22 female and 26 male subjects, which 

showed low apex activities of 82.7 ± 9.0 for female and 84.4 ± 8.8 for male as compared with 93.1 

± 7.1 and 94.8 ± 7.3 at the apical region, and 93.5 ± 7.8 and 92.9 ± 7.3 at the mid region, 

respectively [6]. Ficaro et al. also reported the characteristics of AC normal databases of 20 female 
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and 20 male subjects [12]. The 10 % to 15 % reduction was observed in the apex activity. In these 

previous studies, gender-composite AC normal database was created since no significant difference 

was observed between the AC female and male normal databases. Our gender-independent AC 

normal databases also showed no significant differences in excluding the basal anterior segment on 

a 17-segment model. Consequently, we created the gender-composite AC normal database and 

utilized this for the evaluation of this study. When the previous reported AC normal databases were 

compared with the present study, the characteristics of our AC normal database were visually and 

quantitatively similar. 

 Since a potential misregistration between MPS and CT images may occur in a hybrid 

SPECT/CT scanner [15-19], misregistration induced artifacts would possibly result in the cause of 

apical thinning. Matsunari et al. showed slight misregistration of a 7-mm shift (1 pixel) produced up 

to 15 % change in relatively regional uptake in the phantom study [15]. Misregistrations of more 

than 1 pixel were found 73 % of 248 consecutive MPS studies in the clinical study [18]. In addition, 

a 3-pixels misregistered shift significantly affected summed stress score for the detection of CAD．

Nevertheless, misregistration induced artificial perfusions were simultaneously showed not only at 

the apex but also at the other regions. Then, the artificial perfusion would be different from apical 

thinning. In our study, since precise manual coregistration was applied after performing an 

automatic coregistration, AC MPS images would not generally be influenced by the misregistration. 

 When we utilized an AC in clinical patients and volunteers, SPECT scan was performed 

with a 360-degree acquisition. The 360-degree acquisition could improve both the homogeneity for 

myocardial count and image distortion in the deep part of the body. We will need further 

investigation on 180- and 360-degree SPECT acquisitions in the AC. 

The partial volume effect is one of the physical phenomena in a nuclear medicine scan [23-

25]. In our preliminary SPECT study for measuring the full width at half maximum (FWHM) of a 

line source, FWHM were 7.4 mm at the air after applying the resolution correction. On the other 

hand, the myocardial thickness was less than 10.9 mm, especially 5.1 mm at the apex, in our 

clinical measurements. In the current circumstance, the partial volume effect would be partially 

improved in the myocardial region, even if attenuation, scatter and resolution corrections are 

performed. Furthermore, since myocardial thickness at the apex is equivalent or less than a pixel 

size for an MPS acquisition, it is impossible to completely correct the partial volume effect in use of 

current technology. 

The clinical implication of this study is that even in patients with normal myocardial 

perfusion, low apical activity is frequently observed after AC. The low uptake at the apex, however, 

is not an artifact caused by AC processing, but myocardial count is actually low based on the 
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physiological thinning of the myocardial apex. Therefore, quantitative assessment of AC MPS using 

normal AC databases may be helpful for the interpretation of low uptake at the apex. By using AC 

normal databases, diagnostic accuracy was significantly enhanced and misinterpretation in the 

apical region may be avoided [6, 10, 12]. 

Our study has several limitations. We did not have enough subjects for creating AC and NC 

normal databases and evaluating myocardial thickness. In addition, AC and NC normal databases 

were individually constructed with the different reconstruction methods of OSEM and FBP, 

respectively. Kovalski et al. reported OSEM with resolution correction emphasized myocardial 

perfusion artifact due to respiratory-related cardiac motion [26]. When we evaluated AC and NC 

normal databases, gender-related normal databases were not utilized. In our preliminary study, a 

segmental difference of gender-related NC normal databases was observed only at the mid inferior 

on 17-segment model (p = 0.036). Furthermore, we did not have enough subjects to compare the 

gender-related NC normal databases. Consequently, we combined female and male NC normal 

databases. As for the AC normal database, no segmental difference was observed between female 

and male except for the basal anterior region. For the acquisition of MDCT data, ECG-gated CCTA 

was performed in a part of the subjects. Thus, the mean myocardial thickness at the apex was 

slightly larger than that from the previously reported data. When we apply ECG-gated CCTA 

acquisition to all the patients, a mean myocardial thickness would be decreased, and relationship 

between AC myocardial perfusion count and thickness may be improved. 

 

 

Conclusion 

 

 The results of our study indicate that the cause of apical thinning on AC MPS is related to an 

anatomical thinning of the myocardium. AC MPS is strongly affected by the anatomical 

characteristics of the myocardium.  
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Fig. 1. Polar-map displays of mean normal AC (a) and NC (b) myocardial perfusion databases and 

thickness distribution (c) derived from 19 patients with normal perfusion and 2 healthy volunteers. 

Outline fonts denote significant differences between AC and NC databases (p < 0.02). Segmental 

values are expressed in millimeters on the polar map of myocardial thickness. 
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Fig. 2. Averaged myocardial thickness in the apex, apical, mid and basal regions. 



12 

 

 

 

Fig. 3. Averaged AC myocardial counts in the apex, apical, mid and basal regions. 
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Fig. 4. Averaged NC myocardial counts in the apex, apical, mid and basal regions. 
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Fig. 5. Relationship between AC myocardial count and myocardial thickness. Dotted lines denote 

upper and lower limits of the 95% prediction interval. 
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Fig. 6. Relationship between NC myocardial count and myocardial thickness. 
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Fig. 7. An example of apical thinning in a 72-year-old male patient with BMI of 22 kg/m2. EF, EDV 

and ESV were 68 %, 71 ml and 23 ml, respectively. Apical thinning was clearly observed in the AC 

polar map and horizontal long-axis view (a, b) in comparison with NC polar map and horizontal 

long-axis view (c, d). On a reformatted horizontal long-axis view of MDCT image (e), myocardial 

thinning was also observed at the left ventricular apex. 
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Table 1. Characteristics of subjects 

Parameter Value 

Total 

Female / Male 

Age  

Height (m) 

Weight (kg) 

BMI (kg/m2) 

Hypertension 

Hypercholesterolemia 

Diabetes 

gated SPECT data 

LVEF (%) 

EDV (mL) 

ESV (mL) 

21 

8 / 13 

65.0 ± 20.9 

1.60 ± 0.09 

55 ± 11 

21.4 ± 3.3 

2 (9.5%) 

2 (9.5%) 

1 (4.8%) 

 

73.2 ± 10.4 

59.2 ± 16.5 

16.8 ± 8.9 

 

BMI body Mass Index, LVEF left ventricular ejection fraction, EDV end-diastolic volume, ESV end-

systolic volume. 
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