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Abstract 

Aims: Immunological disturbances including innate immunity after a suspected viral infection are considered 

important to the pathogenesis of bile duct lesions in cases of biliary atresia (BA). Herein, we tried to evaluate 

whether natural killer (NK) cells and CX3CL1 (Fractalkine) and its receptor (CX3CR1) are involved in the 

bile duct injury. Methods: Using the section of BA (22 cases) and controls, immunohistochemistry for CD56, 

CD16, CD68, CX3CL1, and CX3CR1 was performed. Moreover, using cultured biliary epithelial cells 

(BECs) and NK cells, the production of CX3CL1 in BECs and the migration of NK cells were evaluated. 

Results: It was found that CD56(-)CD16(+)CD68(-) NK cells were increased around the damaged small and 

large bile ducts in BA and HCV-related chronic hepatitis in comparison with other controls. CX3CL1 was 

strongly expressed on the damaged bile ducts in BA, while this expression was relatively weak or absent in the 

bile ducts of normal liver. The results suggest the CD56(-)CD16(+) NK cells to be involved in the 

development of bile duct injuries in BA. These CD16(+) NK cells were positive for CX3CR1, and attracted 

by CX3CL1 expressed on bile ducts. Further study revealed that stimulation with poly(I:C) (a synthetic 

analogue of viral dsRNA) increased the expression of CX3CL1 on cultured BECs followed by increased 

migrational activity of cultured NK cells. Conclusion: CD56(-)CD16(+) NK cells with reduced NK activity 

may be involved in the bile duct damage in BA, and CD16(+) NK cells expressing CX3CR1 may be attracted 

by and interact with bile ducts expressing CX3CL1.  

 

Key words; biliary tree, biliary epithelial cells, biliary atresia, natural killer cells, innate immunity 
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Introduction 

   Biliary atresia (BA) is a neonatal obstructive cholangiopathy characterized by the progressive destruction 

of extrahepatic bile ducts. Intrahepatic large bile ducts are also involved.1 Clinical and experimental evidence 

suggests that a viral infection triggers the development of bile duct lesions in BA. The infection of newborn 

Balb/c-mice with Reoviridae (rotavirus and reovirus, dsRNA virus) leads to bile duct obstruction and 

cholestasis resembling human BA.1 In this animal model, viral infections of the biliary tree and subsequent 

cellular autoimmunity against the bile ducts are important for progressive cholangiopathy and loss.2,3 

Reoviridae reportedly show epitheliotropism and apoptosis in intestinal epithelial cells.1,2,4-6 We reported that 

human biliary epithelial cells (BECs) possess dsRNA-related innate immune systems via a 

dsRNA-recognizing receptor such as Toll-like receptor 3 (TLR3), suggesting that Reoviridae infections 

directly relate to the pathogenesis of cholangiopathies in BA.7-11  

   Natural killer (NK) cells constitute an important part of the first line of defense against many microbial 

infections, and play a significant role in immunity and the immunopathology of hepatobiliary diseases. The 

majority of NK cells which are strongly cytolytic effector cells fall within the CD56(+) subset. Recently, a 

population of CD56(-)CD16(+) NK cells has been described in human immunodeficiency virus (HIV) and 

hepatitis C virus (HCV)-infected patients: these cells have impaired cytolytic functions and cytokine 

production.12-13 HIV and HCV infections have been strongly associated with a loss of CD56(+) NK cells, at 

least partly compensated for by an expansion in the number of CD56(-)CD16(+) cells.5,12-13 This replacement 

of CD56-expressing NK cells by functionally defective CD56(-)CD16(+) NK cells might be one of the 

mechanisms by which HIV and HCV impair the overall NK cell response. Shivakumar et al reported NK cells 

in the vicinity of intrahepatic bile ducts in infants with BA.14 It remains unclear whether NK cells play an 

important role in the pathology of BA. 

CX3CL1 (Fractalkine) plays an important role in the cell migration to target sites under physiological 

as well as pathological conditions and is expressed on vascular endothelial cells and epithelial cells in 
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response to proinflammatory cytokines and TLR ligands. CX3CR1, a receptor of CX3CL1, is expressed on 

inflammatory cells including NK cells, suggesting that NK cells are attracted by CX3CL1 expressed in the 

liver, particularly around damaged bile ducts. Such a scenario has been shown in bile duct lesions in 

primary biliary cirrhosis (PBC).15  

   In this study, to clarify the participation of NK cells int the pathogenesis of cholangiopathy in BA, 

we first examined immunohistochemically the distribution of NK cells, particularly CD56(-)CD16(+) NK 

cells, in the liver tissue of BA patients. We also examined the expression of CX3CL1 on bile ducts and 

infiltration of mononuclear cells expressing CX3CR1, particularly around damaged bile ducts. Then, the 

migration of cultured NK cells was examined with respect to the expression and secretion of CX3CL1 in 

cultured BECs. 

 

  

Materials and Methods 

I. Tissue studies of liver and bile ducts 

A. Anatomical classification of the biliary tree  

Extrahepatic bile duct consists of the common hepatic and bile ducts, the right and left hepatic ducts, and their 

confluence. The branches of the right and left hepatic ducts are largely divided into the large intrahepatic bile 

duct and small intrahepatic bile ducts. The former roughly correspond to the first to third branches of the right 

and left hepatic ducts. The small bile ducts are further classified into the septal and interlobular bile ducts.16 

The peribiliary glands are present along the extrahepatic bile ducts and the large intrahepatic bile ducts, and 

the peribiliary vascular plexus is also identifiable around the bile ducts. In this study, the hilar bile ducts and 

intrahepatic large bile ducts are collectively called the large bile duct.  

B. Case collection and preparation of liver and bile duct specimens  

1) Case selection: The details of these cases are shown in Table 1. For the examination of small intrahepatic 
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bile ducts, 22 cases of BA, 9 cases of chronic viral hepatitis C (CH-C), 9 cases of nonalcoholic steatohepatitis 

(NASH), and 12 cases of normal liver were examined (43 cases were of needle or wedge liver biopsies and 

the remaining 9 cases, surgically resected). For the large bile duct, 21 cases of BA, 8 autopsy cases of fetus, 

and 4 normal controls were examined (all cases were surgically resected). Normal livers for small intrahepatic 

bile ducts and large bile ducts were from non-neoplastic parts of metastatic liver carcinoma.  

2) Tissue preparation: All of these tissue specimens were fixed in 10% neutral buffered formalin and 

embedded in paraffin. More than 20 consecutive 4-μm-thick sections were cut from each paraffin block, and 

some of them were stained with hematoxylin and eosin (H&E) and Azan-Mallory stain for the identification 

of bile duct lesions. The remaining sections were used for immunohistochemistry. 

 

C. Immunohistochemistry  

Immunostaining was performed using formalin-fixed, paraffin-embedded tissue sections of BA patients and 

controls (other diseases). The primary antibodies and their sources, optimal dilution, and antigen retrieval 

method are shown in Table 2. The small bile ducts and large bile ducts and their surrounding areas were 

mainly examined. 

1) Distribution of CD56(-)CD16(+)CD68(-) NK cells 

Immunostaining: After antigen retrieval (pressure with citric acid method) for 20 minutes, immunostaining 

for CD56 was performed using the CSA II System (biotin-free tyramide signal amplification system, 

DakoCytomation). Color development was performed by a benzidine reaction. After microwaving with citric 

acid, the sections were incubated overnight at 4°C with a primary monoclonal antibody against CD68. The 

sections were then treated with secondary antibodies conjugated to a peroxidase-labeled polymer (EnVision 

system, DakoCytomation). Color development was performed using Histogreen. The sections were 

counterstained with hematoxylin. Expression of CD56 (brown) and CD68 (green) in the cytoplasm of 

mononuclear cells was regarded as positive. Negative controls were carried out. Cells positive for CD56 or 
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CD68 were identified around the small bile ducts and also beneath the large bile duct epithelia. Two areas 

around the small bile ducts and two areas beneath the large bile duct epithelia were photographed (Photograph 

A) in each case. After decolorization by microwaving with citric acid for 5 minutes in which green-colored 

CD68 was abolished, the sections were incubated overnight at 4°C with a primary monoclonal antibody for 

CD16, and the sections were then treated with secondary antibodies conjugated to a peroxidase-labeled 

polymer (EnVision system, DakoCytomation). Color development was performed using Histogreen. The 

sections were counterstained with hematoxylin. Negative controls were carried out. Cells positive for CD56 

(brown) or CD16 (green) were identified around the small bile ducts and also beneath the large bile duct 

epithelia, and two areas in the former and two in the latter in the same areas as photographed in photo A were 

again photographed (Photograph B) in each case. 

Semiquantitative evaluation: Photographs A and B in the same areas were compared, and 

CD56(-)CD16(+)CD68(-) NK cells, which were green in photo B but not photo A, were counted around the 

small bile ducts and also beneath the large bile duct epithelia. The average for the two photographs was 

regarded as the number of CD56(-)CD16(+)CD68(-) NK cells in each case. 

2) Immunostaining of CX3CR1/CD16  

Immunostaining: CX3CR1(+) mononuclear cells were characterized with respect to CD16 NK cells in BA. 

After blocking of the endogenous peroxidase and antigen retrieval for 20 minutes, the sections were incubated 

overnight at 4°C with a polyclonal rabbit anti-CX3CR1 antibody. The sections were then treated with 

secondary antibodies conjugated to a peroxidase-labeled polymer (EnVision system, DakoCytomation). Color 

development was performed by a benzidine reaction. After microwaving with citric acid, the sections were 

incubated overnight at 4°C with a primary monoclonal antibody against CD16. The sections were next treated 

with secondary antibodies conjugated to a peroxidase-labeled polymer (EnVision system, DakoCytomation). 

Color development was performed using Histogreen. The sections were counterstained with hematoxylin. 

Expression of CX3CR1 and CD16 in the cytoplasm of mononuclear cells was regarded as positive. Cells 
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positive for CX3CR1 (brown) or CD16 (green) identified around the small bile ducts and also beneath the 

large bile duct epithelia were evaluated in individual cases. Negative controls were carried out.  

Semiquantitative evaluation: Double positive cells (CX3CR1 is brown and CD16 is green) were counted 

around the small bile ducts (two bile ducts) and beneath the large bile ducts (two areas) in BA patients and 

controls, and the average of two values for each case was regarded as the number of CX3CR1(+)CD16(+) NK 

cells in each case.  

3) Immunostaining of CX3CL1 

Immunostaining: After blocking of the endogenous peroxidase, the sections were incubated in protein block 

solution (DakoCytomation). The sections were incubated overnight at 4°C with primary polyclonal antibodies 

against CX3CL1. The sections were then treated with secondary antibodies conjugated to a peroxidase-labeled 

polymer (EnVision system, DakoCytomation). After a benzidine reaction, the sections were counterstained 

lightly with hematoxylin. Negative controls were also done.  

Semiquantitative evaluation: CX3CL1 expression in bile ducts was evaluated as either absent/faint (±), 

slightly positive (+), or strongly positive (++). 

 

II. Culture studies 

A. Cultures of human BECs 

 A line of human biliary epithelial cells (BECs) was established and cultured as previously 

reported.17 BECs were established from the explant liver of a 24 year-old male with BA. More than 95% of 

the cultured cells were confirmed to be BECs by the expression of biliary-type cytokeratins (CK7 and CK19). 

Informed consent for research was obtained from the patient prior to surgery. This study was approved by the 

Kanazawa University Ethics Committee. Cultured BECs were stimulated with polyinosinic-polycytidylic acid 

[poly(I:C), TLR3 ligand, a synthetic analogue of viral dsRNA; 25 µg/ml; Invitrogen, San Diego, CA, USA] 

and mRNA and supernatant of cells were used in the mRNA analysis and migration assay, respectively.  
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B. RT-PCR for CX3CL1 

For the evaluation of the mRNA of CX3CL1 in cultured BECs, total RNA was isolated and 1µg was 

reverse-transcribed with an oligo-(dT) primer and reverse transcriptase to synthesize cDNA. The cDNA was 

amplified by PCR using specific primers designed to specifically amplify a 262bp portion of CX3CL1. As a 

positive control of the PCR, primers for the GAPDH gene mRNA were used. The PCR products were 

subjected to electrophoresis on 1.5% agarose gels containing ethidium bromide. 

In addition, to carry out relative quantification, real-time quantitative PCR was performed for 

measurements of CX3CL1 mRNA according to a standard protocol using the SYBR Green PCR Master Mix 

and ABI PRISM 7700 Sequence Detection System (Applied Biosystems, Tokyo, Japan). Results are shown as 

relative mRNA expression compared with the level without any treatments (PBS). In addition, real-time 

quantitative PCR was performed for measurements of Notch1, Ascl1, and chromogranin A mRNAs according 

to a standard protocol using the Brilliant II SYBR Green QPCR Reagents and Mx300P QPCR system 

(Stratagene Japan, Tokyo, Japan) and relative gene expression was calculated using the comparative cycle 

threshold method. Specific primers were as follows: CX3CL1 forward, 5'-GATGGCTCCGATATCTCTG-3', 

and Reverse 5'-CTGCTGCATCGCGTCCTTG-3' and glyceraldehyde 3 phosphate dehydrogenase (GAPDH, 

internal positive control), forward, 5’-GGCCTCCAAGGAGTAAGACC-3’, and reverse, 

5’-AGGGGTCTACATGGCAACTG-3’. 

 

C. Migration assay of NK cells with cultured BECs  

1) Preparation of cultured NK cells: NK cells were isolated from the peripheral blood mononuclear cells of a 

healthy volunteer according to MACS protocols of the NK cell isolation kit (MACS, Miltenyi Biotec K.K., 

Tokyo, Japan). These cells were maintained on culture dishes with standard medium, Lymphocyte Growth 

Medium-3 (Takara, Ohtsu, Japan) at 37°C in 95% air and 5% CO2.  

2) Migration assay of NK cells with cultured BECs stimulated by poly(I:C): The chemoattractant activity of 

CX3CL1 secreted by cultured BECs stimulated with poly(I:C) was assessed in 96-well plates assembled with 
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the Cultrex® 96-well collagen I cell invasion assay (Treigen, Gaithersburg, MD) according to the 

manufacturer's directions using isolated NK cells expressing CX3CR1 and showing efficient chemotaxis and 

adherence in a CX3CL1-dependent manner. Briefly, the NK cell suspension was seeded and the supernatant 

of BECs cultured with poly(I:C) for 3 days or the human recombinant CX3CL1 (10ng/mL, PeproTech, Rocky 

Hill, NJ) was added to lower wells at 1:100 or 1:10. After 24 hours, the transferred cells were collected and 

their number was evaluated by optical density (OD).  

 

Statistical analysis  

Numerical data are presented as the mean±standard deviation (SD). Data from different groups were 

compared using a one-way analysis of variance and examined with the Mann-Whitney U-test. Differences in 

the proportions of categorical data were tested using the Chi-square test. The correlation coefficient of two 

factors was evaluated using Spearman’s rank correlation test. For the migration assay of NK cells, Welch's t 

test was used. The results were considered significant if the p value was <0.05.  

 

Results 

I. Tissue studies of liver and bile ducts  

1. Infiltration of CD56(-)CD16(+)CD68(-)NK cells 

Small bile ducts: In normal livers, there were no or few CD56(-)CD16(+)CD68(-) NK cells in portal tracts. In 

contrast, in diseased livers including BA, there were variable numbers of such NK cells admixed with other 

inflammatory cells, and these cells were rather frequent in BA (Fig. 1A,B,C,D). Their numbers counted 

around small bile ducts are plotted in Fig. 1E. The cells were rather dense in BA in comparison with NASH 

and normal livers (p<0.01).  

Large bile ducts: There were no or few CD56(-)CD16(+)CD68(-) NK cells beneath biliary epithelia of the 

large bile duct in normal adult livers, while they were identifiable in BA (Fig. 2A,B,C,D). Their numbers are 
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plotted in Fig. 2E. They were more abundant in BA than in normal livers (p<0.01). 

 

2. Immunohistochemistry for CX3CL1  

A. Infiltration of CX3CR1(+)CD16(+) mononuclear cells 

Small bile ducts: CX3CR1(+)CD16(+) mononuclear cells admixed with other inflammatory cells were 

frequently present in portal tracts around damaged small bile ducts in cases of BA (Fig. 3A), while such cells 

were sparse in cases of other liver diseases and normal livers (Fig. 3B). Their number in the portal tracts is 

plotted in Fig. 3C. They were rather dense in BA in comparison with other liver diseases and normal livers. 

Large bile ducts: CX3CR1(+)CD16(+) mononuclear cells admixed with other inflammatory cells were found 

around the large bile ducts in cases of BA, but were not found in normal livers. The incidence of these cells is 

shown in Fig. 3D.  

B. Expression of CX3CL1 in bile ducts  

Small bile ducts: In normal livers, small bile ducts were generally negative or faintly positive for CX3CL1, 

and endothelial cells of small vessels of PBP were negative or slightly positive for CX3CL1 (Fig. 4A). In 

CH-C, and NASH livers, small bile ducts were negative or slightly positive for CX3CL1. Small bile ducts of 

BA patients were strongly positive for CX3CL1 (Fig. 4B). The incidence of small bile ducts with mild to 

moderate and strong expression in normal liver, BA and other liver diseases is shown in Fig. 4C. Endothelial 

cells around injured interlobular bile ducts of BA patients also were strongly positive for CX3CL1 and their 

intensity was higher in comparison with other disease controls (Fig. 4A and 4B). 

Large bile ducts: CX3CL1 was not expressed or only faintly expressed in large bile ducts and peribiliary 

glands and PBP in normal livers (Fig. 5A), while it was strongly expressed in biliary epithelial cells of large 

bile ducts and peribiliary glands in cases of BA and also endothelial cells of PBP around large bile ducts in BA 

(Fig. 5B,C), while such expression was faint or absent in normal livers. The incidence of bile ducts with mild 

to moderate and strong expression of CX3CL1 is shown in Fig. 5D. 
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II. Culture studies 

1. Expression of CX3CL1 mRNA in cultured BECs treated with poly(I:C) 

RT-PCR revealed that the amplicon of CX3CL1 mRNA could not be detected in cultured BECs without any 

stimulants (PBS), whereas treatment with poly(I:C) induced its expression (Fig. 6A). As shown in Fig. 6B, 

real-time PCR analysis revealed that treatment with poly(I:C) significantly up-regulated the expression of 

CX3CL1 mRNA 21.9-fold (Fig. 6B). 

 

2. Migration of NK cells  

Optical density reflecting the number of NK cells that transmigrated was significantly increased in the bottom 

chamber containing recombinant CX3CL1 and supernatant of poly(I:C)-treated BECs, compared with that 

containing the negative control medium (PBS). The effect of the supernatant was concentration 

(dose)-dependent (Fig. 7).   

 

Discussion 

   The findings obtained in this study can be summarized as follows: i) CD56(-)CD16(+) NK cells were 

increased around the small bile ducts and beneath the biliary epithelia of large bile ducts in comparison with  

other diseases and normal livers, ii) such CD16(+) cells expressed CX3CR1, a receptor of CX3CL1, iii) 

CX3CL1 was strongly expressed in BECs of small bile ducts and also of large bile ducts in BA, and iv) 

stimulation with poly(I:C) (a synthetic analogue of viral dsRNA) increased the expression of CX3CL1 on 

cultured BECs and increased migration of cultured NK cells.  

The pathogenesis of BA may be the virus-induced autoimmune-mediated injury of bile ducts.6 In fact, 

Reoviridae (type 3 reovirus and type C rotavirus) and herpes virus including cytomegalovirus have all been 

considered possible candidates for the initiating agent.1 Studies in the rotavirus mouse model of BA indicate 

that a viral infection of the biliary epithelium is an initial event leading to biliary inflammation and obstruction 
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and autoreactive T cells and autoantibodies specific to bile duct epithelia have been reported.3,18 Specific host 

factors related to innate and acquired immunopathologic processes with respect to viral infection may also 

play a key role in experimental BA.18 Recently, many genetic studies, moreover, have recently reported. 

Genomic study including genome-wide association study identified a susceptibility locus for BA on 10q24.2 

and 2q37.3.19-20 Moreover, DNA hypermethylation at the CD11a locus in CD4+ cells, polymorphisms of 

vascular endothelial growth factor gene, and two microRNAs (miR-29a/29b1) may contribute significantly to 

BA susceptibility, but polymorphisms of IL-4, IL-18, IFN-γ genes were unlikely.21-26 These genetic analyses 

revealed a link to the susceptibility to BA with respect of immunopathologic processes. 

Recent studies showed the roles of NK cells in addition to T cells in the destruction of extrahepatic bile 

ducts in BA.18,27 That is, the inflammatory milieu from portal tracts and/or biliary remnants showed greater 

numbers of T cells and NK cells, and up-regulation of CD8(+) costimulatory molecules in BA.27 In 

experimental BA, activated NK cells were reportedly the most abundant cells in extrahepatic bile ducts and 

such NK cells were regarded as key initiators of bile duct injury.14 However, the exact roles of NK cells and 

their phenotypic and functional alterations have not been studied in BA. 

   The CD56(-)CD16(+) NK subset is greatly expanded in HIV-viremic individuals.28 The CD56(-) NK 

fraction was associated with extremely poor in vitro cytotoxic functions.28 In addition, the secretion of certain 

cytokines important for initiating antiviral immune responses was markedly reduced in the CD56(-) NK cells. 

Elevated levels of CD56(-) NK cells are also found in many CH-C patients.5,6 These CD56(-) NK cells were 

functionally impaired with respect to cytokine production upon target cell recognition.29 Furthermore, high 

levels of these cells reveal a disturbance in innate cellular immunity that is associated with an impaired ability 

to respond to antiviral treatment with IFN-α and ribavirin. Taken together, these findings suggest that the 

expansion of this highly dysfunctional CD56(-) NK cell subset in humans infected with HIV-1 and HCV 

largely accounts for the impaired function of the total NK cell population.12 So far, such issues have not been 

examined in BA.  
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   It was found in this study that CD56(-)CD16(+) NK cells were increased around the damaged small and 

large bile ducts in BA, and the proportion of these cells was relatively high in BA in comparison with controls,  

suggesting that increased CD56(-)CD16(+) NK cells with reduced NK activities were involved in the 

development of bile duct injuries in BA. It seems possible that inadequate removal of BECs infected with 

cholangiotrophic virus by abundant CD56(-)CD16(+) NK cells with reduced antiviral activities leads to the 

induction of secondary immunization against the cholangiotrophic virus as well as BECs in BA. 

Cross-reactivity between viral and self-antigens is also proposed to trigger secondary autoimmunity.2,6 This 

may be in turn followed by extensive autoimmune-mediated destruction of the bile ducts by CD8(+) cytotoxic 

T cells and other effector cells. CD8(+) T cells were reportedly necessary for induction of bile duct injury and 

obstruction in an experimental model of BA with autoimmune features.30  

   It was also found in this study that CD16(+) NK cells were positive for CX3CR1, and CX3CL1 was 

strongly expressed on the damaged bile ducts in BA. While the expression of CX3CL1 was relatively weak or 

absent in the bile ducts of normal liver and CH-C, CX3CL1 was also strongly expressed in the damaged bile 

ducts in PBC, in which the interaction of CX3CR1-expressing lymphocytes and CX3CL1-expressing bile 

ducts and endothelial cells of PBP is important in the bile duct destruction.15 CX3CL1 is a chemokine with 

both chemoattractant and cell-adhesive functions, and in the intestine it is involved with its receptor CX3CR1 

in the chemoattraction and recruitment of intraepithelial lymphocytes.15  It seems likely that CD16(+) NK 

cells with expression of CX3CR1 may be chemoattracted and infiltrate around the bile ducts expressing 

CX3CL1 and this may be followed by the immunological interaction of NK cells and bile ducts, possibly 

virus infected. 

 Expression of CX3CL1 in human BECs in response to a TLR3 ligand, poly(I:C), was examined using a 

human intrahepatic BEC line. Consequently, the expression of CX3CL1 mRNA was low under normal 

conditions, but significantly up-regulated by the stimulation with poly(I:C). We have already reported that 

BECs express multiple functionally active TLRs and respond to the corresponding bacterial or viral TLR 
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ligands including poly(I:C).7 Moreover, we previously demonstrated the diffuse expression of TLR3 in 

extrahepatic and intrahepatic bile ducts of patients with biliary atresia. Therefore, BECs infected by 

Reoviridae (reovirus and rotavirus) having a double-strand RNA are speculated to induce the expression of 

CX3CL1 via biliary innate immunity in biliary atresia patients. Moreover, the chemotaxis of human NK cells 

expressing the CX3CL1 ligand CX3CR1, and showing efficient chemotaxis and adherence in a 

CX3CL1-dependent manner was assayed using a cell invasion assay kit. The human NK cells showed 

chemotaxis toward recombinant CX3CL1 and also the culture medium which was speculated to contain 

CX3CL1 secreted by poly(I:C)-stimulated BECs. Therefore, dsRNA viruses in the microenvironment of 

injured bile ducts resulting from BA induce the upregulation of CX3CL1 expression in BECs, followed by the 

chemoattraction of CX3CR1-expressing mononuclear cells including NK cells, and their adhesion to BECs. 

    The elevation of CD56(-)CD16(+) NK subset was reported in the peripheral blood mononuclear cell 

of HCV- and HIV- infected patients.13 We could confirm the increase of CD56(-)CD16(+)CD68(-) NK cells 

in liver specimens of CH-C as well as BA by the immunohistochemistry, though statistical significance was 

not obtained in CH-C, compared with NASH and normal liver. Therefore, impaired NK function caused by an 

increased CD56(-)CD16(+) NK subset in liver tissue is presumable in BA and CH-C, but not NASH or 

normal livers. Moreover, it is speculated that these NK cells were attracted by CXCL1 produced in BECs via 

an innate immunity against virus. This scenario might be common in several virus-related diseases including 

CH-C and BA.   

 

Take home messages 

-  CD56(-)CD16(+) NK cells with reduced NK activities accumulated around damaged small and large bile 

ducts may be involved in the development of BA.  

-  By the biliary innate immunity for dsRNA, BECs expressed CX3CL1, which may attract CD16(+) NK 

cells around the damaged bile ducts.  
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-  These findings may be followed by acquired immunity against the infected bile ducts.  
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Table 1. Main clinical features of cases examined 
 
---------------------------------------------------------------------------------------------------------------------
Cases for the study of intrahepatic small bile ducts 
                             Age (mean±SD; range)     Sex (M:F)  
 Biliary atresia (n=22)             1.77±0.86 m; 0.7－12 m  10:12   
 Chronic viral hepatitis C (n=9) a)      59.0±13.0 y; 27－72 y        4:5 
 Nonalcoholic steatohepatitis (n=9) b)  44.4±14.4 y; 25－69 y        3:6   
 Adult normal liver (n=12)     62.1±13.1 y; 47－82 y        6:6  
 
Cases for study of large bile ducts                                                                               
          Age (mean±SD; range) Sex (M:F)  
  Biliary atresia (n=21)        1.71±0.81 m; 0.7－12 m    9:12 
 Normal common bile duct (fetus) c) (n=8)                    6:2 
 Adult normal liver d) (n=4)          58.7±17.0 y; 42－76 y   2:2  
---------------------------------------------------------------------------------------------------------------------                                                                                    
m, months; y, years; M, male; F, female; n, number of cases; a), staging; stage 1, 6 cases; stage 
2, 0 cases; stage 3, 0 cases; stage 4, 3 cases ; b), staging; stage 1, 2 cases; stage 2, 3 cases; stage 
3, 3 cases; stage 4, 1 cases ; c), autopsy cases of fetus ; d), surgical cases  
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Table 2.  Antibodies used in this study 
 

Primary antibody 

against  

Type of antibody  

and immunized 

animal 

Clone Dilution  Source  Antigen 

retrieval 

method 

CD16 

 

CD56  

 

CD68  

 

CX3CL1 

(Fractalkine) 

 

CX3CR1  

Monoclonal 

(mouse)  

Monoclonal 

(mouse)  

Monoclonal 

(mouse)  

Polyclonal (rabbit) 

 

 

Polyclonal (rabbit)  

2H7 

 

1B6 

 

PG-M1 

 1： 200  

 

diluted*  

 

diluted*  

 

 1： 500 

 

 

 1： 1000  

Leica, Tokyo, Japan  

 

Nichirei, Tokyo, Japan  

 

Nichirei, Tokyo, Japan  

 

Immuno-Biological 

Laboratories, Fujioka, Japan  

Immuno-Biological 

Laboratories, Fujioka, Japan  

microwave 

 

pressure  

cooker 

microwave 

 

microwave 

 

 

microwave 

 
*, already diluted; microwave, microwaved in 10mM citrate buffer for 20 minutes in a 
microwave oven; pressure cooker, treated in 10mM citrate buffer pressure cooker  
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Figure legends 

 

Fig. 1    Density of CD56(-)CD16(+)CD68(-) NK cells around intrahepatic small bile ducts. (A,C) 

Expression of CD56 (brown) and CD68 (green). (B,D) Expression of CD56 (brown) and CD16 

(green). Two photographs in the same areas of NASH (A,B) were compared. 

CD56(-)CD16(+)CD68(-) NK cells were green in photo B but not photo A. There were no or few 

CD56(-)CD16(+)CD68(-) NK cells in portal tracts. In contrast, in BA (C,D), there were variable 

numbers of such NK cells admixed with other infiltrated inflammatory cells. (E) The number of such 

NK cells around small bile ducts is rather high in BA in comparison with NASH and normal 

livers. Mean±SD in BA, CVH-C, NASH, and adult normal livers were 4.37±3.83, 3.00±2.06, 

0.11±0.33, and 0.58±0.66, respectively. Effect size and confidence interval; BA vs CVH-C (effect 

size=0.18, confidence interval -1.39 to 4.14), BA vs NASH (effect size=051, confidence interval 1.63 

to 6.90), and BA vs adult normal livers (effect size=0.50, confidence interval 1.51 to 6.07). Bars 

indicate the mean±SD. *<0.01. 

 

Fig. 2    Density of CD56(-)CD16(+)CD68(-) NK cells around large bile ducts. (A,B) There were no or few 

CD56(-)CD16(+)CD68(-) NK cells beneath biliary epithelia of the large bile duct in normal adult 

livers. (C,D) Such NK cells were identifiable in BA. (E) These cells were more abundant in BA than in 

normal livers. Mean±SD in BA, CBD of fetus, and adult large bile ducts were 2.50±2.34, 2.00±1.41, 

and 0.33±0.57, respectively. Effect size and confidence interval; BA vs CBD of fetus (effect size=0.08, 

confidence interval -1.44 to 2.20) and BA vs adult large bile ducts (effect size=0.58, confidence 

interval 0.66 to 3.10). Bars indicate the mean±SD. *<0.01. 

 

Fig. 3    CX3CR1(+)CD16(+) mononuclear cells around intrahepatic bile ducts. (A) CX3CR1(+)CD16(+) 
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mononuclear cells were frequently present in portal tracts around damaged small bile ducts in BA. (B) 

Such cells were sparse in normal livers and other liver diseases. (C) They were rather dense in BA in 

comparison with other liver diseases and normal livers. Mean±SD in BA, CVH-C, NASH, and adult 

normal livers were 4.30±3.03, 1.88±1.05, 0.77±0.83, and 1.50±1.37, respectively. Effect size and 

confidence interval; BA vs CVH-C (effect size=0.39, confidence interval 0.28 to 4.55), BA vs NASH 

(effect size=053, confidence interval 1.41 to 5.64), and BA vs adult normal livers (effect size=0.39, 

confidence interval 0.166 to 5.44). (D) CX3CR1(+)CD16(+) mononuclear cells were found around 

the large bile ducts in BA, but not in normal livers of fetuses or adults. Mean±SD in BA, CBD of fetus, 

and adult large bile ducts were 6.66±2.41, 0.50±0.53, and 0.75±0.50, respectively. Effect size and 

confidence interval; BA vs CBD of fetus (effect size=0.81, confidence interval 4.38 to 7.95) and BA vs 

adult large bile ducts (effect size=0.71, confidence interval 3.37 to 8.47). Bars indicate the mean±SD. 

*<0.05. 

 

Fig. 4    Expression of CX3CL1 in intrahepatic small bile duct epithelia. (A) Normal livers. Small bile ducts 

were generally negative or faintly positive for CX3CL1. (B) BA. Small bile ducts were strongly 

positive for CX3CL1. (C) The incidence of small bile ducts with mild to moderate and strong 

expression in normal liver, BA and other liver diseases.  

 

Fig. 5    Expression of CX3CL1 in large bile duct epithelia. (A) CX3CL1 was not or faintly expressed in 

large bile ducts and peribiliary glands and PBP of normal livers. (B,C) It was strongly expressed in 

biliary epithelial cells of large bile ducts and peribiliary glands and also endothelial cells of PBP around 

large bile ducts in BA. (D) The incidence of bile ducts with mild to moderate and strong expression of 

CX3CL1. *<0.01. 
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Fig. 6    Expression of CX3CL1 mRNA in cultured human biliary epithelial cells (BECs).  (A) 

Representative images of RT-PCR using cultured BECs. The amplicon of CX3CL1 mRNA could not 

be detected without the stimulant (-). de novo expression was found in the poly(I:C)-treated cells 3h 

after treatment with poly(I:C). (B) Quantitative analysis using real-time PCR revealed the increase in 

the level of CX3CL1 mRNA on poly(I:C) treatment to be 21.9±2.2 (mean±SEM)-fold and statistically 

significant compared to that without treatment (effect size=0.97, confidence interval -26.09 to 

-15.61). Results were obtained from four independent experiments. Bars indicate the mean±SEM. 

*<0.05. 

 

Fig. 7    Migration assay of NK cells.  Optical density (OD) reflecting the number of transmigrated NK 

cells was significantly increased in the lower chamber containing recombinant CX3CL1 

(10ng/ml, OD=0.49±0.02 (mean±SEM), effect size=0.66, confidence interval -0.09 to -0.01) and 

supernatant of poly(I:C)-treated BEC diluted 1:100 (OD=0.47±0.02, effect size=0.51, confidence 

interval -0.08 to 0.01) and 1:10 (OD=0.51±0.02, effect size=0.73, confidence interval -0.12 to -0.02), 

compared with that containing the negative control medium (PBS, OD=0.44±0.008). Results were 

obtained from eight independent experiments. Bars indicate the mean±SEM. *<0.05. 



Table 1. Main clinical features of cases examined 

Cases for the study of intrahepatic small bile ducts 
 
                                                                          Age (mean±SD; range)       Sex (M:F)  
 Biliary atresia (n=22)          1.77±0.86 m; 0.7－12 m  10:12   
 
 Chronic viral hepatitis C (n=9) a)    59.0±13.0 y; 27－72 y    4:5 
 
 Nonalcoholic steatohepatitis (n=9) b)   44.4±14.4 y; 25－69 y     3:6   
 
 Adult normal liver (n=12)     62.1±13.1 y; 47－82 y     6:6  
 
 
Cases for study of large bile ducts 
 
                                                                           Age (mean±SD; range)    Sex (M:F)  
   Biliary atresia (n=21)       1.71±0.81 m; 0.7－12 m    9:12 
 
 Normal common bile duct (fetus) c) (n=8)         6:2 
 
 Adult normal liver d) (n=4)        58.7±17.0 y; 42－76 y    2:2 
 

m, months; y, years; M, male; F, female; n, number of cases; a), staging; stage 1, 6 cases; stage 2, 0 
cases; stage 3, 0 cases; stage 4, 3 cases ; b), staging; stage 1, 2 cases; stage 2, 3 cases; stage 3, 3 cases; 
stage 4, 1 cases ; c), autopsy cases of fetus ; d), surgical cases 



Table 2. Antibodies used in this study 

Primary antibody 
against 

Type of antibody  and 
immunized animal 

Clone Dilution Source Antigen retrieval 
method 

CD16 
CD56 
CD68 
CX3CL1 (Fractalkine) 
 
CX3CR1 

Monoclonal (mouse) 
Monoclonal (mouse) 
Monoclonal (mouse) 
Polyclonal (rabbit) 
 
Polyclonal (rabbit) 

2H7 
1B6 
PG-M1 

 1：200 
diluted* 
diluted* 
 1：500 
 
 1：1000 

Leica, Tokyo, Japan 
Nichirei, Tokyo, Japan 
Nichirei, Tokyo, Japan 
Immuno-Biological 
Laboratories, Fujioka, 
Japan 
Immuno-Biological 
Laboratories, Fujioka, 
Japan 

microwave 
pressure cooker 
microwave 
microwave 
 
microwave 

*, already diluted; microwave, microwaved in 10mM citrate buffer for 20 minutes in a microwave oven; pressure cooker, 
treated in 10mM citrate buffer pressure cooker 
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Fig. 5D Expression of CX3CL1 in large bile duct epithelia 
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