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Review

Molecular investigations of development and diseases of
the brain of higher mammals using the ferret

By Hiroshi KAWASAKI*1,*2,†

(Communicated by Nobutaka HIROKAWA, M.J.A.)

Abstract: The brains of higher mammals such as primates and carnivores contain well-
developed unique brain structures. Uncovering the physiological functions, developmental
mechanisms and evolution of these brain structures would greatly facilitate our understanding of
the human brain and its diseases. Although the anatomical and electrophysiological features of these
brain structures have been intensively investigated, our knowledge about their molecular bases is
still limited. To overcome this limitation, genetic techniques for the brains of carnivores and
primates have been established, and molecules whose expression patterns correspond to these brain
structures were identified recently. To investigate the functional roles of these molecules, rapid and
efficient genetic manipulation methods for higher mammals have been explored. In this review,
recent advances in molecular investigations of the brains of higher mammals are discussed, mainly
focusing on ferrets (Mustela putorius furo).
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Introduction

Rodents such as mice and rats have been widely
used for deciphering the molecular mechanisms
underlying the development and functions of the
brain, and for uncovering the pathophysiology of and
treatments for various brain diseases. For example,
accumulating knowledge about the processes of brain
development using knockout mice in vivo has pro-
vided opportunities to recapitulate these processes
in vitro. As a result, we and others successfully
established techniques to make various useful types
of cells, such as midbrain dopaminergic neurons and

retinal pigmented epithelial cells from embryonic
stem cells (ES cells) of rodents and primates
in vitro.1)–8) These techniques have been applied to
iPS cells to make human dopaminergic neurons and
retinal pigmented epithelial cells,9) which are now
used for research into regenerative medicine for
Parkinson’s disease and age-related macular degen-
eration in Japan. In addition, using rodents, we also
reported that MAP kinase is essential for long-term
depression in the cerebellum10) and that birth of
mouse pups plays a crucial role as a trigger to start
neuronal circuit formation and behavioral matura-
tion during development.11),12) Mice have been a
powerful option for investigating the mechanisms of
development and physiological functions of the brain,
and the pathophysiology of brain diseases.

Recently, higher mammals including primates
and carnivores have attracted more attention from
researchers than before. This is mainly because
primates and carnivores have important unique brain
structures that humans have, but mice do not. These
brain structures include the folds and the outer
subventricular zone (OSVZ) of the cerebral cortex,
ocular dominance columns (ODCs) in the visual
cortex, and the magnocellular (M) and parvocellular
(P) pathways in the visual system.13)–15) Because it
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has been proposed that they are structural bases of
higher brain functions, investigation of the physio-
logical importance, developmental mechanisms and
diseases related to these structures using primates
and carnivores would greatly facilitate our under-
standing of the human brain and its diseases.
Although the anatomical and physiological charac-
teristics of these brain structures have been inten-
sively investigated using primates and carni-
vores,13),14),16) our knowledge about the molecular
mechanisms underlying the formation, function,
pathophysiology and evolution of these structures is
still limited. This is mainly because genetic manip-
ulation techniques for higher mammals were poorly
available until recently.

To overcome this limitation, genetic manipula-
tion techniques for carnivores and primates were
reported recently. Previous pioneering studies used
virus vectors to make transgenic primates such as
monkeys and marmosets.17)–19) For example, the
injection of a lentiviral vector into eggs resulted in
marmosets expressing transgenes in several organs.19)

Although the establishment of transgenic marmosets
would provide new opportunities to make animal
models for human diseases,20) making new transgenic
marmosets requires time, effort and special animal
facilities. Therefore, a rapid and simple genetic
manipulation technique that can be used for carni-
vores and primates was desirable. We recently
applied in utero electroporation to ferrets (Mustela
putorius furo) (Fig. 1A) and succeeded in transgene
expression in the cerebral cortex of ferrets as de-
scribed below.21),22) Pioneering studies from another

group also reported transgene expression in the
cerebral cortex of ferrets using postnatal electro-
poration.23),24) The ferret belongs to Mustelidae, a
family of carnivorous mammals, and adult ferrets
have an average length of about 50 cm and a weight
of about 1–2 kg. Ferrets have a long history in
research because they have well-developed brain
structures that mice do not have (Fig. 1B). Because
marmosets and ferrets have their own unique
features, combining transgenic marmosets and elec-
troporated ferrets would facilitate our understanding
of the brain of higher mammals. In this review, recent
advances in the molecular understanding of the
brains of higher mammals are summarized, primarily
focusing on ferrets.

Investigation of the cerebral cortex using ferrets

One of the most prominent characteristics of the
brains of higher mammals is the folds of the cerebral
cortex (i.e., cortical gyri and sulci) (Fig. 1B). The
brains of humans, monkeys and ferrets are gyrence-
phalic (i.e., brains with cortical folds), whereas those
of rodents are often lissencephalic (i.e., brains without
cortical folds). It has been believed that the acquis-
ition of cortical folds during evolution played im-
portant roles in obtaining higher brain functions.25)

Furthermore, human patients with malformations of
cortical folds often exhibit intellectual disability and
epilepsy.26),27) Therefore, the molecular mechanisms
of the formation and malformation of cortical folds
during development have been of great interest.

During development, neurons in the cerebral
cortex are produced from radial glial cells (RG cells,

Fig. 1. The ferret and its brain. (A) An adult ferret. The ferret has an average length of about 50 cm and weight of about 1–2 kg. (B) A
dorsal view of the ferret brain. The cortical gyri and sulci are clearly present. Scale bar, 1 cm. (Adapted from Kawasaki et al., 2012)21)
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also known as apical progenitors/apical RG cells/
ventricular RG cells). RG cells are neural stem cells
in the ventricular zone (VZ), which is located along
the cerebral ventricles. RG cells undergo multiple
rounds of asymmetric cell divisions, and, as a result,
intermediate progenitor cells (IP cells/basal progen-
itors) are produced. IP cells then migrate into the
subventricular zone (SVZ) and further proliferate to
produce post-mitotic neurons. One of the character-
istic features of the developing cerebral cortex of
higher mammals is the presence of an enlarged
SVZ containing an inner region (ISVZ) and an outer
region (OSVZ).28),29) Several pioneering groups have
identified new progenitor cells in the OSVZ: OSVZ
radial glial cells (oRG cells/outer RG cells/basal
RG cells/intermediate RG cells/translocating RG
cells).30)–32) While RG cells and IP cells are abun-
dantly found in both mice and humans, oRG cells are
preferentially observed in humans rather than in
mice. It would be intriguing to compare neuronal cell
types produced from IP cells and oRG cells in mice
and humans during development. Because it has been
proposed that neural progenitors in the SVZ play
crucial roles in cortical folding,15),33)–35) it would be
important to investigate the mechanisms underlying
their proliferation, migration and differentiation.

The ferret is an attractive option for investigat-
ing such mechanisms because genetic manipulation
techniques for ferrets have become feasible, as
described below.21),22),36) Recently, several groups
reported genes expressed in the VZ and the SVZ of
mice and in various regions of the cerebral cortex
in monkeys.37),38) Examining the roles of these genes
in the cerebral cortex using ferrets should lead to
uncovering the molecular mechanisms of the forma-
tion and malformation of both cortical folding and
the OSVZ in the cerebral cortex of higher mammals.

Genetic manipulation for the ferret brain
using in utero electroporation

Although transgenic marmosets had offered a
novel avenue to investigate the pathophysiological
mechanisms of human diseases,20) much more rapid
and simple genetic manipulation techniques that can
be used for carnivores and primates were desirable.
Because in utero electroporation was widely used for
expressing transgenes in the brain of rodents,39)–41)

we tried to apply in utero electroporation to ferrets.
Fortunately, we succeeded in establishing a rapid and
efficient procedure of in utero electroporation for the
ferret brain (Fig. 2).21),22) It takes only a few hours
to perform electroporation using ferret embryos, and

after a couple of days, ferret babies expressing
transgenes can be obtained. Expression of transgenes
is detectable even in the embryo and persists at
least several months after ferret babies are born.
Transgenes can be introduced in both superficial and
deep neurons in the cerebral cortex, depending on
at which age of the ferret embryo in utero electro-
poration is performed during development. In utero
electroporation performed at embryonic day 31 (E31)
and at E37 results in transgene expression in super-
ficial and deep cortical neurons, respectively. Using
our electroporation procedure, transgenes can be
expressed not only in post-mitotic neurons but also
neural progenitors including RG cells, oRG cells and
IP cells.21),22)

We thought that it would be intriguing to
investigate the molecular mechanisms of the forma-
tion and malformation of cortical folds using our
in utero electroporation technique for ferrets. Thana-
tophoric dysplasia (TD) is a relatively common
skeletal dysplasia in which the cerebral cortex
displays polymicrogyria, megalencephaly and neuro-
nal heterotopia.42),43) TD is caused by activating
mutations of the fibroblast growth factor receptor 3
(FGFR3) gene.44)–49) Because knockin mice that have
the same activating mutation in the FGFR3 gene did
not exhibit polymicrogyria,50),51) appropriate animal
models would be extremely important for examining
the pathophysiology of TD. We utilized fibroblast
growth factor 8 (FGF8), which has a high affinity to
FGFR3 and activates it. We successfully recapitu-
lated the cortical phenotypes of thanatophoric
dysplasia (TD) by expressing FGF8 in the ferret
cerebral cortex.52) Strikingly, our TD ferret model
showed not only megalencephaly but also polymicro-
gyria (Fig. 3A, B).52) We further uncovered that SVZ
progenitors (i.e., oRGs and IP cells) were markedly
increased, and it seemed likely that these increases
underlie the pathogenesis of polymicrogyria. Our
findings indicate that ferrets are useful for inves-
tigating the molecular mechanisms underlying the
malformation of cortical gyri.

The mechanisms underlying cortical folding
during normal development are still largely unknown.
Because it has been proposed that an increase in the
numbers of SVZ progenitors is responsible for the
acquisition of cortical folds during evolution,15),33)–35)

we investigated the role of SVZ progenitors in cortical
folding during development.53) We found that the
numbers of SVZ progenitors were markedly reduced
by inhibiting Tbr2 transcription factor. Interestingly,
when the numbers of SVZ progenitors were reduced
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by inhibiting Tbr2, cortical folding was significantly
impaired, suggesting an essential role of SVZ progen-
itors in cortical folding. We also found that there were
regional differences in the abundance of SVZ progen-
itors in the developing ferret cortex even before
cortical folds were formed.53) Because Tbr2-positive
cells were increased by FGF8, Tbr2 seems to be a
downstream target of FGF signaling.52) Our findings

indicate that our electroporation procedure for ferrets
will aid in uncovering the entire picture of mecha-
nisms underlying cortical folding.

In utero electroporation is applicable not only
for investigating molecular mechanisms but also for
examining neuronal circuitry.54),55) Development of
the cerebral cortex in higher mammals is character-
ized by the appearance of the large OSVZ. The OSVZ

Fig. 2. GFP in the ferret brain expressed using in utero electroporation. Scale bars, 1 cm. (Adapted from Kawasaki et al., 2012)21)

Fig. 3. The brain of TD ferrets. (A) A dorsal view of the TD ferret brain. FGF8 was electroporated into the right cortex. (B) A coronal
section of the cerebral cortex of TD ferrets stained with Hoechst 33342. Note that additional sulci (asterisks) and gyri with normal
layer structures were formed by expressing FGF8. Scale bars, 4mm (A), 6mm (B). (Adapted from Masuda et al., 2015)52)
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is often split into the ISVZ and the OSVZ by the
inner fiber layer (IFL), a fiber layer located between
the ISVZ and the OSVZ.28),29) However, a fiber layer
corresponding to the IFL of the primate cerebral
cortex had not been identified in the ferret cerebral
cortex. In addition, it was unknown from which
neurons fibers in the IFL are derived.34) We therefore
expressed GFP in layer 2/3 neurons of the ferret
cerebral cortex using in utero electroporation and
found GFP-positive fibers just above the ISVZ
(Fig. 4). Because both the GFP-positive fibers in
ferrets and the IFL in primates are located just above
the ISVZ, our result raised the possibility that a
fiber layer corresponding to the IFL in primates
also exists in the cerebral cortex of ferrets.22) Because
the properties of the IFL are currently largely
unknown,34) future investigations would be necessary
to determine if the GFP-positive fibers in ferret and

the IFL in primate share similar properties. This
result also raised the possibility that fibers in the IFL
are, at least partially, derived from layer 2/3 neurons
of the cerebral cortex.22) Because the thickness of
superficial layers of the cerebral cortex preferentially
increased in higher mammals during evolution,56) a
possible hypothesis about the creation of the IFL
during evolution is that an increase in the number of
layer 2/3 neurons resulted in the formation of a thick
fiber bundle comprising the IFL in the developing
cerebral cortex of higher mammals.

In utero electroporation has several important
advantages compared with transgenic animals. First,
the procedure of in utero electroporation is simple
and rapid. It requires relatively little time and effort
to express genes of interest. It takes only a few hours
for the surgery of electroporation, and transfected
embryos can be collected within a few days. Second,

Fig. 4. IFL-like fibers in the developing ferret cerebral cortex. When GFP was expressed in layer 2/3 neurons using in utero
electroporation, GFP-positive fibers were observed in the inner OSVZ (arrows). Low magnification images (upper panels) and high
magnification images (lower panels) are shown. CP, cortical plate. Scale bars, 500 µm (upper) and 200µm (lower). (Adapted from
Kawasaki et al., 2013)22)
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co-transfection is easy to perform, and as a result,
multiple genes can be expressed simultaneously.
Electroporation using a mixture of GFP and
mCherry expression plasmids resulted in most
GFP-positive neurons also being mCherry-positive
in the ferret cerebral cortex, indicating efficient co-
transfection. Third, by adjusting the direction of
the electrodes and by changing the age of the embryo
at which in utero electroporation is performed, the
position of the transfected area can be controlled.
While we mainly transfected the cerebral cortex of
ferrets, based on the results obtained using ro-
dents,57)–62) it seems plausible that in utero electro-
poration is applicable to other brain regions, such as
the hippocampus, the thalamus, the retina and the
amygdala in ferrets. Finally, large plasmids can be
introduced using in utero electroporation. Cell type-
specific promoters, which are often quite large, seem
to be useful for controlling the expression patterns
of transgenes. For example, we recently transfected
only a small number of neurons in mice by combined
in utero electroporation and the Thy1S promoter.63)

In addition, because in utero electroporation works
well not only in rodents but also in carnivores, it
could also be applicable to other higher mammals
such as primates.

Besides in utero electroporation, postnatal elec-
troporation can be used for expressing transgenes
in the ferret cerebral cortex.24) It should be noted
that when postnatal electroporation was performed,
transfected neurons were mostly distributed in super-
ficial layer 2/3 in the ferret cerebral cortex. This is
presumably because most post-mitotic neurons had
already migrated into the cortical plate from the
VZ when postnatal electroporation was performed.
Almost all excitatory neurons in the cerebral cortex
can be transfected using in utero electroporation and
postnatal electroporation in ferrets.

Ferrets and marmosets differ in several impor-
tant points. The gestation period of ferrets is shorter
than that of marmosets (42 days for ferrets, 150 days
for marmosets). About 6–8 babies are born from one
pregnant ferret mother, while 1–2 are born from a
pregnant marmoset. Because of the larger number of
ferret babies per pregnant mother, many experimen-
tal samples can be obtained using ferrets. Ferrets
and marmosets become sexually mature at about 8
months old and 14 months old, respectively, and the
average life span is 5–10 years in ferrets and 10–15
years in marmosets. The ferret is an attractive option
for exploring the brain structures unique to higher
mammals.

Investigation of ocular dominance columns
in the visual system using ferrets

The visual system is more developed in higher
mammals such as carnivores and primates than in
rodents. Using the well-developed visual system of
higher mammals, important concepts about the
intrinsic and extrinsic factors regulating brain devel-
opment and maturation have been uncovered.64) For
instance, the anatomical and physiological properties
of ocular dominance columns (ODCs) in the primary
visual cortex (V1) have been investigated. Hubel and
Wiesel demonstrated ODCs in V1 of cats in the early
1960s.65) Cortical neurons in V1 are activated differ-
entially by one of the two eyes, and neurons with
similar eye preference are clustered into cortical
columns called ODCs in V1. ODCs were demon-
strated with electrophysiological experiments and
trans-neuronal tracers such as tritiated amino
acids.66),67) Importantly, ODCs in V1 are found in
both primates and carnivores including ferrets, but
not in rats.68) Because it is still unclear whether
ODCs are functionally important or are just a
byproduct, more research is needed to examine the
functional importance of ODCs.

Using ODCs in V1, the mechanisms underlying
developmental plasticity have been investigated.
When one of the two eyes was closed during early
periods of postnatal life (i.e., the critical period),
neurons activated by the closed eye decreased, and
those activated by the intact open eye increased
in V1.69)–71) Pre-existing neuronal connections were
substantially modified by an activity-dependent
competitive process.72) Interestingly, when thalamic
axons projecting to V1 were visualized by direct
tracer injections into the lateral geniculate nucleus
(LGN) of the thalamus, segregated ODC-like pat-
terns were visible even before the critical period.73)

These results were explained by the following
hypothesis; the initial formation of ODC architecture
is determined by intrinsic genetic mechanisms, and
later modification of ODCs during the critical period
is regulated by experience-dependent refinement.

Investigation of parallel pathways
in the visual system using ferrets

The parallel visual pathways are also prominent
in the visual system of higher mammals. Visual
information from the outside world detected by the
retina is transferred to the LGN of the thalamus and
then to V1 in the cerebral cortex along the parallel
visual pathways. The parallel visual pathways mainly
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consist of three kinds of pathways with distinct
anatomical and physiological features. The three
pathways are known as the parvocellular (P),
magnocellular (M) and koniocellular (K) pathways
in primates, and the X, Y and W pathways in
carnivores, such as ferrets and cats. It has been
proposed that each pathway contributes to visual
perception in a different way. Visual functions were
investigated using monkeys after damaging either the
M or P pathway of the LGN selectively by injecting
pharmacological drugs. When the M pathway was
selectively damaged, there was little effect on visual
acuity or color vision, but the ability to recognize
moving stimuli was markedly impaired.74) In contrast,
damage to the P pathway did not show obvious effects
on motion perception but markedly inhibited visual
acuity and color perception.74) These results suggest
that the P pathway is mainly involved in the detailed
analysis of the shape, size and color of visual objects,
whereas the M pathway is preferentially related to
information about the movement of visual objects.

It has been believed that the parallel visual
pathways in mice are not well-developed than those
in primates and carnivores. Although some evidence
for the parallel visual pathways of rats was reported,
it is unclear whether functionally and morphologi-
cally distinct parallel visual pathways, which corre-
spond to the M, P and K pathways in primates and
the X, Y and W pathways in carnivores, also exist in
mice. Recently, a morphological study reported that
LGN neurons in the mouse LGN could be classified
into three distinct classes.75) However, it remains
unclear whether morphologically distinct classes of
LGN neurons in mice possess different functional
properties. Future investigations would be necessary

to uncover the relationship between the distinct
classes of LGN neurons in mice and the parallel visual
pathways in primate and carnivores.

Despite the physiological importance of the
parallel visual pathways, molecular investigations of
the parallel visual pathways are still limited, mainly
because the parallel visual pathways are unclear in
mice. Using the LGN of ferrets, we recently demon-
strated that the Forkhead transcription factor FoxP2
was specifically expressed in X cells of the adult ferret
LGN and in the P layers in the adult monkey LGN.76)

FoxP2 is the first transcription factor found to be
specifically expressed in one of the three pathways
in the visual system. Further investigations of the
roles of FoxP2 in the formation and functions of
the parallel visual pathways would be important. In
addition, detailed investigation of the visual func-
tions of the human KE family patients, who have a
mutated FOXP2 gene and developmental speech-
language disabilities,77) could help deciphering the
roles of FoxP2 in the parallel visual pathways.
Another application of FoxP2 would be selective
expression of genes of interest, such as GFP,
Kir2.1 and NaChBac, in the P pathway using the
FoxP2 promoter. Kir2.1 and NaChBac are useful
for suppressing and enhancing neuronal activities,
respectively. Selective expression of such genes in the
P pathway would help in understanding the precise
neuronal circuits and functional roles of the P
pathway.

One of the long-lasting important questions
about the evolution of the parallel visual pathways
is the relationship between M and P cells of primates,
and Y and X cells of carnivores (Fig. 5). One
hypothesis is that X and Y cells of carnivores

Fig. 5. Two hypotheses about the relationship between M and P cells in primates and Y and X cells in carnivores. The expression pattern
of FoxP2 is consistent with hypothesis 1.
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correspond to P and M cells of primates, respectively.
Another hypothesis is that X and Y cells are
homologous to linear and non-linear M cells of
primates, respectively, and that P cells are unique
to primates.78) Our results showing selective expres-
sion of FoxP2 in X cells of the ferret LGN and in the
P layers of the monkey LGN provide new evidence
for a homology between X cells of ferrets and P cells
of monkeys76) (Fig. 5). Further molecular investiga-
tions of the parallel visual pathways of higher
mammals will not only facilitate our understanding
of the mechanisms of visual recognition in humans
but will also contribute to uncovering the develop-
ment and evolution of the visual system.

Conclusions

In this review, recent advances in the molecular
understanding of the development and evolution of
the brain of higher mammals have been summarized,
mainly focusing on ferrets. One of the ultimate goals
of neuroscience is to understand the human brain,
and therefore molecular investigations of the brain
of carnivores and primates are of great importance.
Because a rapid and efficient genetic manipulation
is now available for ferrets, the ferret should be an
important option for neuroscience research involving
higher mammals.
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