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Abstract  Zebrafish can regenerate several organs such as the tail fin, heart, central 

nervous system, and photoreceptors. Very recently, a study has demonstrated the 

photoreceptor regeneration in the alkylating agent N-methyl-N-nitrosourea 

(MNU)-induced retinal degeneration (RD) zebrafish model, in which whole 

photoreceptors are lost within a week after MNU treatment and then regenerated within 

a month. The research has also shown massive proliferation of Müller cells within a 

week. To address the question of whether proliferating Müller cells are the source of 

regenerating photoreceptors, which remains unknown in the MNU-induced zebrafish 

RD model, we employed a BrdU pulse-chase technique to label the proliferating cells 

within a week after MNU treatment. As a result of the BrdU pulse-chase technique, a 

number of BrdU+ cells were observed in the outer nuclear layer as well as the inner 

nuclear layer. This implies that regenerating photoreceptors are derived from 

proliferating Müller cells in the zebrafish MNU-induced RD model. 

 

XX.1 Introduction 

Retinal degeneration (RD) caused by photoreceptor cell death, including retinitis 

pigmentosa and age-related macular degeneration, is considered as a major cause for 

visual loss. It has been reported that at least 50 million individuals are suffering from 

these diseases (Lund et al. 2003), and the prevalence is increasing with the aging of 

society (Chakravarthy et al. 2010). In mammals, once photoreceptors are lost, they 

normally fail to regenerate. In contrast, fish show a tremendous regenerative capacity to 

offset the loss of photoreceptors (Fischer and Bongini 2010; Nagashima et al. 2013). 
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Very recently, a study has demonstrated a reproducible and uniform method to create an 

RD model in zebrafish, in which fish were treated with an alkylating agent, 

N-methyl-N-nitrosourea (MNU) (Tappeiner et al. 2013). In this model, a wide and 

uniform photoreceptor cell loss was observed within a week after MNU treatment 

followed by photoreceptor regeneration within a month. As with other zebrafish RD 

models (e.g., intense light injury and stab wound models), a massive proliferation of 

Müller cells was generally observed to produce new photoreceptors following MNU 

treatment. In this study, we attempt to show the cell fate of proliferating Müller cells 

after MNU treatment to address the question “Are proliferating Müller cells indeed the 

source of regenerating photoreceptors?” using the 5-bromo-2′-deoxyuridine (BrdU) 

pulse-chase technique with the zebrafish MNU-induced RD model. 

 

XX.2 Materials and Methods 

XX.2.1 Animals 

All experiments described below were approved by the Committee on Animal 

Experimentation of Kanazawa University, and all attempts were made to minimize pain 

and the number of fish used. Adult zebrafish (Danio rerio; 3–4 cm in body length, 6–12 

months after birth, either sex) were used throughout this study. The fish were kept in 

water at 28°C unless otherwise stated. 

 

XX.2.2 MNU Treatment 

MNU treatment of zebrafish was performed as described previously (Tappeiner et al. 
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2013). In brief, fish were kept in water containing 10 mM phosphate buffer (pH = 6.3) 

with a concentration of 150 mg/l of MNU (Toronto Research Chemicals Inc., North 

York, Canada) for 60 min. After exposure to MNU, fish were washed and kept in fresh 

water until appropriate time points. 

 

XX.2.3 Intraperitoneal Injection of BrdU 

Fish were anesthetized by immersion in 0.033% ethyl 3-aminobenzoate 

methanesulfonic acid (MS222; Sigma–Aldrich, MO, USA) in PBS, and 

intraperitoneally injected with 50 µl of 2.5 mg/ml BrdU (Sigma–Aldrich) at 0 (just after 

MNU treatment), 2, 4, 6, and 8 days post-treatment (dpt), as described previously (Ogai 

et al. 2012). 

 

XX.2.4 Preparing Retinal Sections 

At appropriate time points, fish were euthanized by an overdose (0.1%) of MS-222 for 

10 min followed by fixation with 4% paraformaldehyde in PBS overnight at 4°C. The 

cryosections of the retina were then prepared at 12-µm thickness as described 

previously (Ogai et al. 2012). 

 

XX.2.5 Hematoxylin–Eosin (HE) Staining 

HE staining was performed to observe the structure of the retina. Sections were stained 

with Mayer’s hematoxylin (Wako Pure Chemical Industries, Osaka, Japan) for 2 min 

followed by washing and counterstaining with 1% eosin-Y (Wako Pure Chemical 
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Industries) for 2 min. The cleared sections were then observed using a bright-field 

microscope (DS-Fi1c; Nikon Instech, Tokyo, Japan). 

 

XX.2.6 Immunohistochemistry 

The localization of proliferating cells was visualized by immunohistochemistry (Ogai et 

al. 2012). In brief, antigen retrieval was performed in 10 mM citrate buffer (pH = 6.0) 

for 5 min at 121°C or 2 M HCl for 30 min at 37°C for proliferating cell nuclear antigen 

(PCNA) or BrdU immunohistochemistry, respectively. Following washing and blocking, 

the sections were incubated with anti-PCNA (1:500; Sigma–Aldrich) or anti-BrdU 

(1:500; Sigma–Aldrich) antibody at 4°C overnight. Visualization was performed with 

Alexa Fluor 488-conjugated secondary antibody (1:500; Thermo Fisher Scientific, MA, 

USA) for 60 min at 23°C. Nuclear staining was performed by 2 µg/ml 

4′,6-diamidino-2-phenylindole (DAPI; Wako Pure Chemical Industries). The sections 

were then observed using a fluorescent microscope (DS-Fi1c). 

 

XX.2.7 Statistical analyses 

The data were presented as means ± standard error of the mean. The thickness of ONL 

and the number of PCNA+ cells were analyzed by one-way analysis of variance 

followed by Tukey’s post hoc test using SigmaPlot (version 12; Systat Software, Inc., 

CA, USA). A p value of <0.05 was considered statistically significant. 

 

XX.3 Results 



 6 

XX.3.1 MNU treatment selectively depleted outer nuclear layer (ONL) in zebrafish 

retina 

First, to confirm the effect of MNU on the zebrafish retina, we obtained retinal sections 

at 0 (control), 3, 5, 8, 16, 24, and 32 dpt and stained using the HE method. As a result of 

MNU treatment, the collapse of ONL was observed from 3 to 8 dpt followed by a 

regeneration of ONL by 32 dpt (Fig. XX.1) in the same manner as previously reported 

(Tappeiner et al. 2013). 

 

XX.3.2 MNU treatment induced cell proliferation in the inner nuclear layer (INL) in 

zebrafish retina 

Next, to show cell proliferation after MNU treatment, we stained the sections with 

PCNA at the same time points as in HE staining. As a result of PCNA staining after the 

MNU treatment, we observed a massive cell proliferation in INL, putatively Müller 

cells, within a week that peaked at 5 dpt (Fig. XX.2). 

 

XX.3.3 Regenerating photoreceptors were derived from proliferating Müller cells 

after MNU treatment 

Given that a massive cell proliferation was observed within a week after MNU 

treatment and photoreceptor regeneration took place from 10 to 30 dpt, we theorized 

that regenerating photoreceptors may originate from proliferating Müller cells. To test 

this theory, we injected BrdU at 0, 2, 4, 6, and 8 dpt (pulse) to label proliferating cells 

within 8 days after MNU treatment when the massive Müller cell proliferation was 
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observed (Fig. XX.2). This was followed by BrdU detection at 32 dpt (chase; Fig. 

XX.3a) when ONL was reconstructed (Fig. XX.1). As a result of the BrdU pulse-chase 

experiment, we could see a number of BrdU+ cells in ONL, as well as INL at 32 dpt 

(Figs. XX.3b, c). 

 

XX.4 Discussion 

Whether genetic or non-genetic (i.e., hereditary or acquired), RD can result in a serious 

visual loss, which damages the quality of life (Mitchell and Bradley 2006). By using a 

zebrafish RD model that is capable of regenerating lost photoreceptors, it may be 

possible to understand not only the degenerative but also the regenerative mechanisms 

underlying RD. Very recently, Tappeiner et al. (2013) proposed a novel RD model 

utilizing MNU in zebrafish. MNU has been widely used in RD research in rodents for 

more than a couple of decades (Smith et al. 1988; Koriyama et al. 2014). MNU can 

selectively, uniformly, reproducibly, and at any time kill photoreceptors in the retina, 

which makes it simpler to produce RD models than genetic and/or light-injury RD 

models (Fausett and Goldman 2006; Pennesi et al. 2012). 

 In this study, we showed that MNU could kill photoreceptors characterized by 

the reduction of ONL thickness and that a massive proliferation of Müller cells was 

observed after MNU treatment, which is consistent with the previous findings 

(Tappeiner et al. 2013), with a few exceptions. In a previous study, the cell count of 

ONL significantly dropped only at 8 dpt, whereas in this study we observed a 

significant thinning of ONL from 3 to 15 dpt. This discrepancy may be explained by the 
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difference in the method of ONL quantification. The previous study used the cell count 

of ONL, whereas in this study we used the thickness of ONL. Thinning of ONL occurs 

not only by cell loss, but also by the reduction of cell size and cell-to-cell distance. 

However, the cell size and the distance between cells after MNU treatment appeared 

comparable to that of the control retina (Figs. XX.1a–c). Therefore, we can assume that 

photoreceptors were indeed lost in this study.  

Another difference with the previous study is in time course of cell 

proliferation. Tappeiner et al. (2013) reported that cell proliferation in INL peaked at 8 

dpt, whereas in this study cell proliferation was most active at 5 dpt (Figs. XX.2b, c). At 

this point, it is difficult to explain the lag in cell proliferation. It is however certain that 

considerable and rapid proliferation of Müller cells occurs within a week after MNU 

treatment. 

 This study further showed that proliferating Müller cells may be a source of 

regenerating photoreceptors, as a number of BrdU+ cells were observed in ONL as well 

as INL (Fig. XX.3). This implies that some of the proliferating Müller cells may migrate 

and differentiate into new photoreceptors (Nagashima et al. 2013), whereas others may 

remain Müller cells to maintain retinal stem-cell burden and retinal structure. 

 Notably, in mammalian MNU-induced RD models, Müller cell proliferation 

took place from 3 to 7 days after MNU treatment but showed no signs of photoreceptor 

regeneration (Taomoto et al. 1998). It is possible that the major difference in the ability 

of photoreceptor regeneration between fish and mammals may be laid in the ability of 

migration and/or differentiation into photoreceptors rather than Müller cell proliferation. 
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Therefore, we hope that investigating such differences in the migration/differentiation 

abilities of Müller cells may add new insight into therapeutic advances in the treatment 

of RD in the future. 
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Figure Captions 

Fig. XX.1 Changes in ONL thickness after MNU treatment in adult zebrafish. (a–c) 

Representative images of HE staining following MNU treatment. At 8 dpt, the thickness 

of ONL was significantly thinner (b) than control retina (a). The retinal structure at 32 

dpt (c) was comparable to control retina (a). (d) Quantification of ONL thickness; n = 3 

each, *p < 0.01, **p < 0.001. OPL: outer plexiform layer, IPL: inner plexiform layer, 

GCL: ganglion cell layer. Scale bar in (a), 10 µm. 

 

Fig. XX.2 Cell proliferation in zebrafish retina following MNU treatment. (a, b) 

Representative images of PCNA immunohistochemistry. In control retina, few PCNA+ 

cells were observed in INL (a), whereas a number of PCNA+ cells were observed at 5 

dpt (b). (c) Quantification of PCNA+ cells after MNU treatment; n = 3 each, *p < 0.01, 

**p < 0.001. Scale bar in (a), 10 µm. 

 

Fig. XX.3 Fate of proliferating cells following MNU treatment. (a) Experimental setup. 

At 0, 2, 4, 6, and 8 dpt, BrdU was intraperitoneally injected to label proliferating cells 

during this period. At 32 dpt when the retinal structure was restored (Fig. XX.1), 

immunohistochemistry was performed against BrdU. (b, c) Representative images of 

BrdU immunohistochemistry. A number of BrdU+ cells were observed in ONL as well 

as INL. Note that the retinal structure was comparable to control retina (Fig. XX.1a). 

Scale bar in (b), 10 µm. 
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Fig. 3 


