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  Abstract 

In this study, the response to DNA damage during mitosis was visualized using fluorescent 

protein-based real-time imaging of 53BP1 linked to GFP (GFP-53BP1) focus formation by the 

fusion protein in the MiaPaCa2 Tet-On Advanced cell line. To observe 53BP1 foci during mitosis, 

MiaPaCa2Tet-On GFP-53BP1 cells were observed every 30 minutes with the FV1000 confocal laser 

microscope (Olympus Corp., Tokyo, Japan). Time lapse imaging demonstrated that 11.4 ± 2.1% of 

the mitotic MiaPaCa2Tet-On GFP-53BP1 cells formed 53BP1 foci. Non-mitotic cells did not have an 

increase in GFP-53BP1 focus formation. Time lapse imaging showed that MiaPaCa2Tet-On 

GFP-53BP1 cells with 53BP1 foci formation lead withdrawal of mitosis and induced apoptosis. 

These results indicate that DNA strand breaks occur during mitosis and can be repaired, at least to 

some extent. This is the first report of time-lapse imaging, which demonstrated increased expression 

of 53BP1 during mitosis and cell death after the increase of 53BP1. Time lapse imaging of 53BP1 

labelled by GFP can be useful tool for the evaluation of response to DNA damages.  

 

Introduction 

Genome integrity is continuously challenged by DNA lesions. These lesions are induced by radiation 

and toxic environmental chemicals, and also occur as byproducts of normal cell metabolism or DNA 

replication [Jackson, 2009]. Genome integrity is preserved by DNA damage signaling and repair 

machineries, which prevent the adverse consequences of DNA lesions and prevent their transmission 



to daughter cells [Hoeijmakers, 2001]. DNA double-strand breaks (DSB) are the most deleterious 

form of DNA damage because they do not leave an intact complementary strand to be used as a 

template for DNA repair. DSBs are generated in response to ionizing radiation (IR) or radiomimetic 

drugs by free radical attack of deoxyribose, and also arise in cells treated with topoisomerase II 

inhibitors that prevent religation of DNA strands broken by topoisomerase II activity. DSBs can also 

form upon replication of DNA molecules containing other DNA lesions, such as DNA 

SSBs [Jackson, 2009]. In the treatment of malignant tumors, DNA-targeting treatments, which 

include various anticancer drugs and radiation therapy, induce DSBs in DNA of cancer cells. DSB 

induces DNA damage response (DDR) in the injured cancer cells. Successful repair of the injured 

DNA enables the cancer cells to survive and to grow with resistance to the treatment. DDR 

comprises a network of pathways that coordinate cellular reactions to DNA damages. H2AX 

phosphorylation on Ser139 (called γ-H2AX) has been shown to be an early step in the response of 

cells to DNA damage [Rogakou et al., 1998]. Phosphorylation of H2AX to γ-H2AX at DSBs 

promotes further chromatin modifications such as MRE11/RAD50/NBS1, MDC1, BRCA1, and p53 

binding protein 1 (53BP1) [Bonner et al., 2008; van Attikum et al., 2009]. Therefore, the observation 

of γ-H2AX has become a common approach to detect the presence of DSBs. On the other hand, 

53BP1, which was originally identified in a yeast two-hybrid screen looking for proteins that interact 

with the p53 tumor suppressor [Iwabuchi et al., 1994], has various key roles in DNA repair response 

and checkpoint control (Fig. 1). Like γ-H2AX, 53BP1 has been shown to relocalize into foci at 

DSBs site shortly after the damages and is an important sensor of DNA damage. Furthermore, 

53BP1 is required for the phosphorylation of numerous ATM (ataxia-telangiectasia mutated) 

substrates during DSB response [Abraham RT, 2002]. Cells lacking 53BP1 are sensitive to DNA 

damaging agents and have defects in both S-phase and G2/M checkpoints [Fernandez-Capetillo, 

2002]. 

Our laboratory pioneered in vitro and in vivo imaging with fluorescent proteins [Chishima 

et al., 1997; Yang et al., 2000; Hoffman, 2005]. Imaging with fluorescent proteins enables 

visualization of cellular and subcellular dynamics including cancer metastasis, cell cycle event, and 

apoptosis. Herein, by exploiting GFP fused to the chromatin-binding protein of 53BP1 as a live-cell 

imaging marker for DNA repair, 53BP1 foci were observed as an early marker of response to DNA 

damage during mitosis in MiaPaCa2 human pancreatic cancer cells. This study determined the 

fragility of the DNA during mitosis by imaging of 53BP1 foci formation as a marker of response to 

DNA damage.  

 

Materials and Methods 

Cell cultures and constructs 

GFP fused to the human 53BP1 IRIF binding domain was cloned into the pLVX-Tight-Puro 



lentivival vector (Clontech), transduced into the MiaPaCa2 Tet-On Advanced cell line (Clontech), 

and cultured in high-glucose DMEM (Invitrogen) with 10% Tet system-approved fetal bovine serum 

(Clonetech) [Efimova, 2010]. MiaPaCa2 Tet-On Advanced is certified by Clontech as derived from 

MiaPaCa2 (American Type Culture Collection) by viral transduction and was used without further 

authentication. After induction for 48 h with 1 μg/mL doxycycline (Sigma), GFP-positive cells were 

sorted to establish a stable MiaPaCa2Tet-On GFP-53BP1 cell line. 

 

Mice  

Transgenic nude C57/B6-RFP mice (RFP nude mice) were used in this study [Yang, 2009]. Mice 

were bred and maintained in a barrier facility under HEPA filtration at AntiCancer, Inc. (San Diego, 

CA, USA). Mice were fed with an autoclaved laboratory rodent diet. All animal studies were 

conducted in accordance with the principles and procedures outlined in the National Research 

Council’s Guide for the Care and Use of Laboratory Animals under PHS Assurance Number 

A3873-01. 

 

Fluorescent imaging of 53BP1 foci formation during mitosis 

MiaPaCa2Tet-On GFP-53BP1 cells were seeded in 35 mm dishes and treated with 1 μg/mL 

doxycycline for 48 h. To observe the cellular response to DNA damage by 53BP1, MiaPaCa2Tet-On 

GFP-53BP1 cells were observed every 30 min by the FluoView FV1000 confocal laser microscope 

(Olympus Corp., Tokyo, Japan). High-resolution images were captured directly on a personal 

computer (Fujitsu Siemens Computers, Munich, Germany). Images were analyzed with the use of 

Cell® software (Olympus Biosystems). 

 

Evaluation of 53BP1 foci formation in MiaPaca2Tet-On GFP-53BP1 cells. 

To evaluate the 53BP1 foci formations, MiaPaCa2Tet-On GFP-53BP1 cells were divided into 

foci-positive cells and foci-negative cells according to number of the foci [Miwa, 2013, Uehara, 

2014]. The cells which showed 5 or more foci were considered as positive cells. The experimental 

data are expressed as the mean ± SE.  

 

Fluorescent imaging of 53BP1 foci formation in vivo 

RFP nude mice were anesthetized with a ketamine mixture (10 µl ketamine HCl, 7.6 µl xylazine, 2.4 

µl acepromazine maleate, and 10 µl H2O). An arc-shaped incision was made in the abdominal skin, 

and the subcutaneous connective tissue was separated to free the skin flap without injuring the 

epigastric cranialis artery and vein. MiaPaCa2Tet-On GFP-53BP1 cells (1 × 106 cells in 5 µl Matrigel) 

were implanted in skin flap of RFP nude mouse [Yamauchi, 2006]. Three days after the implantation, 

2 mg/mL doxycycline was added to the drinking water for 48 h. Then, 53BP1 foci formations were 



in the tumor were observed by FV1000.  

 

Results 

Distribution of 53BP1 expression in MiaPaCa2Tet-On GFP-53BP1 cells.  

To observe response to DNA damage in cancer cells, MiaPaCa2Tet-On GFP-53BP1 cells were treated 

with 1 μg/mL doxycycline for 48 h (Fig. 2). Then, 53BP1 foci were observed with FV1000. Only a 

part of the cells showed strong expression of 53BP1 (Fig. 3). Fluorescent imaging of MiaPaCa2Tet-On 

GFP-53BP1 cells revealed that 2.8 ± 0.8% of the cells were foci positive, and 81.5 ± 11.3% of the 

foci positive cells showed mitotic change, including symmetric nuclei and two nuclei in each cells. 

Overexpression of 53BP1 in symmetric nuclear cells and binuclear cells suggested that response to 

DNA damage frequently occurs during mitosis. 

 

Time-lapse imaging of 53BP1 expression during mitosis in MiaPaCa2Tet-On GFP-53BP1 cells. 

To visualize time course of the responses to DNA damage in cancer cells, MiaPaCa2Tet-On 

GFP-53BP1 cells were treated with 1 μg/mL doxycycline for 48 h. Then, 53BP1 foci were observed 

every 30 min with FV1000 for 24 h. Time-lapse single cell imaging of MiaPaCa2Tet-On GFP-53BP1 

cells demonstrated that 53BP1 foci were increased in mitotic phase (Fig. 4, Video 1), and the 

increased foci formation lasted after the mitosis. The increased expression of 53BP1 during mitosis 

indicates that DNA repair is needed during replication of DNA. Furthermore, time-lapse imaging 

revealed cell death after the increased 53BP1 foci during mitosis. During the time-lapse imaging, 

mitotic changes were observed 1.1 ± 0.1 times in each cell, and apoptotic changes were observed in 

7.3 ± 1.9% of the cells during the 24 h. During the time-lapse imaging, foci formations of 

GFP-53BP1 were observed in 11.4 ± 1.2% of the mitotic cells during the 24 h.  

 

Refusion of 53BP1 expressing nuclei during mitosis. 

Time-lapse imaging of 53BP1 foci formation using MiaPaCa2Tet-On GFP-53BP1 cells demonstrated 

division of 53BP1 foci-positive nucleus, reunion of the divided nuclei, and induction of 

apoptosis (Fig. 5, Video 2). This phenomenon indicates that response to DNA damage is activated 

during mitosis, and that fatal DNA damage leads withdrawal of mitosis and apoptosis. It is 

considered that DNA damage signaling from unrepairable lesions can activate apoptosis or can 

trigger cell cycle withdrawal to prevent spread of aberrant DNA [Giunta S, 2011]. Our time-lapse 

imaging of 53BP1 visualized the phenomenon of withdrawal of mitosis and induction of apoptosis 

by fetal DNA damage.  

 

Fluorescent imaging of 53BP1 foci formation in vivo 

To observe the DNA damage response in vivo, MiaPaCa2Tet-On GFP-53BP1 cells (1 × 106 cells in 5 



µl Matrigel) were implanted in skin flap of RFP nude mouse [Yamauchi, 2006]. Five days after the 

implantation, the skin flap was opened and 53BP1 foci formations were observed by FV1000. 

Fluorescent imaging demonstrated that a large number of 53BP1 foci were formed in the tumor (Fig. 

6). This result indicates that the DNA damage and repair are constantly repeated during the growth 

of tumor.  

 

Discussion 

Aberrant or damaged DNA commonly occurred by free radical, ultraviolet light, and replication of 

DNA. To prevent the spread of the abnormal DNA, the abnormal site of DNA is detected and 

repaired. DNA repair is tightly coordinated with cell cycle progression through the activation of 

orchestrated signaling pathways that are often termed DNA damage checkpoints [Harrison, 2006]. In 

response to unrepaired DNA damage, these pathways delay or stop the cell cycle at critical stages 

before or during DNA replication (G1/S and intra-S checkpoints) and cell division (G2/M 

checkpoint), thereby preventing duplication and segregation of damaged DNA. The rapid 

ubiquitination of chromatin surrounding DNA double-stranded breaks (DSB) recruit many DNA 

damage response (DDR) proteins. 53BP1, one of the pivotal DDR proteins, is an important sensor of 

DNA damage, and forms foci at DSB sites shortly after the damage of DNA. It is known that 53BP1 

functions downstream of γH2AX-dependent hierarchy of proteins that collectively establish IRIF at 

DSB sites. This hierarchy includes the Mre11/Rad50/NBS1 (MRN) complex, ATM, MDC1, RNF8, 

RNF168 and HERC2 [Lavin et al., 2008; Stewart et al., 2009; Doil et al., 2009; Bekker-Jensen et al., 

2010]. In this study, 53BP1, one of the most important DDR proteins was visualized and observed 

by time-lapse imaging system. During single cell time-lapse imaging, increased 53BP1 foci were 

observed just before mitosis, and the 53BP1 foci lasted until next mitosis. Our time-lapse imaging of 

53BP1 foci enabled the observation of fate, and is useful tool for the evaluation of response to DNA 

damages. To elucidate mechanisms of regulation of early response to DNA damages, single cell 

time-lapse imaging of DDR proteins using fluorescent proteins can greatly contribute to the 

investigation.  
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Figure legend  

Figure 1. Effects of 53BP1 on maintenance of genomic stability.  

53BP1 bound to damaged chromatin carries out several functions. Upon DNA double strand breaks 

(DSBs), 53BP1 rapidly redistributes from a diffuse nuclear localization to discrete foci that 

co-localize with phosphorylated histone H2AX and other repair proteins including BRCA1 [Schultz, 

2000; Ward, 2003]. 53BP1 function is also required for class-switch recombination and has been 

implicated in non-homologous end-joining (NHEJ) [Ward, 2004; Xie, 2007]. Overexpression of 

dominant-negative 53BP1 construct suppressed NHEJ and increased frequency of HR-mediated 

repair, suggesting 53BP1 is involved in regulating the choice between NHEJ and HR-mediated 

repair of DNA DSBs [Xie, 2007].  



 

Figure 2. MiaPaCa2Tet-On GFP-53BP1 cells.  

a. Diagram of 53BP1 IRIF binding domain reporter which includes a glycine-arginine rich (RG) 

motif, tandem Tudor (T) domains, a nuclear localization sequence (NLS), and two BRCT domains. 

The GFP-IBD construct incorporates a tetracycline-responsive element (TRE), green fluorescent 

protein (GFP) and the 53BP1 RG motif, tandem Tudor domains, and NLS.  

b. 53BP1 foci positive and negative cells. The cells were divided into foci-positive and foci-negative 

cells according to the number of foci. The cells which had 5 or more foci were considered as foci 

positive cells [Miwa, 2013]. 

 

Figure 3. Distribution of 53BP1 foci in MiaPaCa2Tet-On GFP-53BP1 cells. 

MiaPaCa2Tet-On GFP-53BP1 cells were seeded in 35 mm dish and treated with 1 μg/mL doxycycline 

for 48 h. Then, 53BP1-foci formations were observed by FV1000. Small part of the cells showed 

positive foci formation of 53BP1. Large part of the foci-positive cells showed two nuclei or 

symmetrical form of foci-positive nuclei.  

 

Figure 4. Time-lapse imaging of 53BP1 during mitosis in MiaPaCa2Tet-On GFP-53BP1. 

MiaPaCa2Tet-On GFP-53BP1 cells were seeded in 35 mm dish and treated with 1 μg/mL doxycycline 

for 48 h. Then, 53BP1-foci formations were observed every 30 min for 24 h by FV1000 

(Supplementary movie 1). Time-lapse imaging demonstrated that only a small part of the cells 

formed 53BP1 foci during mitosis (arrows), and the foci formation continued after the mitosis, and 

that one of the foci positive cell induced apoptosis (solid arrow). Formations of 53BP1 foci were 

increased in mitotic phase, and the increased foci formation lasted after the mitosis.  

 

Figure 5. Time-lapse imaging of withdrawal of mitosis and induction of apoptosis in 

MiaPaCa2Tet-On GFP-53BP1 cells with increased expression of 53BP1. 

MiaPaCa2Tet-On GFP-53BP1 cells were seeded in 35 mm dish and treated with 1 μg/mL doxycycline 

for 48 h. Then, 53BP1-foci formations were observed every 30 min for 24 h by FV1000 

(Supplementary movie 2). Time-lapse imaging demonstrated that 53BP1 foci-positive cell (arrow) 

divided the nucleus (7–8 h), but the divided nuclei fused again (9 h), and the cell induced apoptosis 

(15 h). This time-lapse imaging showed that fatal DSBs occurring during mitosis lead cell cycle 

arrest and withdrawal of the mitosis.  

 

Figure 6. Fluorescent imaging of 53BP1 foci formation in vivo. 

RFP nude mice were anesthetized with a ketamine mixture (10 µl ketamine HCl, 7.6 µl xylazine, 2.4 

µl acepromazine maleate, and 10 µl H2O). An arc-shaped incision was made in the abdominal skin, 



and the subcutaneous connective tissue was separated to free the skin flap without injuring the 

epigastric cranialis artery and vein. MiaPaCa2Tet-On GFP-53BP1 cells (1 × 106 cells in 5 µl Matrigel) 

were implanted in skin flap of RFP nude mouse [Yamauchi, 2006]. Three days after the implantation, 

2 mg/mL doxycycline was added to the drinking water for 48 h. Then, 53BP1 foci formations were 

in the tumor were observed by FV1000. 
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