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Abstract 18 

A small and wireless device that can capture the temporal pattern of perspiration by a novel 19 

structure of water vapor collection combined with reusable desiccant has been developed. The 20 

novel device consists of a small cylindrical case with a temperature/relative humidity sensor, 21 

battery-driven data logger, and silica gel (desiccant). Water vapor of perspiration was detected 22 

by the change in relative humidity and then adsorbed by silica gel, allowing continuous 23 

recording of perspiration within a closed and wireless chamber, which has not been previously 24 

achieved. By comparative experiments using the commercially-available perspiration 25 

monitoring device, the developed device could measure perspiration as efficiently as the 26 

conventional one, with a normalized cross coefficient of 0.738 with 6 s delay and the interclass 27 

correlation coefficient [ICC(2, 1)] of 0.84. These results imply a good agreement between the 28 

conventional and developed devices, and thus suggest the applicability of the developed device 29 

for perspiration monitoring. 30 
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1. Introduction 38 

Perspiration, or sweating, is one of the most fundamental phenomena in human physiological 39 

events. The main result of systemic sweating is cooling effect for thermoregulation by sweat 40 

evaporation [1], which is called “thermal sweating”. There is another type of sweating called 41 

“emotional (or mental) sweating.” Emotional stresses (e.g., rising tension, upset, and 42 

concentration) trigger sweating, particularly on the face, palm, and sole via sympathetic nervous 43 

tone [2-4]. To date, a number of diseases have been reported to be associated with sweating 44 

abnormalities such as thyroid diseases [5], dysautonomia [6], menopause [7], and social anxiety 45 

disorder [8]. In addition, the perspiration monitoring can be utilized for prediction or diagnosis 46 

of nervous disorders such as brachial plexus avulsion (BPA) [9] and reflex sympathetic 47 

dystrophy [10]. Especially, the monitoring of sympathetic activity such as perspiration might be 48 

important for the early diagnosis of obstetric BPA [11], because it is often difficult for neonates 49 

to express their symptoms verbally. In light of the possible applications of ubiquitous 50 

perspiration monitoring such as a prediction or diagnosis of perspiration-related disorders, a 51 

small, convenient, and sensitive device for perspiration monitoring has been desired. 52 

A skin conductance meter was used as an indirect method for estimation of sweating 53 

[12], and a simple humidity meter was employed to measure water evaporation from the skin 54 

[13,14]. Recently, wearable, adhesive, and tattoo-like sweat monitoring device have been 55 

proposed [15-17], although they are more intended for prediction of sweat electrolytes rather 56 

than perspiration amount, or they give an indirect index of perspiration. At this time the latest 57 

perspiration measurement device involves colorimetric detection by a digital camera, which 58 

requires special setup [18]. As a more direct measurement of water exchange, the vapor pressure 59 

diffusion method and ventilated chamber method were developed [19,20]. The vapor pressure 60 

method utilizes the theory that the amount of water exchange (F) in natural flow is calculated as 61 

F = D(p/x), where D is the temperature- and atmospheric pressure-dependent diffusion 62 

coefficient, p is the water vapor pressure, and x is distance from the surface [19]. Because p can 63 
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be calculated from relative humidity and temperature, at least four sensors [(humidity + 64 

temperature) × two points] are required. In addition, this method relies on the assumption that 65 

the state of the outer atmosphere is unchanging, which is unlikely in daily perspiration 66 

monitoring. To address this, a closed chamber system with water vapor condenser was proposed 67 

[21,22], although the coolant (Peltier device) is required and thus power consumption would be 68 

measurable. The theory of the ventilated chamber method is similar to that of the vapor pressure 69 

method, except this method uses forced and constant airflow. The constant airflow is injected 70 

into a small chamber adjacent to the skin, and the air with evaporated water vapor is collected in 71 

an outlet chamber. The amount of water exchange is then calculated with the airflow rate and 72 

difference of humidity between inlet and outlet air [19,20,23]. However, it is difficult to contain 73 

air ventilator and chambers in one small package such that it can be of practical use in daily life. 74 

Therefore, it was considered beneficial to develop a small device that could monitor 75 

perspiration and allow prediction of emotional and physiological status. 76 

 The aim of this study was to develop a small device for perspiration monitoring and 77 

compare its performance with a conventional sweat meter and stress analyzing method under 78 

conditions of mental stress. 79 

 80 

2. Materials and Methods 81 

2.1. Developed device 82 

Fig. 1 shows the exterior (Fig. 1A, B) and structure (Fig. 1C) of the developed device. A 83 

custom-made data logger circuit with battery, dry silica-gel (Wako Pure Chemical Industries, 84 

Ltd., Osaka, Japan), and a small temperature/relative humidity (T/RH) sensor (SHT-21, 85 

Sensirion AG, Zürich, Switzerland; accuracy of temperature is ±0.3°C, accuracy of relative 86 

humidity is ±2%, calibrated at Industrial Research Institute of Ishikawa, Japan) with a sampling 87 

rate of 1 Hz was encapsulated in this order in a small plastic chamber toward measuring 88 

windows facing the skin (Fig. 1C). 89 
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 90 

2.2. Perspiration rate calculation 91 

The theory of this equipment is based on the vapor pressure method [19,21] with modifications. 92 

Fig. 2 illustrates the method of perspiration measurement in the developed equipment. 93 

According to the Fick’s law of diffusion, the flux of water vapor J (g m−2 s−1) between two 94 

points can be calculated as Eq. (1): 95 

    
  

  
                        

where D (m2 s−1) is a diffusion coefficient of water vapor in the air, dH (g m−3) is a difference of 96 

concentration of water vapor, and dx (m) is a distance between two points. In the developed 97 

equipment, two different fluxes of water vapor: from the skin surface to the T/RH sensor (Fig. 98 

2A, green arrow; s–w), and from the sensor to the dry chamber (Fig. 2A, blue arrow; w–d), can 99 

be theorized. The flux difference between (s–w) and (w–d) could be detected as a change of 100 

humidity in T/RH sensor. The water exchange between the skin and silica gel via T/RH sensor 101 

should satisfy Eq. (2): 102 

 
      

  
          

    
           

  
    

        

  
                        

where V (m3) is a volume of wet chamber in which the T/RH sensor exists; H1(t), Hx(t), and H2 103 

(g m−3) are the concentrations (i.e., absolute humidity) of water vapor at the skin surface, T/RH 104 

sensor, and dry chamber, respectively; A1 and A2 (m2) are the areas of windows at (s–w) and 105 

(w–d) junctions, respectively; J1 and J2 are the fluxes of (s–w) and (w–d), respectively; L1 and 106 

L2 (m) are the distances of (s–w) and (w–d), respectively (Fig. 2A). H2 is assumed to be 107 

constant due to a buffering effect of desiccant (preliminary experiment is shown in Fig. S1). 108 

Because J1 in Eq. (2) simply represents the flux of total water vapor from the skin surface [i.e., 109 

perspiration and constant transepidermal water loss (TEWL)], the Eq. (2) can be solved for J1 as 110 

following Eq. (3): 111 
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where the rate of water vapor diffusion from the skin W(t) (g m−2 s−1) can be calculated only by 112 

measuring Hx(t) with T/RH sensor, as V, A1, A2, L2, and H2 are all considered fixed, and D(t) can 113 

be calculated by using following Eq. (4) under normal atmospheric pressure [24]: 114 

                                                 

where T(t) (K) is the temperature at the time t. 115 

Here, the fixed values were set to: V = 6.3 × 10−7 m3, A1 = 1.3 × 10−5 m2, A2 = 5.6 × 10−5 m2, L2 116 

= 5.0 × 10−3 m according to the equipment design, and H2 was estimated to be 1.7 g m−3 (Fig. 117 

S1). Finally, the perspiration Per(t) (mg cm−2 min−1) [20,23] can be calculated from W(t) by a 118 

simple conversion Eq. (5): 119 

                                    

because 1 g m−2 s−1 is equal to 6 mg cm−2 min−1. 120 

 The conversion from relative humidity h (%) to absolute humidity H (g m−3) was as 121 

following Eq. (6) based on the ideal gas law: 122 

  
       

  

 

   
                        

where Mw is the molecular weight of water (= 18.02 g mol−1), Ps(t) is the saturated water vapor 123 

pressure (kPa) at the temperature T (K), and R is the gas constant (R = 8.314 × 10−3 kPa m3 K−1 124 

mol−1), according to the American Society of Heating, Refrigerating and Air-Conditioning 125 

Engineers guidelines [25]. 126 

Because the change in water vapor flux includes constant water loss [26] and 127 

perspiration, a baseline subtraction has been employed. As shown in Fig. 2B, it is theorized that 128 

the baseline (i.e., lower envelope) and wave crests reflect the constant water loss and 129 

perspiration, respectively. To extract the perspiration pattern after the recording of water vapor 130 

flux, the difference between water vapor flux and the baseline was calculated by the embedded 131 

program in Origin software (version 2015; OriginLab Corp., MA, USA). 132 

 133 
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2.3. Verification of developed equipment 134 

The performance test, in which the direct water vapor was applied to the developed device, was 135 

first performed (for details see Fig. S2). For verification of the developed perspiration monitor 136 

and calculation method described above, the perspiration pattern obtained from the developed 137 

device and commercially available conventional sweat meter was compared as follows. First, 138 

five individuals for the test were employed after obtaining written informed consent. The two 139 

devices, both newly developed and conventional devices (SKD-1000, Skinos Co., Ltd., Nagano, 140 

Japan; nominal uncertainty is ±10% of measured value), were attached side-by-side to the palm 141 

of each individual, followed by simultaneous perspiration recording in a sitting position for 30 142 

min. After recording, the temporal changes of perspiration were compared using a normalized 143 

cross-correlation function (nCCF). The corresponding peak-to-peak values of perspiration 144 

patterns were analyzed by general Deming regression [27], absolute interclass correlation 145 

coefficient of two variables [ICC(2, 1)] [28,29], and Bland–Altman plot [30,31] to estimate the 146 

agreement of both devices. 147 

 148 

2.4. Measurement of perspiration evoked by sympathetic activity 149 

To determine if the developed equipment could detect perspiration under stress conditions, an 150 

experiment was conducted utilizing sympathetic activity. First, the developed device and skin 151 

potential sensor (NE-114A; Nihon Kohden Corp., Tokyo, Japan) were attached to their palm 152 

(Fig. 4A). Furthermore, they were requested to perform the following tasks: (1) take a deep 153 

inspiration 5 times at intervals of 1 min and (2) do a mental calculation (e.g., the subjects were 154 

orally requested to continuously subtract 7 from 100) for 5 min to evoke sympathetic activity 155 

that involves perspiration on the palm [32,33]. During the test, the perspiration and sympathetic 156 

skin response (SSR) on the palm were recorded [33]. These data were used to confirm if the 157 

developed device could detect perspiration by mental stress. 158 

 159 
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2.5. Ethical approval 160 

These protocols involving human subjects were approved by the Medical Ethics Committee of 161 

Kanazawa University (#553). 162 

 163 

3. Results 164 

3.1. Perspiration recording by the developed and conventional devices 165 

As a result of performance test, the developed device was confirmed to be able to measure the 166 

water exchange with an uncertainty of <±5% and a long-term stability of >4 h (Fig. S2). The 167 

representative temporal changes in perspiration recorded by the developed and conventional 168 

devices are shown in Fig. 3A, B (the baseline data were shown in Fig. S3). The comparable time 169 

profiles of perspiration in a steady state were observed (Fig. 3A, B). Perspiration pattern 170 

determined by the developed device was in good agreement with that of the conventional device 171 

[Fig. 3C; peak correlation coefficient of 0.738 at −6 s, and Fig. 3D; ICC(2, 1) of the 172 

corresponding peak-to-peak amplitudes was 0.84 with the 95% confidence interval (CI) of 173 

0.76–0.90]. The Bland–Altman plot revealed a fair agreement between both devices [Fig. 3E; 174 

bias = −0.0042 mg cm−2 min−1 (95% CI: −0.014–0.0056) with the limits of agreement −0.087 to 175 

0.079]. These results imply that the developed device could capture perspiration as efficiently as 176 

the conventional one. The other subjects showed similar results (data not shown). 177 

 178 

3.2. Detection of palmar perspiration evoked by the sympathetic activity using the developed 179 

device 180 

Furthermore, whether the developed device could capture the onset of perspiration was tested. 181 

To test this, sympathetic activation that is related to palmar sweating [32,33] was utilized. For 182 

measurement of sympathetic activity, the palmar SSR was recorded at the same time that 183 

perspiration was measured (Fig. 4A). With these sensors, subjects were requested to perform 184 

two tasks (a deep inspiration and mental calculation) to evoke sympathetic activity. During the 185 
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stress test, the palmar SSR suggested substantial reactions according to the stressor (Fig. 4B, 186 

SSR). In the same manner, palmar perspiration recorded by the developed device showed a 187 

stress-induced pattern with good agreement with the SSR (Fig. 4B, perspiration). From these 188 

results, it is plausible that the developed device can indeed capture the onset of perspiration. The 189 

other subjects showed similar results (data not shown). 190 

 191 

4. Discussion 192 

The aim of this research was to develop a small device for perspiration monitoring. To achieve 193 

this, a small, stand-alone temperature and relative humidity sensor used to calculate absolute 194 

humidity was designed, allowing wireless monitoring of water exchange with a small exterior. 195 

In addition, a novel closed-chamber system with silica gel allowing constant measurement 196 

independent from the ambient condition was introduced. The developed sensor for perspiration 197 

monitoring was validated in human subjects by a comparison of the conventional and developed 198 

devices and by concurrent monitoring of sympathetic activity-related perspiration. 199 

 In this study, a modification of the vapor pressure method [19] was utilized. In the 200 

conventional vapor pressure method, water exchange on the skin (i.e., constant water loss and 201 

perspiration) can be detected as the natural flow of water vapor. However, the flow from the 202 

skin to ambient air is dependent on outer air conditions such as temperature and humidity, i.e., 203 

the previous method would be deeply affected by the nature of outer atmosphere. Thus, a 204 

combination of a closed chamber with enforced ventilation has been developed [20,23,34]. 205 

These combined methods use dehumidified nitrogen or ventilation pumps, which could hamper 206 

daily monitoring of perspiration patterns. To address these limitations, a closed-chamber filled 207 

with silica gel above the T/RH sensor was developed (Figs. 1 and 2). In this system, the 208 

adsorption of water vapor into silica gel generates a natural but constant flow of water vapor. 209 

Under such a constant flow, the T/RH sensor below the silica gel can constantly measure the 210 

water exchange without the interference of ambient air in a small and wireless exterior (Figs. 1 211 
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and 2). 212 

 In principle, the developed device is relying on the consistency of humidity in a 213 

desiccant-filled chamber [H2 in Fig. 2A and Eq. (3)]. According to the preliminary study, the 214 

variability of relative humidity in a silica gel-filled chamber was small (Fig. S1; about 1–2 g 215 

m−3) and can be considered static when compared to the change of humidity in a wet chamber 216 

facing to the skin (about 15–30 g m−3). The change of H2, therefore, could be negligible. That 217 

said, a dual T/RH sensor system (one sensor is in a wet chamber, the other is in a 218 

desiccant-filled one) would increase an accuracy of perspiration measurement by eliminating 219 

the small fluidity of H2, although the power consumption would be doubled and thus, 220 

measurable time would be halved. 221 

Water evaporation from the skin includes constant water loss [26] and perspiration. 222 

Among them, perspiration was particularly focused because a number of diseases are associated 223 

with perspiration abnormalities [5-8,35-41]; therefore, monitoring of perspiration would be 224 

considered beneficial for health. Because the water exchange measured by the developed device 225 

includes both constant water loss and perspiration, a baseline subtraction (Fig. 2B) was adopted 226 

to extract perspiration. In this method, it was theorized that the baseline indicates constant water 227 

evaporation, while the “crests” reflect perspiration. As a result of developed methods, 228 

comparable perspiration profiles were obtained between conventional and developed devices 229 

(Fig. 3). The high cross correlation (nCCR = 0.738) and interclass correlation coefficient of the 230 

peak-to-peak values [ICC(2, 1) = 0.84] indicate the considerable agreement between the 231 

conventional and developed equipment (Fig. 3). In addition, the developed device could detect 232 

perspiration evoked by mental stress (Fig. 4) like as the conventional device [32,33], which 233 

further adds to the applicability of this system for perspiration monitoring. 234 

It should be noted, however, that there are some limitations with respect to the 235 

developed device. 236 

First, the developed device cannot detect constant water loss (e.g., TEWL) that the 237 
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conventional device can measure (note the baseline shift of perspiration profiles in Fig. 3A). 238 

This is because of the baseline subtraction introduced in this study (Fig. 2B). In principle, the 239 

information about constant water loss including TEWL was eliminated by baseline subtraction. 240 

The data of baseline themselves might have information on TEWL, although further analysis 241 

about the baseline data would be required. 242 

Second, the perspiration amount (i.e., the peak-to-peak amplitude of perspiration 243 

profiles) did not always correspond between conventional and developed devices, especially at 244 

higher values (Fig. 3D, E). The slight difference could be explained by the uncertainty of each 245 

variable in Eq. (3) used for perspiration calculation. Although we have determined the overall 246 

variability as being <5% (Fig. S2), the uncertainty of each variable such as Hx(t) and H2, which 247 

has not been estimated in this study, is also the seed of error. A more accurate measurement 248 

could be achieved by incorporating such errors, although the calibration of the T/RH sensor and 249 

the performance test should be enough for general perspiration monitoring. The difference could 250 

also be explained by the responding speed of the T/RH sensor. The sensor used in this study 251 

(SHT-21) has a time constant of 8 s, corresponding to the delay of approximately 8 s in the 252 

output. It is also possible that there is a speed limit of water vapor adsorption in the silica gel. It 253 

is plausible, therefore, that the large and sharp spike of perspiration might not be appropriately 254 

detected by the T/RH sensor because of the sensing delay and/or adsorption speed limit. Indeed, 255 

the perspiration pattern recorded by the developed device reported slightly delayed (6 s) data 256 

compared to the conventional one (Fig. 3C), the waveform of the developed device was blunter 257 

than that of the conventional device, and the response against the decrease of perspiration is 258 

slower than that of the perspiration onset (Fig. 3A, B). Third, the saturation of desiccant would 259 

be a problem. The silica gel used in the device (about 4 g) can capture up to about 1.2 g of water 260 

vapor (i.e., about 30% of its own weight) at body temperature [42]. This capacity could be 261 

sufficient to capture water vapor for >900 minutes if the constant 10 mg cm−2 min−1 water vapor 262 

evaporation is simulated, which is beyond the observed perspiration plus water loss (Figs. 3A 263 
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and S3). In addition, the performance test has proved that at least 4 h continuous water vapor 264 

adsorption did not affect the readout value of the device (Fig. S2). Therefore, the saturation of 265 

desiccant in the developed device would be considered negligible. 266 

 Despite these drawbacks, the developed device could measure perspiration profiles 267 

in an easy and convenient way, which may be suitable for daily monitoring of perspiration. The 268 

next goal should be to confirm the more precise estimation of perspiration amount for 269 

diagnostic purpose, to analyze the baseline data which may contain the information about 270 

TEWL, and to explore the applicability of the device at various positions on the body; 271 

nonetheless the detection of perspiration at anterior chest has been already confirmed (data not 272 

shown). 273 

In conclusion, a small and wireless device was developed to capture the temporal 274 

pattern of perspiration using a novel method of water vapor collection combined with a reusable 275 

desiccant. With further refinement, this system could be applicable for daily perspiration 276 

monitoring, and could predict the onset of the diseases related to perspiration abnormalities. 277 
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 394 

Figure legends 395 

Figure 1 Outline of the developed device. (A, B) Exterior of the device. A small plastic cylinder 396 

(A) contains a temperature/relative humidity (T/RH) sensor, electric boards, and silica gel (B). 397 

(C) Schematic of the device. 398 

 399 

Figure 2 Principles of perspiration monitoring. (A) In this system, two different water vapor 400 

fluxes were theorized: from the skin surface to the wet chamber (green arrow; s–w), and from 401 

the wet chamber to the dry chamber (blue arrow; w–d). The perspiration with constant water 402 

loss can be obtained by the calculation of water vapor flux from the skin surface (green arrow). 403 

(B) After obtaining the temporal data of water vapor flux, the baseline subtraction was 404 

introduced to separate perspiration and constant water loss. 405 

 406 

Figure 3 Comparison of the temporal patterns of perspiration. (A) Perspiration patterns 407 

obtained by the conventional (upper) and developed (lower) devices are shown. (B) These 408 

devices showed similar patterns of perspiration. (C) The normalized cross correlation function 409 

(nCCF) of these devices. Note a good correlation (0.738) between the conventional and 410 

developed devices with a short delay (−6 s). (D, E) Agreement of peak-to-peak values by the 411 

two devices. (D) Scatter plot of conventional (x-axis) and developed (y-axis) devices with linear 412 

Deming regression (red line) and 95% prediction interval (PI). These devices showed a good 413 

agreement, with a high absolute interclass correlation coefficient [ICC(2, 1) = 0.84]. A blue line 414 

indicates complete agreement. (E) Bland–Altman plot with the limits of agreement (bias = 415 

−0.0042 mg cm−2 min−1 with the limits of agreement −0.087 to 0.079). 416 

 417 

Figure 4 Detection of sympathetic palmar perspiration. (A) Experimental condition: the subject 418 

was requested to attach the developed device and sensors of sympathetic skin response (SSR) 419 
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side-by-side followed by maintaining a rest position. (B) Representative data of the SSR and 420 

palmar perspiration. SSR activity was observed by deep inspiration and mental calculation. The 421 

developed device could successfully record palmar perspiration in response to the SSR. 422 

 423 

Figure S1 The humidity change in wet and dry (desiccant) chambers. Although these data were 424 

separately obtained in the same condition, a very small change of absolute humidity in a dry 425 

chamber (B) compared to the wet one (A) should be noted. 426 

 427 

Figure S2 The performance test of the developed device. In the test, the developed device was 428 

placed over the cylindrical water tank with a polytetrafluoroethylene (PTFE) sealant (A) in the 429 

temperature-controlled room. The constant and massive water vapor was created by heating the 430 

tank at 35°C, and the recording of water vapor flux was performed. As a result, about 4 h 431 

continuous recordings could be achieved (B). The uncertainty of the calculated water vapor rate 432 

was less than ±5% for ~4 h (average = 14.89 g m−2 min−1, min–max = 14.54–15.55; 433 

corresponding to −2.3–+4.4% error against the average). After the experiment, the weight 434 

change of the silica gel (i.e., the amount of water transfer) was 108 mg, whereas the integral of 435 

calculated water vapor flux was 103.47 mg for 4 h; the error was −4.2% of the actual value (B). 436 

 437 

Figure S3 The baseline data used in Fig. 3A. 438 
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