
Foxp2 Regulates Identities and Projection
Patterns of Thalamic Nuclei during Development

言語: eng

出版者: 

公開日: 2017-12-05

キーワード (Ja): 

キーワード (En): 

作成者: 

メールアドレス: 

所属: 

メタデータ

http://hdl.handle.net/2297/48421URL



 1 

Foxp2 regulates identities and projection patterns of 

thalamic nuclei during development 

 

Haruka Ebisu1,2,3,4, Lena Iwai-Takekoshi4, Eriko Fujita-Jimbo5, Takashi Momoi6, and Hiroshi 

Kawasaki1,2,4 

 

1 Department of Medical Neuroscience, Graduate School of Medical Sciences, Kanazawa 
University, Ishikawa 920-8640, Japan 
2 Brain/Liver Interface Medicine Research Center, Kanazawa University, Ishikawa 920-8640, 
Japan 
3 Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo 
113-0033, Japan 
4 Department of Molecular and Systems Neurobiology, Graduate School of Medicine, The 
University of Tokyo, Tokyo 113-0033, Japan 
5 Department of Pediatrics, Jichi Medical University, Tochigi 329-0498, Japan 
6 Department of Pathophysiology, Tokyo Medical University, Tokyo 160-8402, Japan 
 
 
Running Title: Foxp2 in thalamic patterning 
 
 
 
Address correspondence to  
Hiroshi Kawasaki, MD, PhD 
Department of Medical Neuroscience 
Graduate School of Medical Sciences 
Kanazawa University 
Takara-machi 13-1, Kanazawa, Ishikawa 920-8640, Japan 
Tel: +81-76-265-2363 
Fax: +81-76-234-4274 
E-mail: hiroshi-kawasaki@umin.ac.jp 



 2 

Abstract  

 

The molecular mechanisms underlying the formation of the thalamus during development have 

been investigated intensively. Although transcription factors distinguishing the thalamic 

primordium from adjacent brain structures have been uncovered, those involved in patterning 

inside the thalamus are largely unclear. Here we show that Foxp2, a member of the forkhead 

transcription factor family, regulates thalamic patterning during development. We found a graded 

expression pattern of Foxp2 in the thalamic primordium of the mouse embryo. The expression 

levels of Foxp2 were high in the posterior region and low in the anterior region of the thalamic 

primordium. In Foxp2 (R552H) knockin mice, which have a missense loss-of-function mutation 

in the forkhead domain of Foxp2, thalamic nuclei of the posterior region of the thalamus were 

shrunken, while those of the intermediate region were expanded. Consistently, Foxp2 (R552H) 

knockin mice showed changes in thalamocortical projection patterns. Our results uncovered 

important roles of Foxp2 in thalamic patterning and thalamocortical projections during 

development. 

 

 
Key words: Foxp2, thalamic patterning 
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Introduction 

 

The thalamus plays critical roles as a relay center of sensory information in the brain. Most 

sensory information is transmitted from the periphery to the primary sensory areas in the cerebral 

cortex through the thalamus, and the loss of thalamic functions results in severe sensory deficits 

(Jones 2007). The thalamus consists of many structurally and functionally segregated nuclei, 

which are thought to be structural bases of sensory information processing in the thalamus. For 

example, the ventral posterior nucleus (VP) of the thalamus conveys somatosensory information 

and sends its axons to the primary somatosensory area (S1) of the cerebral cortex.  

 Early in development, the thalamic primordium is distinguished from adjacent brain 

structures such as the prethalamus, the pretectum and the epithalamus. Then, the thalamic 

primordium differentiates into various thalamic nuclei such as the anterodorsal nucleus (AD), the 

anteroventral nucleus (AV), the posterior nucleus (Po) and the VP. This process leading to the 

formation of thalamic nuclei is called thalamic patterning. The AD and the AV are located in the 

anterior region of the thalamus, whereas the VP and the Po reside in the posterior region.  

 The mechanisms that distinguish the thalamic primordium from adjacent brain 

structures have been extensively examined (Kiecker and Lumsden 2012). Previous papers have 

uncovered transcription factors regulating the formation of the thalamic primordium (Kobayashi 

et al. 2002; Braun et al. 2003; Hirata et al. 2006; Puelles et al. 2006; Peukert et al. 2011; Bluske et 

al. 2012; Robertshaw et al. 2013; Chatterjee et al. 2014). The homeodomain transcription factor 

Otx2 is required for acquiring thalamic identity, and the lack of Otx2 results in the activation of 

markers of the pretectum (Puelles et al. 2006). The zinc finger transcription factors Fezf1 and 

Fezf2 are crucial for the formation of the prethalamus and the thalamus (Hirata et al. 2006). Irx3 

and Pax6 are involved in creating the cellular competence necessary for the formation of the 
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thalamus (Robertshaw et al. 2013). In contrast, transcription factors regulating patterning inside 

the thalamus are still largely unclear, even though recent pioneering studies uncovered several 

molecules expressed in specific subsets of thalamic nuclei (Nakagawa and O'Leary 2001, 2003; 

Jones and Rubenstein 2004; Yuge et al. 2010). In this study, we focus on the transcriptional factor 

Foxp2, which is a member of the forkhead transcription factor family. The forkhead transcription 

factor family consists of more than 30 transcription factors, many of which play crucial roles in 

developmental processes and in the pathophysiology of diseases (Lehmann et al. 2003; Fujita et 

al. 2008; Enard et al. 2009; Fisher and Scharff 2009; Hannenhalli and Kaestner 2009; French et al. 

2012). We demonstrate that Foxp2 regulates thalamic patterning and thalamocortical projection 

during development.  

 

 

Materials and Methods 

 

Animals 

ICR mice (Mus musculus) were purchased from SLC (Hamamatsu, Japan) and were reared on a 

normal 12 hr light/dark schedule. The day of insemination was designated as embryonic day 0 

(E0), and the day of birth was defined as postnatal day 0 (P0). Foxp2 (R552H) knockin mice 

were described previously (Fujita et al. 2008). All procedures were performed in accordance with 

protocols approved by the University of Tokyo Animal Care Committee and the Kanazawa 

University Animal Care Committee. Experiments were repeated at least three times and gave 

consistent results. 

 

Plasmids  
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pCAG-EGFP and pCAG-mCherry were described previously (Sehara et al. 2010). A 

Foxp2-shRNA-expression vector (Foxp2 shRNA) was constructed using a pSUPER.basic vector 

(Oligoengine, Seattle, WA) as described previously (Hoshiba et al. in press). The sequences used 

for shRNA experiments were designed using the web-based software siDIRECT 

(http://sidirect2.rnai.jp/) and are 5'- GCAGTTAACACTTAATGAA-3' against Foxp2, and 

5'-CAACAAGATGAAGAGCACC-3' as non-targeting negative control. 

 Plasmids were purified using an Endofree plasmid Maxi kit (Qiagen, Germany). Prior 

to electroporation experiments, plasmid DNA was diluted to 1 mg/mL in TE, and Fast Green 

solution was added at a final concentration of 0.03% to monitor the injection. 

 

In utero electroporation 

In utero electroporation was performed as described previously (Fukuchi-Shimogori and Grove 

2001; Saito 2006; Tabata and Nakajima 2008; Sehara et al. 2010; Kawasaki et al. 2012) with 

slight modifications. Briefly, pregnant ICR mice were anesthetized with sodium pentobarbital, 

and the uterine horns were exposed. Approximately 1–2 µl of DNA solution (1 mg/mL) was 

injected into the third ventricle of embryos at the indicated ages using a pulled glass micropipette. 

Each embryo within its uterus was placed between tweezer-type electrodes (CUY650 P0.5-3, 

NEPA Gene). Square electric pulses (30 V, 50 ms) were passed five times at 1 s intervals using an 

electroporator (ECM830, BTX). Care was taken to quickly place embryos back into the 

abdominal cavity to avoid excessive temperature loss. The wall and skin of the abdominal cavity 

were sutured, and embryos were allowed to develop normally. 

 

In situ hybridization  

In situ hybridization using digoxigenin-labeled RNA probes was performed as described 
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previously (Kawasaki et al. 2004; Toda et al. 2013). Briefly, sections prepared from fresh-frozen 

tissues were treated with 4% paraformaldehyde (PFA) in phosphate-buffered saline (PBS), and 

0.25% acetic anhydride in triethanolamine (TEA). The sections were incubated overnight with 

digoxigenin-labeled RNA probes in hybridization buffer (50% formamide, 5× saline-sodium 

citrate buffer, 5× Denhardt's solution, 0.3 mg/mL yeast RNA, 0.1 mg/mL herring sperm DNA, 

and 1 mM dithiothreitol). The sections were then incubated with an alkaline 

phosphatase-conjugated anti-digoxigenin antibody (Roche) and were visualized using NBT/BCIP 

as substrates. In some experiments, the sections were then subjected to Hoechst 33342 staining 

and immunohistochemistry.  

 Probes used here were mouse cadherin-6, Foxp2, calbindin 2, Lhx2, Gbx2 and EphA8. 

Cadherin-6 and Foxp2 probes were described previously (Iwai et al. 2013; Wakimoto et al. 2015). 

Netrin-G1 probe was a generous gift from Dr. Itohara (Nakashiba et al. 2000). Calbindin 2 and 

Lhx2 cDNA fragments were purchased from RIKEN. Gbx2 and EphA8 cDNA fragments were 

amplified by RT-PCR and inserted into pBluescript vectors. The sequences of primers used to 

amplify Gbx2, EphA8, Gad1 and VGLUT2 cDNA fragments were 

GAGTCAAAGGTGGAAGATGACC / ACTGCTCTGCACTCAACTCAAA, 

CCTAGAGTGACAGAGGTCAGGC / CCCTGTTTTCCTGTTGAATAGC, 

AGCTGATGGCATCTTCCACTCCT / GACTGTGTTCTGAGGTGAAGAGG, and 

CTGTGGCAGTTGTCACGTTATGC / GCACAGGACACCAGACAGATCAA, respectively. 

 

Immunohistochemistry  

Immunohistochemistry was performed as described previously with slight modifications 

(Kawasaki et al. 2000; Sehara et al. 2010). Sections prepared from fresh-frozen tissues were fixed 

with 4% PFA/PBS, permeabilized with 0.1-0.5% Triton X-100/PBS, and incubated overnight 
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with primary antibodies, which included rabbit anti-FOXP2 (Abcam), rabbit anti-FOXP2 

(ATLAS), goat anti-FOXP2 (Abcam), rabbit anti-active caspase-3 (Pharmingen), rabbit 

anti-phospho-histone H3 (PHH3) (Millipore) and rabbit anti-VGLUT2 (Synaptic Systems) 

antibodies. After incubation with secondary antibodies and Hoechst 33342, the sections were 

washed and mounted. Sections prepared from perfused tissues were also used. In some 

experiments, the sections were then subjected to fluorescent Nissl (Molecular Probes) and 

Hoechst 33342 staining. Epifluorescence microscopy was carried out with an Axioimager A1 

microscope (Carl Zeiss, Germany) and a BZ-9000 microscope (KEYENCE, Japan). Confocal 

microscopy was performed with a FLUOVIEW FV10i (Olympus, Japan). Stereomicroscopy was 

performed with a MZ16F fluorescence stereomicroscope (Leica, Germany). 

 

DiI tracing 

To retrogradely label the soma of thalamic neurons projecting to the prefrontal cortex, P6 pups 

were anesthetized by cooling, and 0.1 µl of 10% DiI (D3911, Molecular Probes) in 

dimethylformamide (DMF) was injected into the prefrontal cortex with capillary micropipettes 

hooked up to a Hamilton 1 µL syringe (Islam et al. 2009). The pups were then perfused with 4% 

PFA at P7. Brains were isolated and fixed in 4% PFA overnight, and 50 µm sections were cut 

using a vibratome. The sections were subjected to Hoechst 33342 staining and 

immunohistochemistry. When sections were labeled with DiI, 1 mg/mL digitonin was used for 

permeabilization instead of Triton-X 100 because DiI signals tend to be better preserved after 1 

mg/mL digitonin treatment than after Triton-X 100 treatment (Matsubayashi et al. 2008). 

To retrogradely label the soma of thalamic neurons projecting to the primary 

somatosensory area (S1) of the cerebral cortex, P13 pups were anesthetized, and 0.1 µl of 10% 

DiI in DMF was injected into S1 with capillary micropipettes hooked up to a Hamilton 1 µL 
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syringe (Islam et al. 2009). The pups were then perfused with 4% PFA at P15. Brains were 

isolated and fixed in 4% PFA overnight, and 50 µm sections were cut using a vibratome. The 

sections were subjected to Hoechst 33342 staining and to immunohistochemistry using digitonin. 

 

Quantification of the expression levels of Foxp2 immunohistochemistry 

Averaged densitometric scans were performed on three adjacent horizontal sections of the 

embryonic mouse thalamic primordium along the anterior-posterior axis of the thalamus. Briefly, 

images of Foxp2 immunohistochemistry were digitally acquired with a CCD camera (AxioCam, 

Zeiss). Using ImageJ software, background signal intensities were subtracted from the images 

using the rolling ball filter with a diameter of 200 pixels, and the images were then normalized so 

that each pixel value fell between 0 and 255. Densitometric profiles of Foxp2 signals within 

rectangular areas along the anterior-posterior axis of the thalamic primordium were generated 

using the line profile function of ImageJ. 

 To quantify the percentages of Foxp2-positive cells in the thalamic primordium, 

horizontal sections of 14 µm thickness were stained with anti-FOXP2 antibody and Hoechst 

33342, and Z-stack confocal images with 1.6 µm optical thickness were taken. The background 

signal intensities were defined as the averaged signal intensities of Foxp2-negative cells in the 

pretectum. After background signal intensity was subtracted from each image, the number of 

Hoechst-positive cells with Foxp2 immunoreactivity was counted and was divided by the number 

of Hoechst-positive cells. 

 To quantify the expression levels of Foxp2 at a single cell level, horizontal sections of 

14 µm thickness were stained with anti-FOXP2 antibody and Hoechst 33342, and confocal 

microscopic images with 1.6 µm optical thickness were analyzed using ImageJ software 

(National Institutes of Health). For each image, after background signal intensity was subtracted, 
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the Foxp2 signal intensity in each Hoechst-positive nucleus in the thalamic primordium was 

measured. 

 

Quantification of the sizes of thalamic nuclei 

Coronal sections of 25 µm thickness were prepared from wild type and Foxp2 (R552H) knockin 

mice at P2, and in situ hybridization was performed to visualize thalamic nuclei. The VP and the 

Pf were identified by the expression patterns of cadherin-6 and EphA8, respectively. The 

intermediate region of the thalamus was identified by Lhx2 expression patterns. Images were 

taken using a Leica stereomicroscope and analyzed using ImageJ software (National Institute of 

Health). 

 To quantify the size of the VP, coronal sections located more posterior to the section 

with the largest LGN were selected. Among these sections, the section containing the largest size 

of the VP was used for quantification. The periphery of the VP labeled with cadherin-6 was 

extracted manually and blindly, and the area of the VP was measured.  

 To quantify the size of the Pf, coronal sections located more posterior to the section 

with the largest LGN were selected. Among these sections, the section containing the largest size 

of the Pf was used for quantification. The periphery of the Pf labeled with EphA8 was extracted 

manually and blindly, and the area of the Pf was measured. 

 To quantify the size of the intermediate region of the thalamus, the section located 200 

– 250 µm posterior to the section with the largest LGN was used. The periphery of the 

intermediate region labeled with Lhx2 was extracted manually and blindly, and the area of the 

intermediate region was measured.  

 

Quantification of the number of PHH3-positive cells 
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To quantify the number of PHH3-positive cells in the thalamic primordium, horizontal sections of 

14 µm thickness at E14 were stained with anti-PHH3 antibody and Hoechst 33342. In each 

section, the number of PHH3-positive cells in the intermediate region of the thalamic primordium 

was counted blindly and manually. 

 

 

Results 

 

The expression pattern of Foxp2 in the thalamic primordium of the mouse embryo 

It was reported that thalamic nuclei cannot be clearly discerned at embryonic day 12.5 (E12.5) but 

become distinguishable by E16.5 (Nakagawa and O'Leary 2001). We therefore examined the 

expression pattern of Foxp2 protein in horizontal sections of the thalamic primordium at E14 

using immunohistochemistry (Fig. 1A). We used anti-FOXP2 antibody whose specificity we had 

previously confirmed (Iwai et al. 2013) and found a graded expression pattern of Foxp2 protein in 

the thalamic primordium (Fig. 1B). Foxp2 protein expression levels were highest in the posterior 

region (Fig. 1B, arrowhead), lower in the intermediate region, and lowest in the anterior region of 

the thalamic primordium (Fig. 1B). Consistently, our quantification showed gradual changes in 

the expression levels of Foxp2 protein in the thalamic primordium (Fig. 1G). 

Immunohistochemistry using another anti-FOXP2 antibody gave similar graded expression 

patterns in the thalamic primordium (Supplementary Fig. 1A). Sagittal sections also showed a 

graded expression pattern of Foxp2 protein (Fig. 1D,E). We next examined the expression pattern 

of Foxp2 mRNA using in situ hybridization. Consistent with the expression pattern of Foxp2 

protein, Foxp2 mRNA was abundant in the posterior region (Fig. 1C,F, arrowheads) and almost 

absent in the anterior region of the thalamic primordium (Fig. 1C,F), which was consistent with a 
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recent report examining the mRNA expression patterns of various molecules in the developing 

thalamus (Suzuki-Hirano et al. 2011).  

 This graded expression pattern of Foxp2 protein in the thalamic primordium could be 

explained by two possible mechanisms. The first possibility was that the expression level of 

Foxp2 protein in each cell was indeed low in the anterior region and high in the posterior region. 

Alternatively, it was also possible that the number of Foxp2-positive cells was smaller in the 

anterior region than in the posterior region, and as a result, Foxp2 protein expression levels 

appeared lower in the anterior region macroscopically. To distinguish between these two 

possibilities, we quantified the percentage of Hoechst-positive cells with Foxp2 immunoreactivity 

in the thalamic primordium at E14. We found that most cells were Foxp2-positive in both anterior 

and posterior regions of the thalamic primordium (Fig. 1I), suggesting that Foxp2 signal intensity 

in each cell, rather than the number of Foxp2-positive cells, was lower in the anterior region of the 

thalamic primordium. Consistently, when we quantified the expression levels of Foxp2 protein at 

the level of single cells, we found that Foxp2 immunoreactivity in each cell in the anterior region 

was indeed significantly lower than that in the posterior region of the thalamic primordium (Fig. 

1H,J,K). We therefore concluded that the expression levels of Foxp2 protein in the anterior region 

are lower than those in the posterior region of the thalamic primordium. These results indicate that 

Foxp2 protein has a graded expression pattern in the thalamic primordium during embryonic 

development, and that the graded expression of Foxp2 protein is achieved, at least partially, at the 

level of mRNA because graded expression patterns of Foxp2 mRNA were also detected by in situ 

hybridization (Fig. 1C,F). 

 We next examined the expression patterns of Foxp2 protein in the developing 

thalamus at different time points. Horizontal sections of the thalamic primordium at E12, E16 and 

P2 were stained with anti-FOXP2 antibody. Similar to sections at E14, sections at E12 showed 
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graded expression patterns in the thalamic primordium (Supplementary Fig. 1B). In contrast, at 

E16 and P2, when thalamic nuclei have been already established, the graded expression pattern of 

Foxp2 protein in the thalamus was lost, and Foxp2 expression remained in some thalamic nuclei 

(Supplementary Fig. 1B). These results suggest that graded expression patterns are present when 

thalamic patterning proceeds.  

 

The role of Foxp2 in thalamic patterning during development 

The graded expression pattern of Foxp2 led us to hypothesize that Foxp2 plays an important role 

in thalamic patterning during development. To examine the role of Foxp2 in thalamic patterning, 

we utilized Foxp2 (R552H) knockin mice that have a missense loss-of-function mutation in the 

forkhead domain of Foxp2 (Fujita et al. 2008; Groszer et al. 2008). This mutation corresponds to 

a human FOXP2 (R553H) mutation in human FOXP2, and disrupts the DNA binding and 

transactivation properties of FOXP2 protein (Vernes et al. 2006; Nelson et al. 2013). We 

conducted VGLUT2 immunohistochemistry using horizontal sections of the thalamus of Foxp2 

(R552H) knockin mice at postnatal day 7 (P7) (Fig. 2A). We found that the VP of the thalamus, 

which was reported to express VGLUT2 (Nakamura et al. 2005), was markedly smaller in Foxp2 

(R552H) knockin mice than in wild-type control mice (Fig. 2B, arrowheads), suggesting that 

Foxp2 is required for the formation of the VP during development.  

 Because the VP is located in the posterior region of the thalamus, it seemed plausible 

that Foxp2 is important for the formation of not only the VP but also other thalamic nuclei located 

in the posterior region of the thalamus. We examined the expression patterns of molecular 

markers that are expressed in specific subsets of nuclei in the thalamus, including EphA8, 

calbindin 2 and cadherin-6, using coronal sections (Fig. 2C). EphA8, calbindin 2 and cadherin-6 

are expressed in the parafascicular nucleus (Pf), the posterior nucleus (Po) and the VP, 
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respectively, in the posterior region of the thalamus (Jones and Rubenstein 2004; Yuge et al. 2010; 

Haddad-Tovolli et al. 2012) (Fig. 2C, blue nuclei). We found that EphA8- and calbindin 

2-positive areas were markedly smaller in the posterior region of the thalamus in Foxp2 (R552H) 

knockin mice (Figs. 2D and 3A, arrows), suggesting that Foxp2 is required for the formation of 

the Pf and the Po. Cadherin-6-positive areas were also strikingly smaller in Foxp2 (R552H) 

knockin mice (Figs. 2D and 3A, arrows), suggesting that Foxp2 is also required for the formation 

of the VP. This finding is consistent with the result obtained by VGLUT2 immunostaining (Fig. 

2A,B). Quantification of the sizes of thalamic nuclei confirmed that the VP and the Pf were 

significantly smaller in Foxp2 (R552H) knockin mice (Fig. 2G). These results suggest that Foxp2 

is important for the formation of thalamic nuclei located in the posterior region of the thalamus.  

 Given that thalamic nuclei in the posterior region were smaller in Foxp2 (R552H) 

knockin mice, it seemed possible that those thalamic nuclei changed their identities to different 

thalamic nuclei. We therefore examined the distribution patterns of markers expressed in the 

intermediate region of the thalamus, such as Gbx2 and Lhx2, at P2 (Nakagawa and O'Leary 2001; 

Jones and Rubenstein 2004) (Fig. 2C, yellow nuclei). As expected, we found that Gbx2- and 

Lhx2-positive areas were markedly larger in Foxp2 (R552H) knockin mice than in wild-type 

mice (Figs. 2E and 3A), suggesting that thalamic nuclei in the intermediate region of the thalamus 

were expanded in Foxp2 (R552H) knockin mice. Quantification also showed that the 

intermediate region was significantly larger in Foxp2 (R552H) knockin mice (Fig. 2G). In 

contrast, markers of the anterior region of the thalamus (Fig. 2C, red nuclei) were not affected in 

Foxp2 (R552H) knockin mice (Fig. 2F). These results suggest that the posterior region of the 

thalamus obtained the properties of the intermediate region. Taken together, these results indicate 

that Foxp2 regulates fate determination in the thalamus during development. We also examined 

the expression patterns of thalamic markers at an earlier stage. Consistent with our results at P2, 
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cadherin-6-positive areas were markedly smaller in the posterior region of the thalamus (Fig. 3B, 

arrows), and Gbx2-positive areas were markedly larger in Foxp2 (R552H) knockin mice at E14 

(Fig. 3B, arrowheads). This result suggests that thalamic patterning is already affected in Foxp2 

(R552H) knockin mice as early as E14. 

 In addition to the expression patterns of molecular markers, it seemed possible that 

cytoarchitectonic structures of thalamic nuclei were also affected in Foxp2 (R552H) knockin 

mice. We therefore conducted Nissl staining using coronal sections of the thalamus of Foxp2 

(R552H) knockin mice at P7 (Fig. 2I). We found that borders between thalamic nuclei in the 

thalamus of Foxp2 (R552H) knockin mice were obscure compared with those of wild type mice 

(Fig. 2I). These results suggest that Foxp2 regulates not only the expression patterns of molecular 

markers but also the formation of cytoarchitectonic structures of thalamic nuclei. 

 Our results suggest that thalamic patterning is affected in Foxp2 (R552H) knockin 

mice, but it remained possible that the development of the thalamus itself is abnormal in Foxp2 

(R552H) knockin mice, and thalamic patterning within the thalamus is affected secondarily. We 

found that the expression patterns of VGLUT2 and netrin-G1, which are expressed in the 

thalamus, were comparable between wild type and Foxp2 (R552H) knockin mice (Fig. 2H). 

Based on these results, the development of the thalamus itself appears to be normal in Foxp2 

(R552H) knockin mice. Consistently, the expression of Gad1, which is strongly expressed in the 

prethalamus, was also normal (Fig. 2H).  

  

Foxp2 in the thalamus regulates thalamic patterning autonomously 

Foxp2 is expressed not only in the thalamus but also in other brain regions such as the cerebral 

cortex and the striatum (Supplementary Fig. 2). Because we used Foxp2 (R552H) global knockin 

mice for the analysis of thalamic patterning, it remained possible that changes in thalamic 
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patterning were mediated by Foxp2 expressed in the other brain regions. To examine the role of 

Foxp2 in the thalamus, we selectively suppressed Foxp2 expression in the thalamus by 

introducing a Foxp2-shRNA-expression vector (Foxp2 shRNA) into the thalamus using in utero 

electroporation at E11.0 (Fig. 4A). Foxp2 immunohistochemistry showed that the Foxp2 shRNA 

effectively suppressed Foxp2 expression in the thalamus at E14 (Fig. 4B, arrowheads). To 

examine if introducing Foxp2 shRNA into the thalamic primordium affects thalamic patterning, 

coronal sections of the thalamus were prepared at E18, and the expression patterns of molecular 

markers of thalamic nuclei were examined using in situ hybridization. Consistent with the results 

obtained with Foxp2 (R552H) knockin mice, the introduction of Foxp2 shRNA into the thalamic 

primordium suppressed the expression of EphA8 and cadherin-6 (Fig. 4C, arrowheads) and 

increased that of Gbx2 and Lhx2 (Fig. 4D, arrows), suggesting that Foxp2 shRNA reduced the 

size of the posterior region of the thalamus but increased that of the intermediate region of the 

thalamus. These results suggest that Foxp2 expressed in the thalamus regulates thalamic 

patterning. 

 It remained possible that Foxp2 regulates not only thalamic patterning but also 

apoptosis and/or proliferation in the thalamus. We stained horizontal sections of the thalamic 

primordium with anti-active caspase-3 antibody at E14 and found only a few active 

caspase-3-positive cells in the thalamic primordium (Supplementary Fig. 3A), suggesting that 

apoptosis is not involved in the phenotype of Foxp2 (R552H) knockin mice. We also stained 

horizontal sections of the thalamic primordium with anti-phospho-histone H3 (PHH3) antibody at 

E14. There were no statistically significant differences in the number of PHH3-positive cells in 

the intermediate region of the thalamic primordium between wild type and Foxp2 (R552H) 

knockin mice (wild type 26.6 ± 10.8 cells/section, Foxp2 (R552H) 36.6 ± 4.9 cells/section; P = 

0.21; Student’s t-test, mean ± SD) (Supplementary Fig. 3B), suggesting that cell proliferation is 
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not affected in Foxp2 (R552H) knockin mice.  

 

Foxp2 regulates thalamocortical projection patterns 

To examine if Foxp2 regulates not only gene expression patterns in the thalamus but also 

thalamocortical projection patterns, we used the neuronal tracer DiI (Fig. 5A). Because the 

intermediate region of the thalamus projects to the prefrontal cortex (Conde et al. 1995; Hoover 

and Vertes 2007) and was expanded in Foxp2 (R552H) knockin mice (Fig. 2), we injected DiI 

into the prefrontal cortex at P6 and examined if retrogradely labeled DiI-positive areas in the 

thalamus would be expanded in Foxp2 (R552H) knockin mice (Fig. 5A). One day after DiI 

injection, we made coronal sections of the cerebral cortex and confirmed that DiI was indeed 

injected into the prefrontal cortex (Fig. 5B,C). Then, coronal sections of the thalamus were stained 

with anti-VGLUT2 antibody using digitonin, which is a detergent suitable for DiI-labeled 

sections (Matsubayashi et al. 2008). As expected, we found that DiI-positive retrogradely labeled 

areas were much larger in Foxp2 (R552H) knockin mice than in wild-type mice (Fig. 5D, arrows). 

This expanded DiI-positive area corresponded to the expanded Gbx2-positive intermediate region 

of the thalamus (Fig. 5E, arrowheads). These results suggest that Foxp2 regulates not only gene 

expression patterns in the thalamus but also thalamocortical projection patterns. 

 To examine whether thalamocortical projections from the Po are decreased in Foxp2 

(R552H) knockin mice, we injected DiI into S1, where thalamocortical axons from both the VP 

and the Po were observed in wild type mice (Fig. 5F). Two days after DiI injection, we made 

coronal sections of the cerebral cortex and confirmed that the DiI-injected area was located within 

S1, which had VGLUT2-positive barrels (Fig. 5G, arrows). We then made coronal sections of the 

thalamus and examined the distribution patterns of retrogradely labeled DiI-positive soma in the 

thalamus. The sections were stained with anti-VGLUT2 antibody, which strongly recognizes the 
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VB (Fig. 5H, asterisks) but only faintly recognizes the Po (Fig. 5H, arrows) (Fremeau et al. 2001; 

Nakamura et al. 2005). As expected, DiI-positive soma existed in both the VP (Fig. 5H, asterisks) 

and the Po (Fig. 5H, arrows) in wild type mice. In contrast, we found that DiI-positive 

retrogradely labeled soma were present in the VB of Foxp2 (R552H) knockin mice (Fig. 5H, 

asterisks), they were almost absent in the Po (Fig. 5H, arrowheads). This result suggests that 

thalamocortical projections from the Po are reduced in S1 of Foxp2 (R552H) knockin mice. 

Taken together with the results of our experiments involving molecular markers, these results 

indicate that the Po was almost absent in Foxp2 (R552H) knockin mice. 

 As we have shown, the VP was smaller in Foxp2 (R552H) knockin mice (Fig. 2). 

Because the VP contains whisker-related patterns called barreloids (Van Der Loos 1976), we 

thought it would be intriguing to examine if barreloid patterns in the VP were affected in Foxp2 

(R552H) knockin mice. Coronal sections of the thalamus were subjected to VGLUT2 

immunostaining at P7. We found that barreloid patterns were severely disrupted in Foxp2 

(R552H) knockin mice (Fig. 6A, arrow). The disrupted barreloid patterns in the thalamus led us to 

examine barrel patterns in S1 of the cerebral cortex using VGLUT2 immunostaining. We found 

that barrel patterns were lost in the anterior portion of the postero-medial barrel subfield 

(PMBSF), the antero-lateral barrel subfield (ALBSF) and the region of S1 corresponding to the 

forelimb (Fig. 6B, arrowheads). This is consistent with the idea that disruption of barreloid 

patterns in the thalamus leads to disruption of barrel patterns in the cerebral cortex.  

We have also shown that the Po in the thalamus was lost in Foxp2 (R552H) knockin 

mice (Fig. 2). The Po sends thalamocortical axons to septa (Alloway 2008; Sehara and Kawasaki 

2011), which are the areas between barrels in layer 4 of S1 in the cerebral cortex. We therefore 

hypothesized that thalamocortical projections from the Po were decreased, and septa were 

shrunken in Foxp2 (R552H) knockin mice. Consistent with our hypothesis, VGLUT2 
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immunostaining of S1 showed that VGLUT2-negative areas between VGLUT2-positive barrels 

were narrower in Foxp2 (R552H) knockin mice than in wild-type mice (Fig. 6B, inset, arrows). 

 

 

Discussion 

 

We have shown that Foxp2 has a graded expression pattern in the thalamic primordium during 

development. In Foxp2 (R552H) knockin mice, thalamic nuclei in the posterior region of the 

thalamus were shrunken, while those in the intermediate region were expanded (Fig. 6C). Our 

findings indicate that Foxp2 is crucial for thalamic development. 

 

Foxp2 is a transcription factor regulating thalamic patterning 

Although transcription factors distinguishing the thalamic primordium from adjacent brain 

structures such as the prethalamus, the pretectum and the epithalamus during development have 

been intensively investigated (Kiecker and Lumsden 2012), transcription factors that regulate 

patterning inside the thalamus are still largely unclear. Our results suggest that Foxp2 is crucial for 

determining the identities of thalamic nuclei. Previously, the transcription factor Gbx2 was 

reported to be important for thalamic development. It was reported that Gbx2 suppressed 

neuronal cell death in a specific subset of thalamic nuclei, and Gbx2 knockout resulted in 

abnormal arrangements of thalamic nuclei (Szabo et al. 2009). These results indicate that Foxp2 

and Gbx2 play distinct roles in thalamic development. In addition, we also found that thalamic 

nuclei in the anterior region of the thalamus were not affected in Foxp2 (R552H) knockin mice, 

raising the possibility that the identities of the anterior region are determined by other 

transcription factors. Uncovering additional transcription factors regulating thalamic patterning 
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would be an important goal for future experiments. 

 Previous pioneering studies have demonstrated that both the antero-posterior 

components and the medio-lateral components are correlated with thalamo-cortical projection 

patterns (Molnar et al. 1998; Vanderhaeghen and Polleux 2004; Molnar et al. 2012). Our findings 

indicate that Foxp2 mediates thalamic patterning along the antero-posterior axis. To understand 

the entire picture of thalamic patterning during development, it would be intriguing to uncover the 

mechanisms regulating the medio-lateral components of thalamic patterning. In addition, in this 

paper, we investigated the role of Foxp2 in thalamocortical projections postnatally. Therefore, the 

following two possibilities remain to explain the changes in thalamocortical projections of Foxp2 

(R552H) knockin mice. The first possibility is thalamocortical projections are altered from early 

in development in Foxp2 (R552H) knockin mice. The other is that thalamocortical projections are 

formed normally at the beginning, and then turn out to be affected postnatally in Foxp2 (R552H) 

knockin mice. Because our experiments showed that molecular markers were affected in the 

embryos of Foxp2 (R552H) knockin mice, the former seems likely, but it would be important to 

address this issue. 

 

Molecular mechanisms downstream of Foxp2 in thalamic development 

To understand the entire picture of the mechanisms underlying thalamic development, including 

thalamic patterning and thalamocortical projections, uncovering the molecular mechanisms 

downstream of Foxp2 would be important.  

 It would be intriguing to investigate whether the molecules that mediate the formation 

of borders between distinct nuclei in other systems are located downstream of Foxp2 in the 

thalamus. While Foxp2 has a continuous graded expression pattern in the thalamic primordium 

early in development, discrete domains of each thalamic nucleus are formed later. It seems 
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plausible that the mechanisms downstream of Foxp2 convert areas along this continuous gradient 

into distinct domains of thalamic nuclei. A similar conversion has been well studied in the 

developing spinal cord (Briscoe and Ericson 2001; Dessaud et al. 2008). Transcription factors 

expressed in two adjacent areas in the developing spinal cord comprise a cross-repressive 

interaction and delineate boundaries between them (Ericson et al. 1997; Briscoe et al. 1999). 

Similar mechanisms could be located downstream of Foxp2. 

 The expression of axon guidance molecules could be regulated by Foxp2 because 

thalamocortical projection patterns are affected in Foxp2 (R552H) knockin mice. Although it has 

been established that ephrin and netrin-1 signaling molecules regulate thalamocortical projection 

patterns (Dufour et al. 2003; Powell et al. 2008), the regulatory mechanisms upstream of these 

axon guidance molecules are still largely unclear. It seems likely that Foxp2 regulates the 

expressions of the ephrin and/or netrin family member molecules.  

 Recently, lists of candidate molecules that could play important roles downstream of 

Foxp2 have been identified (Spiteri et al. 2007; Vernes et al. 2007; Fujita et al. 2008; Vernes et al. 

2011). Although these molecules were identified using brain regions other than the thalamus, they 

seem to be attractive candidate molecules that could mediate the effects of Foxp2 in thalamic 

development. Interestingly, the expression level of the transcription factor Lhx2, which is 

expressed in the developing thalamus, was found to be regulated by Foxp2 in the cerebellum. 

Lhx2 could mediate thalamic patterning downstream of Foxp2. Combining our data and the 

findings reported in the previous literature could guide future experiments toward uncovering the 

entire picture of the patterning of the thalamus. 

 

Roles of Foxp2 during development 

The roles of Foxp2 have been intensively investigated in brain regions other than the thalamus. 
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For example, knockdown of Foxp2 resulted in reduced spine density in Area X of the zebra finch, 

suggesting that Foxp2 regulates spine dynamics (Schulz et al. 2010). Foxp2 (R552H) knockin 

mice showed deficits in motor-skill learning, accompanied by abnormal synaptic plasticity in 

striatal and cerebellar neural circuits, suggesting that Foxp2 is crucial for synaptic plasticity 

(Groszer et al. 2008). Foxp2 knockout resulted in an absence of ultrasonic vocalization in mouse 

pups, suggesting a role of Foxp2 in social communication functions (Shu et al. 2005; Fujita et al. 

2008). Abnormalities of neuronal morphology were observed in mice with disruptions in Foxp2 

(Shu et al. 2005; Fujita et al. 2008). During development, it was reported that Foxp2 increased 

neuronal differentiation in the embryonic forebrain and regulated neurite outgrowth in primary 

neurons (Vernes et al. 2011; Chiu et al. 2014). Our results uncovered an additional role of Foxp2, 

which is as a regulator of neuronal patterning during development. 

 One attractive hypothesis is that FOXP2 is involved in the acquisition of language 

during evolution. Indeed, FOXP2 is mutated in a monogenic syndrome causing speech and 

language dysfunction (Lai et al. 2001). Furthermore, two amino acid substitutions in the mouse 

Foxp2 allele, which are found in humans, caused alterations in corticobasal ganglia circuits, 

indicating that humanized Foxp2 has different functions from mouse Foxp2 (Enard et al. 2009; 

Reimers-Kipping et al. 2011). Combined with the fact that the thalamic nucleus pulvinar, which is 

located in the posterior region of the thalamus and is related to perceptual confidence, is observed 

only in carnivores and primates (Butler 2007; Komura et al. 2013), our finding raised the 

possibility that the appearance of the pulvinar during evolution was determined by Foxp2. It 

would be intriguing to examine if mice with humanized Foxp2 have a thalamic structure similar 

to the pulvinar. 
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Figure legends 
 

Figure 1. Expression patterns of Foxp2 in the thalamic primordium of the mouse embryo.  

(A) Schematic organization of horizontal sections of the embryonic mouse brain. Images within 

the box are shown in (B) and (C). Ctx, cerebral cortex; Th, thalamic primordium. (B) Foxp2 

immunohistochemistry using horizontal sections of mouse thalamic primordium at E14. The 

areas within the broken lines are the thalamic primordium. Note that Foxp2 protein was 

abundantly expressed in the posterior region (arrowhead) but almost absent in the anterior region 

of the thalamic primordium. (C) In situ hybridization using horizontal sections of mouse thalamic 

primordium at E14. Foxp2 mRNA was also abundantly expressed in the posterior region of the 

thalamic primordium (arrowhead). (D) Schematic organization of sagittal sections of the 

embryonic mouse brain. Images within the box are shown in (E) and (F). Ctx, cerebral cortex; Th, 

thalamic primordium. (E) Foxp2 immunohistochemistry using sagittal sections of mouse 

thalamic primordium at E14. The areas within the broken lines are the thalamic primordium. (F) 

In situ hybridization using sagittal sections of mouse thalamic primordium at E14. Foxp2 mRNA 

was abundantly expressed in the posterior region of the thalamic primordium (arrowhead). (G) A 

representative densitometry scan along the anterior (A) to posterior (P) axis of the thalamic 

primordium in horizontal sections at E14. (H) Higher-magnification images of Foxp2 

immunohistochemistry of the thalamic primordium. (I) The percentages of Foxp2-positive cells. 

The numbers of Foxp2-positive cells in the anterior region (A) and the posterior region (P) were 

counted and divided by those of Hoechst-positive cells. Note that most cells have Foxp2 

immunoreactivity in both anterior and posterior regions. An error bar indicates SD. (J) Foxp2 

immunoreactivity in each cell was measured, and the averages in the anterior region (A) and the 

posterior region (P) of the thalamic primordium are shown. The expression level of Foxp2 in the 
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anterior region was significantly lower than that in the posterior region. * P < 0.05, Welch’s t-test. 

Error bars indicate SEM. (K) Histogram of Foxp2 immunoreactivity in each cell in the anterior 

region and the posterior region of the thalamic primordium. Note that most cells in the anterior 

region had very low Foxp2 expression levels. A, anterior; P, posterior; L, lateral; M, medial; D, 

dorsal; V, ventral. Scale bars = 250 µm (B, C, E, F) and 20 µm (H). 

 

Figure 2. The identities of thalamic nuclei of Foxp2 (R552H) knockin mice.  

(A) Schematic organization of horizontal sections of the mouse brain at P7. Images within the box 

are shown in (B). Ctx, cerebral cortex; Th, Thalamus; Cb, cerebellum. (B) VGLUT2 

immunohistochemistry using horizontal sections of the thalamus of Foxp2 (R552H) knockin 

mice at P7. The ventral posterior nucleus (VP) in the thalamus was smaller in Foxp2 (R552H) 

knockin mice (arrowheads). A, anterior; P, posterior. AD, the anterodorsal nucleus; AV, the 

anteroventral nucleus; VP, the ventral posterior nucleus. (C) Schematic organization of coronal 

sections of the mouse brain. Coronal sections were prepared from Foxp2 (R552H) knockin mice 

at P2, and were examined using in situ hybridization. Marker expressions in the thalamic nuclei 

are shown in the upper right panel. Images within the box of the lower left panel are shown in (D), 

(E) and (F). Ctx, cerebral cortex; Th, thalamus. A, anterior; P, posterior; D, dorsal; V, ventral. (D) 

The posterior region of the thalamus. EphA8 is expressed in the parafascicular nucleus (Pf), and 

calbindin 2 (Calb2) is expressed in the posterior nucleus (Po). Cadherin-6 (Cad6) is expressed in 

the VP. Note that the Pf, the Po, and the VP were markedly smaller in Foxp2 (R552H) knockin 

mice (arrows). (E) The intermediate region of the thalamus. Lhx2 is expressed in the central 

lateral nucleus (CL), and Gbx2 is expressed in the CL and the mediodorsal nucleus (MD). Note 

that the CL and the MD were larger in Foxp2 (R552H) knockin mice (arrows). (F) The anterior 

region of the thalamus. Cadherin-6 (Cad6) is expressed in the anterodorsal nucleus (AD), the 
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anteroventral nucleus (AV) and the reticular nucleus (Rt). Calbindin 2 (Calb2) is expressed in the 

lateral dorsal nucleus (LD). The sizes of the AD, the AV, the Rt and the LD were unaffected 

(arrows). (G) Quantitative analyses of the effects of Foxp2 (R552H) on the sizes of thalamic 

nuclei. The sizes of the cadherin-6 (Cad6)-positive area in (D) (VP), the EphA8-positive area in 

(D) (Pf), and the Lhx2-positive area in (E) (Intermediate) were measured. The VB and the Pf 

were significantly smaller, and the intermediate region was significantly larger in Foxp2 (R552H) 

knockin mice. * P < 0.01, two-sided Student's t-test. Error bars indicate SD. (H) Coronal sections 

were prepared at P2 and were examined using in situ hybridization. The expression patterns of 

VGLUT2, netrin-G1 and Gad1 were not affected in Foxp2 (R552H) knockin mice. (I) Coronal 

sections of the thalamus at P7 were subject to Nissl staining. In control mice, thalamic nuclei 

were well segregated, and borders between thalamic nuclei were clearly visible (arrows). In 

contrast, borders between thalamic nuclei became obscure in Foxp2 (R552H) knockin mice. 

Scale bars = 1 mm (B,D-F,H and I)  

 

Figure 3. The changes of thalamic nuclei in horizontal sections of Foxp2 (R552H) knockin 

mice.  

(A) Horizontal sections of the thalamus were prepared from Foxp2 (R552H) knockin mice at P2, 

and were examined using in situ hybridization. Note that the Lhx2-positive area was expanded 

posteriorly in Foxp2 (R552H) knockin mice (square brackets), while EphA8- and cadherin-6 

(Cad6)-positive areas were shrunken (arrows). (B) Horizontal sections of the thalamus were 

prepared at E14 and were examined using in situ hybridization. Note that the Gbx2-positive area 

is larger at the posterior region of the thalamic primordium in Foxp2 (R552H) knockin mice 

(arrowheads), while the cadherin-6 (Cad6)-positive area is shrunken in Foxp2 (R552H) knockin 

mice (arrows). A, anterior; P, posterior. Scale bars = 2 mm (A) and 200 µm (B). 
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Figure 4. Foxp2 knockdown in the thalamus changed thalamic patterning.  

(A) Top: Experimental procedure of in utero electroporation to investigate the role of Foxp2 

within the thalamus. pCAG-mCherry (0.2 mg/mL) and pSUPER-Foxp2-shRNA (0.8 mg/mL) 

were co-transfected into the thalamic primordium using in utero electroporation at E11.0, and 

coronal sections were prepared at E14 and E18. Bottom: Schematic organization of coronal 

sections of the embryonic mouse brain. Images within the box are shown in (C) and (D). Ctx, 

cerebral cortex; Th, thalamus. D, dorsal; V, ventral. (B) Foxp2 immunostaining at E14. Note that 

Foxp2 immunoreactivity was markedly suppressed by Foxp2 shRNA (arrowheads). (C) 

Expression patterns of EphA8 and cadherin-6 (Cad6) visualized with in situ hybridization. Note 

that the expression of EphA8 and cadherin-6 was suppressed by Foxp2 shRNA (arrowheads). 

(D) Expression patterns of Gbx2 and Lhx2 visualized with in situ hybridization. Note that Gbx2- 

and Lhx2-negative areas (arrows) became Gbx2- and Lhx2-positive in the Foxp2 

shRNA-transfected thalamus. Scale bars = 50 µm (B) and 500 µm (C, D). 
 

Figure 5. Thalamocortical projections in Foxp2 (R552H) knockin mice. 

(A) Experimental design. Thalamic neurons projecting to the prefrontal cortex were retrogradely 

labeled with DiI. DiI was injected into the prefrontal cortex at P6, and coronal sections were 

prepared at P7. (B) Dorsal views of DiI-injected brains. DiI-injected areas are indicated by 

arrows. (C) Coronal sections of the prefrontal cortex. The injection sites of DiI solutions were 

visible (arrows). (D) Coronal sections of the thalamus stained with anti-VGLUT2 antibody. 

Thalamic neurons projecting to the prefrontal cortex were retrogradely labeled with DiI. Note 

that many DiI-positive neurons were observed in Foxp2 (R552H) knockin mice (arrows). (E) 

Coronal sections of the thalamus of Foxp2 (R552H) knockin mice were prepared. After images 

of the DiI signal were taken, in situ hybridization was conducted with a Gbx2 probe using the 

same sections. Note that the expanded DiI-positive area was Gbx2-positive (arrowheads). (F) 
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Experimental design. To retrogradely label thalamic neurons projecting to S1, DiI was injected 

into S1 at P13, and sections were prepared at P15. (G) Coronal sections of DiI-injected cortical 

areas stained with anti-VGLUT2 antibody. Note that the DiI-positive area was located within S1, 

which has barrels (arrowheads). (H) Coronal sections of the thalamus stained with 

anti-VGLUT2 antibody, which strongly labeled the VP (asterisks). The VP was retrogradely 

labeled with DiI both in control and Foxp2 (R552H) knockin mice (asterisks), suggesting that 

DiI was successfully injected into S1. Note that DiI signal in the Po of wild type mice (arrows) 

was lost in Foxp2 (R552H) knockin mice (arrowheads). Scale bars = 3 mm (B), 1 mm (C), 500 

µm (D), 200 µm (E), 200 µm (G), and 400 µm (H). 
 

Figure 6. Abnormal organization of barreloids in the thalamus and barrels in the cerebral 

cortex.  

(A) Coronal sections of the thalamus were prepared at P7 and stained with anti-VGLUT2 

antibody to visualize whisker-related patterns of barreloids in the VP of the thalamus. While 

barreloids were well segregated in control mice, they were disrupted in Foxp2 (R552H) knockin 

mice (arrow). (B) Tangential sections were prepared from the flattened cerebral cortex and were 

stained with anti-VGLUT2 antibody to visualize barrel patterns in S1. While barrel patterns were 

clearly visible in control mice, clear barrel patterns were lost in the majority of S1 in Foxp2 

(R552H) knockin mice (arrowheads). Magnified images are shown in the insets. Note that 

VGLUT2-negative septa (arrows) are narrower in Foxp2 (R552H) knockin mice. (C) Schematic 

organization of coronal sections of the thalamus in wild type and Foxp2 (R552H) knockin mice. 

Thalamic nuclei in the posterior region of the thalamus (blue) are shrunken in Foxp2 (R552H) 

knockin mice, whereas thalamic nuclei in the intermediate region are expanded (yellow). 

Thalamic nuclei in the anterior region of the thalamus (red) are not affected in Foxp2 (R552H) 

knockin mice. A, anterior; P, posterior. Scale bars = 200 µm (A), 1 mm (B), 200 µm (B, inset). 














