Augmented survival of out-of-hospital cardiac arrest victims with the use of mobile phones for emergency communication under the DA-CPR protocol getting information from callers beside the victim

メタデータ	言語: eng
	出版者:
	公開日: 2017-10-03
	キーワード (Ja):
	キーワード (En):
	作成者:
	メールアドレス:
	所属:
URL	http://hdl.handle.net/2297/46172

Resuscitation

Elsevier Editorial System(tm) for

Manuscript Draft

Manuscript Number: RESUS-D-16-00266R2

Title: Augmented survival of out-of-hospital cardiac arrest victims with the use of mobile phones for emergency communication under the DA-CPR protocol getting information from callers beside the victim

Article Type: Original Article

Keywords: out-of-hospital cardiac arrest, dispatcher-assisted cardiopulmonary resuscitation, emergency call, mobile phone

Corresponding Author: Prof. Hideo Inaba, M.D., Ph.D.

Corresponding Author's Institution: Kanazawa University Graduate School of Medicine

First Author: Tetsuo Maeda, MD, PhD

Order of Authors: Tetsuo Maeda, MD, PhD; Akira Yamashita, MD; Yasuhiro Myojo, MD, PhD; Yukihiro Wato, MD, PhD; Hideo Inaba, M.D., Ph.D.

Abstract: Purpose: To investigate the impacts of emergency calls made using mobile phones on the quality of dispatcher-assisted cardiopulmonary resuscitation (DA-CPR) and survival from out-of-hospital cardiac arrests (OHCAs) that were not witnessed by emergency medical service (EMS). Methods: In this prospective study, we collected data for 2,530 DA-CPRattempted medical emergency cases (517 using mobile phones and 2,013 using landline phones) and 2,980 non-EMS-witnessed OHCAs (600 using mobile phones and 2,380 using landline phones). Time factors and quality of DA-CPR, backgrounds of callers and outcomes of OHCAs were compared between mobile and landline phone groups. Results: Emergency calls are much more frequently placed beside the arrest victim in mobile phone group (52.7% vs. 17.2%). The positive predictive value and acceptance rate of DA-CPR in mobile phone group (84.7% and 80.6%, respectively) were significantly higher than those in landline group (79.2% and 70.9%). The proportion of good-quality bystander CPR in mobile phone group was significantly higher than that in landline group (53.5% vs. 45.0%). When analysed for all non-EMS-witnessed OHCAs, rates of 1-month survival and 1-year neurologically favourable

survival in mobile phone group (7.8% and 3.5%, respectively) were higher than those in landline phone group (4.6% and 1.9%; p < 0.05). Multiple logistic regression analysis, including other backgrounds, revealed that mobile phone calls were associated with increased 1-month survival in the subgroup of OHCAs receiving bystander CPR (adjusted odds ratio, 1.84; 95% CI, 1.15-2.92).

Conclusion: Emergency calls made using mobile phones are likely to augment the survival from OHCAs by improving DA-CPR.

Aug 8, 2016

Prof. Gavin Perkins Editor, *Resuscitation*

Dear Prof. Perkins,

We wish to express our strong appreciation to you and the reviewers again for giving us an opportunity to make a revision on our paper RESUS-D-16-00266R1 entitled" Augmented survival of out-of-hospital cardiac arrest victims with the use of mobile phones for emergency communication under the DA-CPR protocol getting information from callers beside the victim" and helpful comments.

We attach a revised version showing the marked changes and, separately list our point-by-point responses. We feel that the comments have helped us to improve the paper and hope you convey our gratitude to the reviewers.

All authors made substantial contributions to this revision, including (1) the interpretation of data, (2) revising the article critically for important intellectual content, (3) final approval of the revised version to be submitted.

Yours sincerely,

Hideo Inaba, MD, PhD, Professor and Chair Department of Emergency Medical Science, Kanazawa University Graduate School of Medicine 13-1 Takara-machi, Kanazawa, Ishikawa 920-8641, Japan Phone: +81 76-265-2825 Fax: +81 76-234-4243 Email: hidinaba@med.kanazawa-u.ac.jp

Response to Reviewers' comments

(Manuscript Number: RESUS-D-16-00266R1):

Reviewer 1:

The authors have satisfied me with regards to suitability of full article publication. After reviewing the manuscript, I support its publication in Resuscitation and am pleased we will have additional literature to inform these areas of policy and science. Thank you.

Reply: Thank you for your comments. We made a revision on our paper according to the comments from Reviewer 2. We believe that our manuscript has been improved.

Reviewer 2: Dr R. Fowler

1. You reply at number 5 still has a language error. You should revise the second sentence to say, "A potential reason for the higher incidence of tracheal intubation might be due to a longer duration of on-scene time or time during transportation in the mobile phone group." That reads better.

Reply: We corrected the part of paragraph according to your helpful comment as follows:

Moreover, the rate of performing tracheal intubation was higher in the mobile phone group. A potential reason for the higher incidence of tracheal intubation might be due to a longer duration of on-scene time or time during transportation in the mobile phone group.

2. In number 7 you still have a language problem and combine separate issues. Let me suggest that you modify the sentence this way: "Multivariate logistic regression analysis INCLUDED critical factors such as arrest witness (witnessed or unwitnessed), aetiology (presumed cardiac or non-cardiac), initial ECG rhythm (shockable or not) and BCPR (provided or not). ULTIMATELY, THOUGH the effect of mobile phone calls on 1-Y neurologically favourable survival was not significant." This way you don't combine two competing topics. Otherwise, just re-work the sentence completely.

Reply: Thank you for your comments and suggestion. These competing results or the difference in result between univariate and multivariate analyses may confuse the reader. We carefully revised the part of paragraph as follows:

As shown in Fig. 2, when data for all non-EMS-witnessed OHCAs was analysed by univariate analysis, the rates of 1-M survival and 1-Y neurologically favourable survival were significantly higher in the mobile phone group than in the landline phone group: unadjusted OR; 95% Cl, 1.84; 1.09–3.11 for 1-M survival, 1.75; 1.23–2.50 for 1-Y neurologically favourable survival. When arrest witness (witnessed or unwitnessed), aetiology (presumed cardiac or non-cardiac), initial ECG rhythm (shockable or not) and BCPR (provided or not) were included in multivariate logistic regression analysis, this analysis did not confirm the beneficial effect of mobile phone calls on 1-M survival or 1-Y neurologically favourable survival: 1.42; 0.96–2.09, 1.34; 0.73–2.40, respectively.

3. Otherwise, I am satisfied with your modifications and/or explanations.

Reply: We wish to express our strong appreciation to you for giving us an opportunity to make a further revision on our paper.

1	Augmented survival of out-of-hospital cardiac arrest victims with the use of
2	mobile phones for emergency communication under the DA-CPR protocol
3	getting information from callers beside the victim
4	
5	
6	Tetsuo Maeda, MD, PhD (1), Akira Yamashita, MD (1), (2), Yasuhiro Myojo, MD, PhD (3),
7	Yukihiro Wato, MD, PhD (4), Hideo Inaba, MD, PhD (1)
8	
9	(1) Department of Circulatory Emergency and Resuscitation Science, Kanazawa University
10	Graduate School of Medicine, Kanazawa, Ishikawa, Japan
11	(2) Department of Cardiology, Noto General Hospital, Nanao, Ishikawa, Japan
12	(3) Emergency Medical Centre, Ishikawa Prefectural Hospital, Kanazawa, Ishikawa, Japan
13	(4) Department Emergency Medicine, Kanazawa Medical University, Uchinada, Ishikawa, Japan

14	E-mail: TM; tetsumae@med.kanazawa-u.ac.jp, AY; yamashita@noto-hospital.jp, MY;
15	yasuhiromyojo@yahoo.co.jp, YW; allstar@kanazawa-med.ac.jp, HI; hidinaba@med.kanazawa-
16	u.ac.jp

Address for Correspondence:

17

18

Hideo Inaba, MD, PhD, Professor and Chair 19

- Department of Circulatory Emergency and Resuscitation Science, 20
- Kanazawa University Graduate School of Medicine 21
- 13-1 Takara-machi, Kanazawa, Ishikawa 920-8641, Japan 22
- 23 Phone: +81-76-265-2825
- Fax: +81-76-234-4243 24
- E-mail: hidinaba@med.kanazawa-u.ac.jp 25
- 26
- Word count: 2,998 27

- 28 Number of Tables: 3
- 29 Number of Figures: 3
- 30 Number of references: 29

32 Abstract

33 *Purpose:* To investigate the impacts of emergency calls made using mobile phones on the quality of dispatcher-assisted cardiopulmonary resuscitation (DA-CPR) and survival from out-of-34 hospital cardiac arrests (OHCAs) that were not witnessed by emergency medical service (EMS). 35 Methods: In this prospective study, we collected data for 2,530 DA-CPR-attempted medical 36 emergency cases (517 using mobile phones and 2,013 using landline phones) and 2,980 non-37 EMS-witnessed OHCAs (600 using mobile phones and 2,380 using landline phones). Time 38 factors and quality of DA-CPR, backgrounds of callers and outcomes of OHCAs were compared 39 between mobile and landline phone groups. 40 *Results:* Emergency calls are much more frequently placed beside the arrest victim in mobile 41 phone group (52.7% vs. 17.2%). The positive predictive value and acceptance rate of DA-CPR in 42 mobile phone group (84.7% and 80.6%, respectively) were significantly higher than those in 43 landline group (79.2% and 70.9%). The proportion of good-quality bystander CPR in mobile 44 phone group was significantly higher than that in landline group (53.5% vs. 45.0%). When 45 analysed for all non-EMS-witnessed OHCAs, rates of 1-month survival and 1-year 46

47	neurologically favourable survival in mobile phone group (7.8% and 3.5%, respectively) were
48	higher than those in landline phone group (4.6% and 1.9%; $p < 0.05$). Multiple logistic
49	regression analysis, including other backgrounds, revealed that mobile phone calls were
50	associated with increased 1-month survival in the subgroup of OHCAs receiving bystander CPR
51	(adjusted odds ratio, 1.84; 95% CI, 1.15-2.92).
52	Conclusion: Emergency calls made using mobile phones are likely to augment the survival from
53	OHCAs by improving DA-CPR.
54	

55 Word count: 250

56

57 Key words: out-of-hospital cardiac arrest, dispatcher-assisted cardiopulmonary resuscitation,

58 emergency call, mobile phone

59

61 Introduction

63	Dispatcher-assisted cardiopulmonary resuscitation (DA-CPR) may improve out-of-
64	hospital cardiac arrest (OHCA) outcome by increasing the bystander CPR (BCPR) frequency. ^{1–5}
65	To effectively administer an early BCPR, dispatchers are recommended to obtain the exact
66	information about consciousness and breathing of the patient. This crucial communication
67	between callers and dispatchers, via the phone, can be affected by various factors, such as the
68	caller's position or distance from the patient;4,5 the OHCA patient having agonal breathing,
69	anoxic convulsions or emesis; ⁴ the bystander's physical limitations or emotional stress ⁶ and the
70	bystander's lack of prior CPR training. ⁷
71	The medical control council in Ishikawa Prefecture is extremely proactive in improving
72	the quality of DA-CPR, a procedure which is associated with a better outcome of OHCA
73	patients.4, 5 A review of the advanced DA-CPR protocol5 highlighted the importance of
74	collecting accurate real-time information from the caller present in the proximity of the patient
75	and providing the appropriate CPR instructions to the caller. Therefore, we recommended that

after identification of the location of the patients, dispatchers should request the callers and
bystanders to move close to the patients with suspected cardiac arrest or any other lifethreatening emergency.⁸

Traditionally, telephonic activation of emergency medical services (EMS) has been 79 performed primarily by the use of landline phones. However, widespread use of mobile phones 80 has increased the rate of emergency calls made using mobile phones. Although there are many 81 82 disadvantages of emergency calls made using mobile phones, such as lack of precise location information, unstable signal transmission, misdirected connection to adjacent fire department and 83 running out of battery, have been reported,^{9, 10} recent advances in mobile phone technology have 84 resulted in improved quality of communication, thus decreasing some of these disadvantages.¹¹ 85 Emergency calls made using mobile phones make it easier for the caller to move closer to the 86 patient, which helps the dispatchers to give on-line feedback on BCPR. Furthermore, the recent 87 guidelines on first aid and CPR recommended that bystanders should stay at the patient side and 88 use their cell phone to activate EMS while starting CPR.^{12, 13} However, this recommendation is 89 based on theoretical consideration but not on sufficient clinical evidence. 90

91	This study aimed to elucidate whether emergency calls made using mobile phones may
92	affect the quality of DA-CPR and BCPR and the outcome of OHCAs. In this study, we
93	integrated information from two extended databases for DA-CPR and OHCA to analyse the
94	benefit of emergency calls made using mobile phones.
95	
96	Methods
97	
98	The data were collected in accordance with the national guidelines of ethics for
99	epidemiological surveys. ¹⁴ This study was approved by the review board of the Ishikawa
100	Medical Control Council.
101	
102	Populations and setting
103	

104	The Ishikawa Prefecture encompasses an area of 4,186 km ² , with a resident population of
105	1,170,000. There are 11 fire departments in this area, all of which have a single-tiered ambulance
106	dispatch system. Emergency medical technicians (EMTs) resuscitate patients with OHCA
107	according to the protocol based on the guidelines of the Japan Resuscitation Council. ¹⁵ All fire
108	departments conducted DA-CPR according to the protocol revised by the Ishikawa Medical
109	Control Council in the beginning of 2012. This revised protocol re-emphasised the following
110	procedures: i) when cardiac arrest was suspected but uncertain, dispatchers should request
111	bystanders to move close to the patients and obtain more accurate and real-time information on
112	responsiveness and respiration; ii) in cases with impending cardiac arrest, dispatchers should
113	instruct bystanders to observe the patient in their proximity and redial the emergency phone
114	number (119 in Japan) if the patient's condition deteriorates; iii) depending on other priorities of
115	the EMS system, dispatchers should stay on the telephone with any callers reporting possibly
116	life-threatening medical emergencies; iv) dispatchers should provide on-line feedback to
117	bystanders when they instruct chest-compression-only CPR.
118	EMTs are not permitted to terminate resuscitation in the field. The paramedics are

authorised to perform the following procedures during the resuscitation: i) use of supra-

120	pharyngeal airways, ii) infusion of Ringer's lactate and iii) use of semi-automated external
121	defibrillators. Since July 2004, specially trained paramedics have been permitted to insert
122	tracheal tubes under limited indication criteria; since April 2006, they have been permitted to
123	administer intravenous adrenaline. In all fire departments, each ambulance is usually boarded
124	with three or more EMTs including at least one paramedic.
125	
126	DA-CPR and patient data
127	
128	Baseline data were prospectively collected by fire departments in the Ishikawa Prefecture
129	for OHCAs from January 2012 to December 2014. The DA-CPR database included the
130	following information: time intervals (receipt of call to dispatch and receipt of call to DA-CPR),
131	backgrounds of patients and callers and information suggestive of cardiac arrest. The OHCA data
132	were collected according to the Utstein template ^{16, 17} and included the location, patient's age and
133	gender, witness status, aetiologies of arrest (presumed cardiac or not), origin of BCPR (with or
134	without DA-CPR), type of BCPR, initial cardiac rhythm, estimated time of collapse or arrest

135	recognition, time of the initiation of CPR by bystanders and EMTs, time interval between the
136	emergency call and arrival of medical help at the patient's location, sustained return of
137	spontaneous circulation (ROSC), 1-month (1-M) survival and neurologically favourable 1-year
138	(1-Y) survival determined as per the Pittsburgh cerebral performance category (CPC). Clock
139	time recordings, except those based on estimations, were recorded in seconds. In this study,
140	sustained ROSC was defined as the continuous presence of palpable pulses for more than 20 min.
141	The survival rate at 1-Y was defined as the patient being alive in a hospital at 1-Y or as the
142	patient being alive and discharged from the hospital to home or to a care or rehabilitation facility
143	within 1-Y. One-year survival with a neurologically favourable outcome was defined as a CPC
144	of one (good recovery) or two (moderate disability) in patients without any neurological
145	disturbance before the arrest event. In patients with a pre-existing neurological disturbance, the
146	neurologically favourable outcome was judged to be achieved when the final CPC was equal to
147	the pre-arrest category. The primary end-point was 1-Y survival with neurologically favourable
148	outcomes, whereas the secondary end point was 1-M survival.
149	The chest compression quality was evaluated by EMTs when they arrived at the scene.

150 The quality was considered to be good when all the following three criteria were fulfilled: i)

151	appropriate hand position, ii) a compression rate of at least 100/min and iii) a compression depth
152	of at least 2 inches (5 cm) or at least one-third of the anterior-posterior diameter of the chest.
153	The quality of chest compressions was considered to be identical to the quality of BCPR because
154	BCPR following DA-CPR was essentially chest-compression-only CPR in our community. ¹⁸
155	Moreover, EMTs ensured that bystander information, such as age and gender, relationship to the
156	OHCA patient and total number of rescuers, was collected in collaboration with dispatcher, as
157	we previously reported. ¹⁹
158	
159	Statistical analysis
160	
161	We analysed the data using JMP ver.11 Pro for Windows (SAS institute, Cary, NC). The
162	chi-squared test with and without Yates' correction or Fisher exact probability tests were applied
163	for univariate analyses. The Kruskal-Wallis test was used for non-parametric comparisons. We
164	used a multiple logistic regression analysis to identify the factors associated with good-quality

165	BCPR.	In al	ll analyses,	p	< 0.05	was	considered	to be	e significant.	Odds ratio	(OR)	and	95%
-----	-------	-------	--------------	---	--------	-----	------------	-------	----------------	------------	------	-----	-----

166 confidence interval (95% CI) were shown when they were defined.

Results

Overview

172	As illustrated at the top of Fig. 1, DA-CPR was attempted in 3,012 cases. Of these, 482
173	cases were not transported to a hospital because of the presence of post-mortem changes and
174	were excluded from analysis. Of 2,530 cases that were transported to hospital, emergency calls
175	for 517 cases were made using mobile phones and for 2,013 cases using landline phones. Of the
176	total cases, 79 (15.2%) in the mobile phone group and 419 (20.8%) in the landline phone group
177	were not in cardiac arrest. The rates of bystander agreeing to perform DA-CPR (the acceptance

the landline group that presented with cardiac arrest on EMS arrival at patients.

180	As shown in the middle panel of Fig. 1, bystander initiated CPR without DA-CPR was
181	administered to only 53 (8.8%) of 600 non-EMS-witnessed OHCA cases in the mobile phone
182	group and 296 (12.4%) of 2,380 cases in the landline phone group. The lack of BCPR could be
183	attributed to the inability to provide DA-CPR for 109 (56.2%) of 194 cases in the mobile phone
184	group and 490 (51.4%) of 954 cases in the landline phone group. DA-CPR was attempted in 438
185	(73.0%) of 600 non-EMT-witnessed OHCA cases in the mobile phone group and in 1,594
186	(67.0%) of 2,380 OHCA cases in the landline phone group. The overall rate of BCPR in our
187	community was 61.5% (1,832/2,980), of which 67.7% (406/600) were in the mobile phone group
188	and 59.9% (1,426/2,380) in the landline phone group.
189	Parameters and indexes related to DA-CPR and BCPR have been summarized in Table 1.

190 Positive predictive value and acceptance rate of DA-CPR were found to be significantly higher

- in the mobile phone group than in the landline phone group: unadjusted OR; 95% CI, 1.46; 1.12–
- 192 1.90 for positive predictive value, 1.71; 1.31–2.11 for acceptance rate of DA-CPR.

194 Backgrounds and time factors of DA-CPR (Table 2)

196	We compared the backgrounds and time factors of DA-CPR between landline and mobile
197	phone groups using the DA-CPR database. The patients in the mobile phone group were
198	significantly younger than those in the landline phone group. Time intervals between receipt of
199	call and dispatch and between receipt of call and DA-CPR were longer in the mobile phone
200	group than in the landline phone group. However, there was no significant difference in the
201	receipt of call to EMS arrival at patient's location between the two groups. Proportion of
202	emergency calls from third parties including police officers or persons in the other locations than
203	the arrest scene was much higher in the landline phone group than in the mobile phone group.
204	Both responsiveness and respiration were more frequently unknown in the landline phone group.
205	Callers in the landline phone group rarely (2.9%, 58/2,013) redialled using mobile phone to
206	move closer to the patient.

208 Backgrounds and time factors of non-EMS-witnessed OHCA (Table 3)

209

210	We compared the backgrounds and time factors of non-EMS-witnessed OHCA between
211	landline and mobile phone group using the OHCA database. Patients in the mobile phone group
212	were found to be younger and more frequently male than those in landline phone group. OHCA
213	more frequently occurred at home, and the aetiology of OHCA was more frequently presumed to
214	be cardiac in the landline phone group. The bystanders were most likely to be families or
215	relatives in the landline phone group. As expected, emergency calls made from patient's close
216	proximity were found majorly in the mobile phone group. Proportions of BCPR administration
217	and good quality of BCPR were found to be higher in the mobile group. Shockable initial rhythm
218	was more frequently recorded in the mobile phone group along with a higher rate of performing
219	tracheal intubation. The time interval between witness/recognition and call was shorter; however,
220	the duration of transportation was longer in the mobile phone group.

221

222 Outcomes of non-EMS-witnessed OHCA

224	As shown in Fig. 2, when data for all non-EMS-witnessed OHCAs was analysed by
225	univariate analysis, the rates of 1-M survival and 1-Y neurologically favourable survival were
226	significantly higher in the mobile phone group than in the landline phone group: unadjusted OR;
227	95% CI, 1.84; 1.09-3.11 for 1-M survival, 1.75; 1.23-2.50 for 1-Y neurologically favourable
228	survival. When arrest witness (witnessed or unwitnessed), aetiology (presumed cardiac or non-
229	cardiac), initial ECG rhythm (shockable or not) and BCPR (provided or not) were included in
230	multivariate logistic regression analysis, this analysis did not confirm the beneficial effect of
231	mobile phone calls on 1-M survival or 1-Y neurologically favourable survival: 1.42; 0.96–2.09,
232	1.34; 0.73–2.40, respectively.
233	When we analysed non-EMS-witnessed OHCA cases receiving BCPR by univariate
234	analysis, we found that the 1-M survival rate in the mobile phone group was significantly higher
235	than that in the landline phone group (unadjusted OR, 2.24; 95% CI, 1.47-3.43). As shown in
236	Fig. 3, multivariable logistic regression analysis, including arrest witness, aetiology and initial
237	ECG rhythm, confirmed the advantage of mobile phone calls (adjusted OR, 1.84; 95% CI, 1.15-

238	2.92). Adjusted OR (95% CI) was 1.81 (1.12-2.88) even when the quality of BCPR, arrest
239	location (home or others) and age group of callers (>60 years or not) were added to the factors
240	included in the analysis.

Discussion

244	In this study, we showed that the following indexes related to DA-CPR and BCPR were
245	improved when emergency calls were made using a mobile phone under a DA-CPR protocol
246	obtaining information from callers in proximity to the cardiac arrest victim: positive predictive
247	value and acceptance rate of DA-CPR, overall rate of BCPR and rate of BCPR with good quality.
248	Furthermore, responsiveness and respiration were less frequently unknown when the emergency
249	call was made using a mobile phone. Moreover, the rate of performing tracheal intubation was
250	higher in the mobile phone group. A potential reason for the higher incidence of tracheal
251	intubation might be due to a longer duration of on-scene time or time during transportation in the
252	mobile phone group. Although presumed cardiac aetiology was less frequently recorded, the

253	initial rhythm was more frequently shockable in the mobile phone group. Finally, in univariate
254	analysis, emergency calls made using mobile phones were associated with better outcomes
255	including higher rates of 1-M survival and neurologically favourable 1-Y survival in all non-
256	EMS-witnessed OHCAs and higher rate of 1-M survival in the subgroup receiving BCPR. In
257	multiple logistic regression analysis, the beneficial effects of emergency calls made using mobile
258	phones on long term outcomes were not significant for all non-EMS-witnessed OHCAs, but the
259	effect on 1-M survival from the OHCA receiving BCPR was significant.
260	We found disadvantages of emergency calls made using mobile phones. The time
261	intervals between receipt of call and dispatch and between receipt of call and DA-CPR were
262	slightly but significantly prolonged, compared with calls made using landline phones. Most of
263	the dispatch systems in our fire departments have the latest data for landline phone number and
264	address in the community. When the system receives a landline emergency call, it automatically
265	displays the address. When the system receives a mobile phone emergency call, it obtains only
266	rough GPS location, which requires the dispatchers to explore the exact location using a digital
267	map. This difference in the identification process for the location of the patient is the main

reason for the prolonged time intervals. Improvement of GPS accuracy as reported in the urban
area of Japan may minimize this disadvantage.²⁰

270	Despite these disadvantages, our data suggest that there may be a benefit of using mobile
271	phones to activate EMS in all areas where signal stability is available. Recently, guidelines on
272	first aid and CPR in UK^{21-23} recommended the callers to stay with the arrest victim and to
273	activate the speaker phone function. These actions were easily adopted by the callers with mobile
274	and wireless landline phones. However, in our study population, it was observed that bystanders
275	do not necessarily place an emergency call when they are in the proximity of the patient.
276	Furthermore, elderly bystanders are often unaware of how to activate speaker phone function. ²⁴
277	We disclosed that emergency calls are much more frequently placed beside the arrest victim
278	when bystanders use a mobile phone. Moreover, this is the biggest advantage of the mobile
279	phones that associated with the improved qualities of DA-CPR and BCPR. Therefore, it is
280	recommended that educational course for basic life support should include the emphasis on
281	placing an emergency call within close proximity of the arrest victims using mobile or wireless
282	landline phones and educating them about how to activate speaker phone function.

283	A single rescuer with no mobile phone is recommended to perform BCPR for 2 min
284	before making emergency call in the cases of unwitnessed paediatric OHCA (CPR-first action).
285	²⁵ In the other OHCA cases, it is recommended to activate EMS first and then to perform BCPR
286	(call-first action). ^{12, 13} Our previous study demonstrated that immediate BCPR that was initiated
287	without DA-CPR and followed by an emergency call without a large delay was associated with a
288	better outcome of bystander-witnessed OHCAs in nonelderly patients and of noncardiac
289	aetiology. ²⁶ In these cases, mobile phones may allow these well trained rescuers to perform
290	BCPR and to activate EMS simultaneously.
291	
292	Limitations
293	
294	First, although our data were derived from a 3-year prospective cohort database in our
295	community with a population of approximately one million, the number of OHCAs was too

- small to clarify the definitive effects of mobile phone calls on the study outcomes. Second,
- 297 younger bystanders appeared to use mobile phones more frequently. It is highly possible that this

298	difference may influence the quality of BCPR and DA-CPR ²⁷ and its outcome, although multiple
299	logistic regression analysis, including the bystander's age, confirmed the beneficial effect of
300	mobile phone calls on 1-M survival in non-EMS-witnessed OHCAs receiving BCPR. Finally, it
301	was difficult to obtain the information of bystanders' previous training experience for basic life
302	support (BLS) in all non-EMS-witnessed OHCAs, which may influence their willingness to
303	perform CPR and quality of BCPR. ^{28, 29}

305 **Conclusions**

306

Emergency calls made using mobile phones are likely to augment the short term survival from OHCAs by improving the acceptance rate and quality of DA-CPR. It should be instructed in BLS training courses that an emergency call should be made from close proximity of the patient. Accordingly, we have made changes to our DA-CPR protocol by adding clear statements that the dispatchers should request bystanders to redial 119 using mobile or wireless phones after

312	they move close to the patients and to activate the speaker phone function when cardiac arrest
313	was suspected, but not confirmed.
314	
315	Conflict of interest
316	
317	The authors declare no conflict of interest to disclose.
318	
319	Acknowledgements
320	
321	We would like to thank all the EMS personnel in Ishikawa Prefecture for their
322	cooperation. TM and AY equally contributed to this article as the first authors.
323	
324	

References

327	1.	Rea TD, Eisenberg MS, Culley LL, Becker L. Dispatcher-assisted cardiopulmonary
328		resuscitation and survival in cardiac arrest. Circulation 2001;104:2513-6.
329	2.	Vaillancourt C, Verma A, Trickett J, et al. Evaluating the effectiveness of dispatch-assisted
330		cardiopulmonary resuscitation instructions. Acad Emerg Med 2007;14:877-83.
331	3.	Bohm K, Vaillancourt C, Charette ML, Dunford J, Castrén M. In patients with out-of-
332		hospital cardiac arrest, does the provision of dispatch cardiopulmonary resuscitation
333		instructions as opposed to no instructions improve outcome: A systematic review of the
334		literature. Resuscitation 2011;82:1483-9.
335	4.	Tanaka Y, Taniguchi J, Wato Y, Yoshida Y, Inaba H. The continuous quality improvement
336		project for telephone-assisted instruction of cardiopulmonary resuscitation increased the
337		incidence of bystander CPR and improved the outcomes of out-of-hospital cardiac arrests.
338		Resuscitation 2012;83:1235-41.
339	5.	Tanaka Y, Nishi T, Takase K, et al. Survey of a protocol to increase appropriate
340		implementation of dispatcher-assisted cardiopulmonary resuscitation for out-of-hospital
341		cardiac arrest. Circulation 2014;129:1751-60.
342	6.	Hauff SR, Rea TD, Culley LL, et al. Factors impeding dispatcher-assisted telephone
343		cardiopulmonary resuscitation. Ann Emerg Med 2003;42:731-7.
344	7.	Kellermann AL, Hackman BB, Somes G. Dispatcher-assisted cardiopulmonary resuscitation
345		Validation of efficacy. Circulation 1989;80:1231-9.

346	8.	Takei Y, Nishi T, Kamikura T, et al. Do early emergency calls before patient collapse
347		improve survival after out-of-hospital cardiac arrest? Resuscitation 2015;88:20-7.
348	9.	Calling the Emergency Call Service from a mobile phone: FAQs. Australian
349		Communications and Media Authority, 2015. (Accessed 18 February 2016, at External link
350		http://www.acma.gov.au/theACMA/calling-the-emergency-call-service-from-a-mobile-
351		phonefaqs)
352	10	. Kyoto Prefecture Police Headquarters. Dial 110 emergency call placed by mobile phone.
353		Kyoto Prefecture Police, 2015. (Accessed 18 February 2016, at External link
354		http://www.pref.kyoto.jp/fukei/foreign/tusi_c/110/mobile.html)
355	11	. Strategies for future spectrum management in Japan. Ministry of Internal Affairs and
356		Communications, Japan, 2007. (Accessed 18 February 2016, at External link
357		http://www.soumu.go.jp/main_sosiki/joho_tsusin/eng/presentation/pdf/070713_1.pdf)
358	12	. Kleinman ME, Brennan EE, Goldberger ZD, et al. Part 5: Adult Basic Life Support and
359		Cardiopulmonary Resuscitation Quality: 2015 American Heart Association Guidelines
360		Update for Cardiopulmonary resuscitation and Emergency Cardiovascular Care. Circulation
361		2015;132:S414-35.
362	13	. Perkins GD, Handley AJ, Koster RW, et al. European Resuscitation Council Guidelines for
363		Resuscitation 2015: Section 2. Adult basic life support and automated external defibrillation.
364		Resuscitation 2015;95:81-99.
365	14	. Ministry of Education, Culture, Sports, Science and Technology. Ethical guidelines for
366		epidemiological research. Ministry of Health, Labour and Welfare, Japan, 2002. (Accessed
367		18 February 2016, at External link <u>http://www.niph.go.jp/wadai/ekigakurinri/guidelines.pdf</u>)

368	15. Working Group of Japan resuscitation Council. JRC guidelines 2010. Japan Resuscitation
369	Council, 2010. (Accessed 18 February 2016, at External link
370	http://www.qqzaidan.jp/pdf_5/guideline1_BLS_kakutei.pdf)
371	16. Chamberlain D, Cummins RO, Abramson N, et al. Recommended Guidelines for uniform
372	reporting of data from out-of-hospital cardiac arrest: the 'Utstein style': Prepared by a Task
373	Force of Representatives from the European Resuscitation Council, American Heart
374	Association, Heart and Stroke Foundation of Canada, Australian Resuscitation Council.
375	Resuscitation 1991;22:1-29.
376	17. Jacobs I, Nadkarni V, Bahr J, the ILCOR Task Force on Cardiac Arrest and
377	Cardiopulmonary Resuscitation Outcomes. Cardiac Arrest and Cardiopulmonary
378	Resuscitation Outcome Reports: Update and Simplification of the Utstein Templates for
379	Resuscitation Registries: a Statement for Healthcare Professionals from a Task Force of the
380	International Liaison Committee on Resuscitation. Circulation 2004;110:3385–97.
381	18. Takei Y, Nishi T, Matsubara H, Hashimoto M, Inaba H. Factors associated with quality of
382	bystander CPR: The presence of multiple rescuers and bystander-initiated CPR without
383	instruction. Resuscitation 2014;85:492-8.
384	19. Nishi T, Maeda T, Takase K, et al. Does the number of rescuers affect the survival rate from
385	out-of-hospital cardiac arrests? Two or more rescuers are not always better than one.
386	Resuscitation 2013;84:154-61.
387	20. Takeuchi Y. Director of Space Communications Policy Division. Space Communications
388	Policies in Japan. Ministry of Internal Affairs and Communications, Japan, 2006. (Accessed

389 18 February 2016, at External link

- 390 <u>http://www.soumu.go.jp/main_sosiki/joho_tsusin/eng/presentation/pdf/070713_1.pdf</u>)
- 21. 5 Ways a Mobile Phone can save your life. REAL First Aid ltd, UK, 2015. (Accessed 18
- 392 February 2016, at External link <u>http://www.realfirstaid.co.uk/mobile-phone/)</u>
- 393 22. Working Group of the Resuscitation Council (UK). Adult basic life support and automated
- external defibrillation. Resuscitation Council (UK), 2015. (Accessed 18 February 2016, at
- 395 External link <u>https://www.resus.org.uk/resuscitation-guidelines/adult-basic-life-support-and-</u>
- 396 <u>automated-external-defibrillation/#sequence)</u>
- 23. Working Group of Resuscitation Council (UK). Guidelines 2010. Resuscitation Council
- 398 (UK), 2010. (Accessed 18 February 2016, at External link
- 399 <u>https://www.resus.org.uk/archive/guidelines-2010/</u>)
- 400 24. Birkenes TS, Myklebust H, Kramer-Johansen J. Time delays and capability of elderly to
- 401 activate speaker function for continuous telephone CPR. Scand J Trauma Resusc Emerg Med.
 402 2013;21:40.
- 403 25. Atkins DL, Berger S, Duff JP, et al. Part 11: Pediatric Basic Life Support and
- 404 Cardiopulmonary Resuscitation Quality: 2015 American Heart Association Guidelines
- 405 Update for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Cirlucation
 406 2015;132:8519-25.
- 407 26. Kamikura T, Iwasaki H, Myojo Y, et al. Advantage of CPR-first over call-first actions for
- 408 out-of-hospital cardiac arrests in nonelderly patients and on noncardiac aetiology.
- 409 Resuscitation 2015;96:37-45.

410	27. Enami M, Takei Y, Inaba H, et al. Differential effects of ageing and BLS training experience
411	on attitude towards basic life support. Resuscitation 2011;82:577-83.
412	28. Enami M, Takei Y, Goto Y, Ohta K, Inaba H. The effects of the new CPR guideline on
413	attitude toward basic life support in Japan. Resuscitation 2010;81:562-7.
414	29. Ro YS, Shin SD, Song KJ, et al. Public awareness and self-efficacy of cardiopulmonary
415	resuscitation in communities and outcomes of out-of-hospital cardiac arrest: A multi-level
416	analysis. Resuscitation 2016;102:17-24.
417	
418	

420	Figure	legends:
-----	--------	----------

422	Figure 1: Overview	of the study design.
-----	--------------------	----------------------

- 423 Analysis of data related to dispatcher-assisted cardiopulmonary resuscitation begins from the top,
- 424 and analysis of data pertaining to non-EMS-witnessed out-of-hospital cardiac arrest (OHCA)
- 425 cases starts from the bottom.

426

427	Figure 2:	Outcomes	of non-EMS	-witnessed	OHCAs	where	emergency	calls v	were m	lade

- 428 using mobile and landline phones.
- 429 Closed star symbols indicate significant difference by chi-square test or Fisher's exact
- 430 probability test.

431

- 432 Figure 3: Multivariate logistic regression analysis for 1-month survival from non-EMS-
- 433 witnessed OHCAs receiving BCPR.

434

1	Augmented survival of out-of-hospital cardiac arrest victims with the use of
2	mobile phones for emergency communication under the DA-CPR protocol
3	getting information from callers beside the victim
4	
5	
6	Tetsuo Maeda, MD, PhD (1), Akira Yamashita, MD (1), (2), Yasuhiro Myojo, MD, PhD (3),
7	Yukihiro Wato, MD, PhD (4), Hideo Inaba, MD, PhD (1)
8	
9	(1) Department of Circulatory Emergency and Resuscitation Science, Kanazawa University
10	Graduate School of Medicine, Kanazawa, Ishikawa, Japan
11	(2) Department of Cardiology, Noto General Hospital, Nanao, Ishikawa, Japan
12	(3) Emergency Medical Centre, Ishikawa Prefectural Hospital, Kanazawa, Ishikawa, Japan
13	(4) Department Emergency Medicine, Kanazawa Medical University, Uchinada, Ishikawa, Japan

- 14 E-mail: TM; tetsumae@med.kanazawa-u.ac.jp, AY; yamashita@noto-hospital.jp, MY;
- 15 yasuhiromyojo@yahoo.co.jp, YW; allstar@kanazawa-med.ac.jp, HI; hidinaba@med.kanazawa-
- 16 <u>u.ac.jp</u>
- 17
- 18 Address for Correspondence:
- 19 Hideo Inaba, MD, PhD, Professor and Chair
- 20 Department of Circulatory Emergency and Resuscitation Science,
- 21 Kanazawa University Graduate School of Medicine
- 22 13-1 Takara-machi, Kanazawa, Ishikawa 920-8641, Japan
- 23 Phone: +81-76-265-2825
- 24 Fax: +81-76-234-4243
- 25 E-mail: hidinaba@med.kanazawa-u.ac.jp
- 26

27 <u>Word count: 2,998</u>

- 28 Number of Tables: 3
- 29 Number of Figures: 3
- 30 Number of references: 29

32 Abstract

33 *Purpose:* To investigate the impacts of emergency calls made using mobile phones on the quality of dispatcher-assisted cardiopulmonary resuscitation (DA-CPR) and survival from out-of-34 hospital cardiac arrests (OHCAs) that were not witnessed by emergency medical service (EMS). 35 Methods: In this prospective study, we collected data for 2,530 DA-CPR-attempted medical 36 emergency cases (517 using mobile phones and 2,013 using landline phones) and 2,980 non-37 EMS-witnessed OHCAs (600 using mobile phones and 2,380 using landline phones). Time 38 factors and quality of DA-CPR, backgrounds of callers and outcomes of OHCAs were compared 39 between mobile and landline phone groups. 40 *Results:* Emergency calls are much more frequently placed beside the arrest victim in mobile 41 phone group (52.7% vs. 17.2%). The positive predictive value and acceptance rate of DA-CPR in 42 mobile phone group (84.7% and 80.6%, respectively) were significantly higher than those in 43 landline group (79.2% and 70.9%). The proportion of good-quality bystander CPR in mobile 44 phone group was significantly higher than that in landline group (53.5% vs. 45.0%). When 45 analysed for all non-EMS-witnessed OHCAs, rates of 1-month survival and 1-year 46

47	neurologically favourable survival in mobile phone group (7.8% and 3.5%, respectively) were
48	higher than those in landline phone group (4.6% and 1.9%; $p < 0.05$). Multiple logistic
49	regression analysis, including other backgrounds, revealed that mobile phone calls were
50	associated with increased 1-month survival in the subgroup of OHCAs receiving bystander CPR
51	(adjusted odds ratio, 1.84; 95% CI, 1.15-2.92).
52	Conclusion: Emergency calls made using mobile phones are likely to augment the survival from
53	OHCAs by improving DA-CPR.
54	

55 Word count: 250

56

57 Key words: out-of-hospital cardiac arrest, dispatcher-assisted cardiopulmonary resuscitation,

58 emergency call, mobile phone

59

61 Introduction

63	Dispatcher-assisted cardiopulmonary resuscitation (DA-CPR) may improve out-of-
64	hospital cardiac arrest (OHCA) outcome by increasing the bystander CPR (BCPR) frequency. ^{1–5}
65	To effectively administer an early BCPR, dispatchers are recommended to obtain the exact
66	information about consciousness and breathing of the patient. This crucial communication
67	between callers and dispatchers, via the phone, can be affected by various factors, such as the
68	caller's position or distance from the patient; ^{4, 5} the OHCA patient having agonal breathing,
69	anoxic convulsions or emesis; ⁴ the bystander's physical limitations or emotional stress ⁶ and the
70	bystander's lack of prior CPR training. ⁷
71	The medical control council in Ishikawa Prefecture is extremely proactive in improving
72	the quality of DA-CPR, a procedure which is associated with a better outcome of OHCA
73	patients.4, 5 A review of the advanced DA-CPR protocol5 highlighted the importance of
74	collecting accurate real-time information from the caller present in the proximity of the patient
75	and providing the appropriate CPR instructions to the caller. Therefore, we recommended that

after identification of the location of the patients, dispatchers should request the callers and
bystanders to move close to the patients with suspected cardiac arrest or any other lifethreatening emergency.⁸

Traditionally, telephonic activation of emergency medical services (EMS) has been 79 performed primarily by the use of landline phones. However, widespread use of mobile phones 80 has increased the rate of emergency calls made using mobile phones. Although there are many 81 82 disadvantages of emergency calls made using mobile phones, such as lack of precise location information, unstable signal transmission, misdirected connection to adjacent fire department and 83 running out of battery, have been reported,^{9, 10} recent advances in mobile phone technology have 84 resulted in improved quality of communication, thus decreasing some of these disadvantages.¹¹ 85 Emergency calls made using mobile phones make it easier for the caller to move closer to the 86 patient, which helps the dispatchers to give on-line feedback on BCPR. Furthermore, the recent 87 guidelines on first aid and CPR recommended that bystanders should stay at the patient side and 88 use their cell phone to activate EMS while starting CPR.^{12, 13} However, this recommendation is 89 based on theoretical consideration but not on sufficient clinical evidence. 90

91	This study aimed to elucidate whether emergency calls made using mobile phones may
92	affect the quality of DA-CPR and BCPR and the outcome of OHCAs. In this study, we
93	integrated information from two extended databases for DA-CPR and OHCA to analyse the
94	benefit of emergency calls made using mobile phones.
95	
96	Methods
97	
98	The data were collected in accordance with the national guidelines of ethics for
99	epidemiological surveys. ¹⁴ This study was approved by the review board of the Ishikawa
100	Medical Control Council.
101	
102	Populations and setting
103	

104	The Ishikawa Prefecture encompasses an area of 4,186 km ² , with a resident population of
105	1,170,000. There are 11 fire departments in this area, all of which have a single-tiered ambulance
106	dispatch system. Emergency medical technicians (EMTs) resuscitate patients with OHCA
107	according to the protocol based on the guidelines of the Japan Resuscitation Council. ¹⁵ All fire
108	departments conducted DA-CPR according to the protocol revised by the Ishikawa Medical
109	Control Council in the beginning of 2012. This revised protocol re-emphasised the following
110	procedures: i) when cardiac arrest was suspected but uncertain, dispatchers should request
111	bystanders to move close to the patients and obtain more accurate and real-time information on
112	responsiveness and respiration; ii) in cases with impending cardiac arrest, dispatchers should
113	instruct bystanders to observe the patient in their proximity and redial the emergency phone
114	number (119 in Japan) if the patient's condition deteriorates; iii) depending on other priorities of
115	the EMS system, dispatchers should stay on the telephone with any callers reporting possibly
116	life-threatening medical emergencies; iv) dispatchers should provide on-line feedback to
117	bystanders when they instruct chest-compression-only CPR.
118	EMTs are not permitted to terminate resuscitation in the field. The paramedics are

authorised to perform the following procedures during the resuscitation: i) use of supra-

120	pharyngeal airways, ii) infusion of Ringer's lactate and iii) use of semi-automated external
121	defibrillators. Since July 2004, specially trained paramedics have been permitted to insert
122	tracheal tubes under limited indication criteria; since April 2006, they have been permitted to
123	administer intravenous adrenaline. In all fire departments, each ambulance is usually boarded
124	with three or more EMTs including at least one paramedic.
125	
126	DA-CPR and patient data
127	
128	Baseline data were prospectively collected by fire departments in the Ishikawa Prefecture
129	for OHCAs from January 2012 to December 2014. The DA-CPR database included the
130	following information: time intervals (receipt of call to dispatch and receipt of call to DA-CPR),
131	backgrounds of patients and callers and information suggestive of cardiac arrest. The OHCA data
132	were collected according to the Utstein template ^{16, 17} and included the location, patient's age and
133	gender, witness status, aetiologies of arrest (presumed cardiac or not), origin of BCPR (with or
134	without DA-CPR), type of BCPR, initial cardiac rhythm, estimated time of collapse or arrest

135	recognition, time of the initiation of CPR by bystanders and EMTs, time interval between the
136	emergency call and arrival of medical help at the patient's location, sustained return of
137	spontaneous circulation (ROSC), 1-month (1-M) survival and neurologically favourable 1-year
138	(1-Y) survival determined as per the Pittsburgh cerebral performance category (CPC). Clock
139	time recordings, except those based on estimations, were recorded in seconds. In this study,
140	sustained ROSC was defined as the continuous presence of palpable pulses for more than 20 min.
141	The survival rate at 1-Y was defined as the patient being alive in a hospital at 1-Y or as the
142	patient being alive and discharged from the hospital to home or to a care or rehabilitation facility
143	within 1-Y. One-year survival with a neurologically favourable outcome was defined as a CPC
144	of one (good recovery) or two (moderate disability) in patients without any neurological
145	disturbance before the arrest event. In patients with a pre-existing neurological disturbance, the
146	neurologically favourable outcome was judged to be achieved when the final CPC was equal to
147	the pre-arrest category. The primary end-point was 1-Y survival with neurologically favourable
148	outcomes, whereas the secondary end point was 1-M survival.
149	The chest compression quality was evaluated by EMTs when they arrived at the scene.

150 The quality was considered to be good when all the following three criteria were fulfilled: i)

151	appropriate hand position, ii) a compression rate of at least 100/min and iii) a compression depth
152	of at least 2 inches (5 cm) or at least one-third of the anterior-posterior diameter of the chest.
153	The quality of chest compressions was considered to be identical to the quality of BCPR because
154	BCPR following DA-CPR was essentially chest-compression-only CPR in our community. ¹⁸
155	Moreover, EMTs ensured that bystander information, such as age and gender, relationship to the
156	OHCA patient and total number of rescuers, was collected in collaboration with dispatcher, as
157	we previously reported. ¹⁹
158	
159	Statistical analysis
160	
161	We analysed the data using JMP ver.11 Pro for Windows (SAS institute, Cary, NC). The
162	chi-squared test with and without Yates' correction or Fisher exact probability tests were applied
163	for univariate analyses. The Kruskal-Wallis test was used for non-parametric comparisons. We
164	used a multiple logistic regression analysis to identify the factors associated with good-quality

165	BCPR.	In al	l analyses,	р	< 0.05	was	considered	to be	e significant.	Odds ratio	(OR)) and	95%
-----	-------	-------	-------------	---	--------	-----	------------	-------	----------------	------------	------	-------	-----

166 confidence interval (95% CI) were shown when they were defined.

Results

Overview

172	As illustrated at the top of Fig. 1, DA-CPR was attempted in 3,012 cases. Of these, 482
173	cases were not transported to a hospital because of the presence of post-mortem changes and
174	were excluded from analysis. Of 2,530 cases that were transported to hospital, emergency calls
175	for 517 cases were made using mobile phones and for 2,013 cases using landline phones. Of the
176	total cases, 79 (15.2%) in the mobile phone group and 419 (20.8%) in the landline phone group
177	were not in cardiac arrest. The rates of bystander agreeing to perform DA-CPR (the acceptance

the landline group that presented with cardiac arrest on EMS arrival at patients.

180	As shown in the middle panel of Fig. 1, bystander initiated CPR without DA-CPR was
181	administered to only 53 (8.8%) of 600 non-EMS-witnessed OHCA cases in the mobile phone
182	group and 296 (12.4%) of 2,380 cases in the landline phone group. The lack of BCPR could be
183	attributed to the inability to provide DA-CPR for 109 (56.2%) of 194 cases in the mobile phone
184	group and 490 (51.4%) of 954 cases in the landline phone group. DA-CPR was attempted in 438
185	(73.0%) of 600 non-EMT-witnessed OHCA cases in the mobile phone group and in 1,594
186	(67.0%) of 2,380 OHCA cases in the landline phone group. The overall rate of BCPR in our
187	community was 61.5% (1,832/2,980), of which 67.7% (406/600) were in the mobile phone group
188	and 59.9% (1,426/2,380) in the landline phone group.
189	Parameters and indexes related to DA-CPR and BCPR have been summarized in Table 1.

190 Positive predictive value and acceptance rate of DA-CPR were found to be significantly higher

- in the mobile phone group than in the landline phone group: unadjusted OR; 95% CI, 1.46; 1.12–
- 192 1.90 for positive predictive value, 1.71; 1.31–2.11 for acceptance rate of DA-CPR.

194 Backgrounds and time factors of DA-CPR (Table 2)

196	We compared the backgrounds and time factors of DA-CPR between landline and mobile
197	phone groups using the DA-CPR database. The patients in the mobile phone group were
198	significantly younger than those in the landline phone group. Time intervals between receipt of
199	call and dispatch and between receipt of call and DA-CPR were longer in the mobile phone
200	group than in the landline phone group. However, there was no significant difference in the
201	receipt of call to EMS arrival at patient's location between the two groups. Proportion of
202	emergency calls from third parties including police officers or persons in the other locations than
203	the arrest scene was much higher in the landline phone group than in the mobile phone group.
204	Both responsiveness and respiration were more frequently unknown in the landline phone group.
205	Callers in the landline phone group rarely (2.9%, 58/2,013) redialled using mobile phone to
206	move closer to the patient.

208 Backgrounds and time factors of non-EMS-witnessed OHCA (Table 3)

209

210	We compared the backgrounds and time factors of non-EMS-witnessed OHCA between
211	landline and mobile phone group using the OHCA database. Patients in the mobile phone group
212	were found to be younger and more frequently male than those in landline phone group. OHCA
213	more frequently occurred at home, and the aetiology of OHCA was more frequently presumed to
214	be cardiac in the landline phone group. The bystanders were most likely to be families or
215	relatives in the landline phone group. As expected, emergency calls made from patient's close
216	proximity were found majorly in the mobile phone group. Proportions of BCPR administration
217	and good quality of BCPR were found to be higher in the mobile group. Shockable initial rhythm
218	was more frequently recorded in the mobile phone group along with a higher rate of performing
219	tracheal intubation. The time interval between witness/recognition and call was shorter; however,
220	the duration of transportation was longer in the mobile phone group.

221

222 Outcomes of non-EMS-witnessed OHCA

224	As shown in Fig. 2, when data for all non-EMS-witnessed OHCAs was analysed by
225	univariate analysis, the rates of 1-M survival and 1-Y neurologically favourable survival were
226	significantly higher in the mobile phone group than in the landline phone group: unadjusted OR;
227	95% CI, 1.84; 1.09-3.11 for 1-M survival, 1.75; 1.23-2.50 for 1-Y neurologically favourable
228	survival. When arrest witness (witnessed or unwitnessed), aetiology (presumed cardiac or non-
229	cardiac), initial ECG rhythm (shockable or not) and BCPR (provided or not) were included in
230	multivariate logistic regression analysis, this analysis did not confirm the beneficial effect of
231	mobile phone calls on 1-M survival or 1-Y neurologically favourable survival: 1.42; 0.96-2.09,
232	<u>1.34; 0.73–2.40, respectively.</u>
233	When we analysed non-EMS-witnessed OHCA cases receiving BCPR by univariate
234	analysis, we found that the 1-M survival rate in the mobile phone group was significantly higher
235	than that in the landline phone group (unadjusted OR, 2.24; 95% CI, 1.47-3.43). As shown in
236	Fig. 3, multivariable logistic regression analysis, including arrest witness, aetiology and initial
237	ECG rhythm, confirmed the advantage of mobile phone calls (adjusted OR, 1.84; 95% CI, 1.15-

238	2.92). Adjusted OR (95% CI) was 1.81 (1.12-2.88) even when the quality of BCPR, arrest
239	location (home or others) and age group of callers (>60 years or not) were added to the factors
240	included in the analysis.

Discussion

244	In this study, we showed that the following indexes related to DA-CPR and BCPR were
245	improved when emergency calls were made using a mobile phone under a DA-CPR protocol
246	obtaining information from callers in proximity to the cardiac arrest victim: positive predictive
247	value and acceptance rate of DA-CPR, overall rate of BCPR and rate of BCPR with good quality.
248	Furthermore, responsiveness and respiration were less frequently unknown when the emergency
249	call was made using a mobile phone. Moreover, the rate of performing tracheal intubation was
250	higher in the mobile phone group. A potential reason for the higher incidence of tracheal
251	intubation might be due to a longer duration of on-scene time or time during transportation in the
252	mobile phone group. Although presumed cardiac aetiology was less frequently recorded, the

253	initial rhythm was more frequently shockable in the mobile phone group. Finally, in univariate
254	analysis, emergency calls made using mobile phones were associated with better outcomes
255	including higher rates of 1-M survival and neurologically favourable 1-Y survival in all non-
256	EMS-witnessed OHCAs and higher rate of 1-M survival in the subgroup receiving BCPR. In
257	multiple logistic regression analysis, the beneficial effects of emergency calls made using mobile
258	phones on long term outcomes were not significant for all non-EMS-witnessed OHCAs, but the
259	effect on 1-M survival from the OHCA receiving BCPR was significant.
260	We found disadvantages of emergency calls made using mobile phones. The time
261	intervals between receipt of call and dispatch and between receipt of call and DA-CPR were
262	slightly but significantly prolonged, compared with calls made using landline phones. Most of
263	the dispatch systems in our fire departments have the latest data for landline phone number and
264	address in the community. When the system receives a landline emergency call, it automatically
265	displays the address. When the system receives a mobile phone emergency call, it obtains only
266	rough GPS location, which requires the dispatchers to explore the exact location using a digital
267	map. This difference in the identification process for the location of the patient is the main

reason for the prolonged time intervals. Improvement of GPS accuracy as reported in the urban
area of Japan may minimize this disadvantage.²⁰

270	Despite these disadvantages, our data suggest that there may be a benefit of using mobile
271	phones to activate EMS in all areas where signal stability is available. Recently, guidelines on
272	first aid and CPR in UK^{21-23} recommended the callers to stay with the arrest victim and to
273	activate the speaker phone function. These actions were easily adopted by the callers with mobile
274	and wireless landline phones. However, in our study population, it was observed that bystanders
275	do not necessarily place an emergency call when they are in the proximity of the patient.
276	Furthermore, elderly bystanders are often unaware of how to activate speaker phone function. ²⁴
277	We disclosed that emergency calls are much more frequently placed beside the arrest victim
278	when bystanders use a mobile phone. Moreover, this is the biggest advantage of the mobile
279	phones that associated with the improved qualities of DA-CPR and BCPR. Therefore, it is
280	recommended that educational course for basic life support should include the emphasis on
281	placing an emergency call within close proximity of the arrest victims using mobile or wireless
282	landline phones and educating them about how to activate speaker phone function.

283	A single rescuer with no mobile phone is recommended to perform BCPR for 2 min
284	before making emergency call in the cases of unwitnessed paediatric OHCA (CPR-first action).
285	²⁵ In the other OHCA cases, it is recommended to activate EMS first and then to perform BCPR
286	(call-first action). ^{12, 13} Our previous study demonstrated that immediate BCPR that was initiated
287	without DA-CPR and followed by an emergency call without a large delay was associated with a
288	better outcome of bystander-witnessed OHCAs in nonelderly patients and of noncardiac
289	aetiology. ²⁶ In these cases, mobile phones may allow these well trained rescuers to perform
290	BCPR and to activate EMS simultaneously.
291	
292	Limitations
293	
294	First, although our data were derived from a 3-year prospective cohort database in our
295	community with a population of approximately one million, the number of OHCAs was too

- small to clarify the definitive effects of mobile phone calls on the study outcomes. Second,
- 297 younger bystanders appeared to use mobile phones more frequently. It is highly possible that this

298	difference may influence the quality of BCPR and DA-CPR ²⁷ and its outcome, although multiple
299	logistic regression analysis, including the bystander's age, confirmed the beneficial effect of
300	mobile phone calls on 1-M survival in non-EMS-witnessed OHCAs receiving BCPR. Finally, it
301	was difficult to obtain the information of bystanders' previous training experience for basic life
302	support (BLS) in all non-EMS-witnessed OHCAs, which may influence their willingness to
303	perform CPR and quality of BCPR. ^{28, 29}

305 **Conclusions**

306

Emergency calls made using mobile phones are likely to augment the short term survival from OHCAs by improving the acceptance rate and quality of DA-CPR. It should be instructed in BLS training courses that an emergency call should be made from close proximity of the patient. Accordingly, we have made changes to our DA-CPR protocol by adding clear statements that the dispatchers should request bystanders to redial 119 using mobile or wireless phones after

312	they move close to the patients and to activate the speaker phone function when cardiac arrest
313	was suspected, but not confirmed.
314	
315	Conflict of interest
316	
317	The authors declare no conflict of interest to disclose.
318	
319	Acknowledgements
320	
321	We would like to thank all the EMS personnel in Ishikawa Prefecture for their
322	cooperation. TM and AY equally contributed to this article as the first authors.
323	
324	

References

327	1.	Rea TD, Eisenberg MS, Culley LL, Becker L. Dispatcher-assisted cardiopulmonary
328		resuscitation and survival in cardiac arrest. Circulation 2001;104:2513-6.
329	2.	Vaillancourt C, Verma A, Trickett J, et al. Evaluating the effectiveness of dispatch-assisted
330		cardiopulmonary resuscitation instructions. Acad Emerg Med 2007;14:877-83.
331	3.	Bohm K, Vaillancourt C, Charette ML, Dunford J, Castrén M. In patients with out-of-
332		hospital cardiac arrest, does the provision of dispatch cardiopulmonary resuscitation
333		instructions as opposed to no instructions improve outcome: A systematic review of the
334		literature. Resuscitation 2011;82:1483-9.
335	4.	Tanaka Y, Taniguchi J, Wato Y, Yoshida Y, Inaba H. The continuous quality improvement
336		project for telephone-assisted instruction of cardiopulmonary resuscitation increased the
337		incidence of bystander CPR and improved the outcomes of out-of-hospital cardiac arrests.
338		Resuscitation 2012;83:1235-41.
339	5.	Tanaka Y, Nishi T, Takase K, et al. Survey of a protocol to increase appropriate
340		implementation of dispatcher-assisted cardiopulmonary resuscitation for out-of-hospital
341		cardiac arrest. Circulation 2014;129:1751-60.
342	6.	Hauff SR, Rea TD, Culley LL, et al. Factors impeding dispatcher-assisted telephone
343		cardiopulmonary resuscitation. Ann Emerg Med 2003;42:731-7.
344	7.	Kellermann AL, Hackman BB, Somes G. Dispatcher-assisted cardiopulmonary resuscitation
345		Validation of efficacy. Circulation 1989;80:1231-9.

346	8.	Takei Y, Nishi T, Kamikura T, et al. Do early emergency calls before patient collapse
347		improve survival after out-of-hospital cardiac arrest? Resuscitation 2015;88:20-7.
348	9.	Calling the Emergency Call Service from a mobile phone: FAQs. Australian
349		Communications and Media Authority, 2015. (Accessed 18 February 2016, at External link
350		http://www.acma.gov.au/theACMA/calling-the-emergency-call-service-from-a-mobile-
351		phonefaqs)
352	10	. Kyoto Prefecture Police Headquarters. Dial 110 emergency call placed by mobile phone.
353		Kyoto Prefecture Police, 2015. (Accessed 18 February 2016, at External link
354		http://www.pref.kyoto.jp/fukei/foreign/tusi_c/110/mobile.html)
355	11	. Strategies for future spectrum management in Japan. Ministry of Internal Affairs and
356		Communications, Japan, 2007. (Accessed 18 February 2016, at External link
357		http://www.soumu.go.jp/main_sosiki/joho_tsusin/eng/presentation/pdf/070713_1.pdf)
358	12	. Kleinman ME, Brennan EE, Goldberger ZD, et al. Part 5: Adult Basic Life Support and
359		Cardiopulmonary Resuscitation Quality: 2015 American Heart Association Guidelines
360		Update for Cardiopulmonary resuscitation and Emergency Cardiovascular Care. Circulation
361		2015;132:S414-35.
362	13	. Perkins GD, Handley AJ, Koster RW, et al. European Resuscitation Council Guidelines for
363		Resuscitation 2015: Section 2. Adult basic life support and automated external defibrillation.
364		Resuscitation 2015;95:81-99.
365	14	. Ministry of Education, Culture, Sports, Science and Technology. Ethical guidelines for
366		epidemiological research. Ministry of Health, Labour and Welfare, Japan, 2002. (Accessed
367		18 February 2016, at External link <u>http://www.niph.go.jp/wadai/ekigakurinri/guidelines.pdf</u>)

368	15. Working Group of Japan resuscitation Council. JRC guidelines 2010. Japan Resuscitation
369	Council, 2010. (Accessed 18 February 2016, at External link
370	http://www.qqzaidan.jp/pdf_5/guideline1_BLS_kakutei.pdf)
371	16. Chamberlain D, Cummins RO, Abramson N, et al. Recommended Guidelines for uniform
372	reporting of data from out-of-hospital cardiac arrest: the 'Utstein style': Prepared by a Task
373	Force of Representatives from the European Resuscitation Council, American Heart
374	Association, Heart and Stroke Foundation of Canada, Australian Resuscitation Council.
375	Resuscitation 1991;22:1-29.
376	17. Jacobs I, Nadkarni V, Bahr J, the ILCOR Task Force on Cardiac Arrest and
377	Cardiopulmonary Resuscitation Outcomes. Cardiac Arrest and Cardiopulmonary
378	Resuscitation Outcome Reports: Update and Simplification of the Utstein Templates for
379	Resuscitation Registries: a Statement for Healthcare Professionals from a Task Force of the
380	International Liaison Committee on Resuscitation. Circulation 2004;110:3385–97.
381	18. Takei Y, Nishi T, Matsubara H, Hashimoto M, Inaba H. Factors associated with quality of
382	bystander CPR: The presence of multiple rescuers and bystander-initiated CPR without
383	instruction. Resuscitation 2014;85:492-8.
384	19. Nishi T, Maeda T, Takase K, et al. Does the number of rescuers affect the survival rate from
385	out-of-hospital cardiac arrests? Two or more rescuers are not always better than one.
386	Resuscitation 2013;84:154-61.
387	20. Takeuchi Y. Director of Space Communications Policy Division. Space Communications
388	Policies in Japan. Ministry of Internal Affairs and Communications, Japan, 2006. (Accessed

389 18 February 2016, at External link

- 390 <u>http://www.soumu.go.jp/main_sosiki/joho_tsusin/eng/presentation/pdf/070713_1.pdf</u>)
- 21. 5 Ways a Mobile Phone can save your life. REAL First Aid ltd, UK, 2015. (Accessed 18
- 392 February 2016, at External link <u>http://www.realfirstaid.co.uk/mobile-phone/)</u>
- 393 22. Working Group of the Resuscitation Council (UK). Adult basic life support and automated
- external defibrillation. Resuscitation Council (UK), 2015. (Accessed 18 February 2016, at
- 395 External link <u>https://www.resus.org.uk/resuscitation-guidelines/adult-basic-life-support-and-</u>
- 396 <u>automated-external-defibrillation/#sequence)</u>
- 23. Working Group of Resuscitation Council (UK). Guidelines 2010. Resuscitation Council
- 398 (UK), 2010. (Accessed 18 February 2016, at External link
- 399 <u>https://www.resus.org.uk/archive/guidelines-2010/</u>)
- 400 24. Birkenes TS, Myklebust H, Kramer-Johansen J. Time delays and capability of elderly to
- 401 activate speaker function for continuous telephone CPR. Scand J Trauma Resusc Emerg Med.
 402 2013;21:40.
- 403 25. Atkins DL, Berger S, Duff JP, et al. Part 11: Pediatric Basic Life Support and
- 404 Cardiopulmonary Resuscitation Quality: 2015 American Heart Association Guidelines
- 405 Update for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Cirlucation
 406 2015;132:8519-25.
- 407 26. Kamikura T, Iwasaki H, Myojo Y, et al. Advantage of CPR-first over call-first actions for
- 408 out-of-hospital cardiac arrests in nonelderly patients and on noncardiac aetiology.
- 409 Resuscitation 2015;96:37-45.

410	27. Enami M, Takei Y, Inaba H, et al. Differential effects of ageing and BLS training experience
411	on attitude towards basic life support. Resuscitation 2011;82:577-83.
412	28. Enami M, Takei Y, Goto Y, Ohta K, Inaba H. The effects of the new CPR guideline on
413	attitude toward basic life support in Japan. Resuscitation 2010;81:562-7.
414	29. Ro YS, Shin SD, Song KJ, et al. Public awareness and self-efficacy of cardiopulmonary
415	resuscitation in communities and outcomes of out-of-hospital cardiac arrest: A multi-level
416	analysis. Resuscitation 2016;102:17-24.
417	
418	

420	Figure	legends:
-----	--------	----------

422	Figure 1: Overview	of the study design.
-----	--------------------	----------------------

- 423 Analysis of data related to dispatcher-assisted cardiopulmonary resuscitation begins from the top,
- 424 and analysis of data pertaining to non-EMS-witnessed out-of-hospital cardiac arrest (OHCA)
- 425 cases starts from the bottom.

426

427	Figure 2:	Outcomes	of non-EMS	-witnessed	OHCAs	where	emergency	calls v	were ma	ade

- 428 using mobile and landline phones.
- 429 Closed star symbols indicate significant difference by chi-square test or Fisher's exact
- 430 probability test.

431

- 432 Figure 3: Multivariate logistic regression analysis for 1-month survival from non-EMS-
- 433 witnessed OHCAs receiving BCPR.

434

Table 1 Comparisons of DA-CPR- and BCPR-related parameters between mobile and landline phone calls

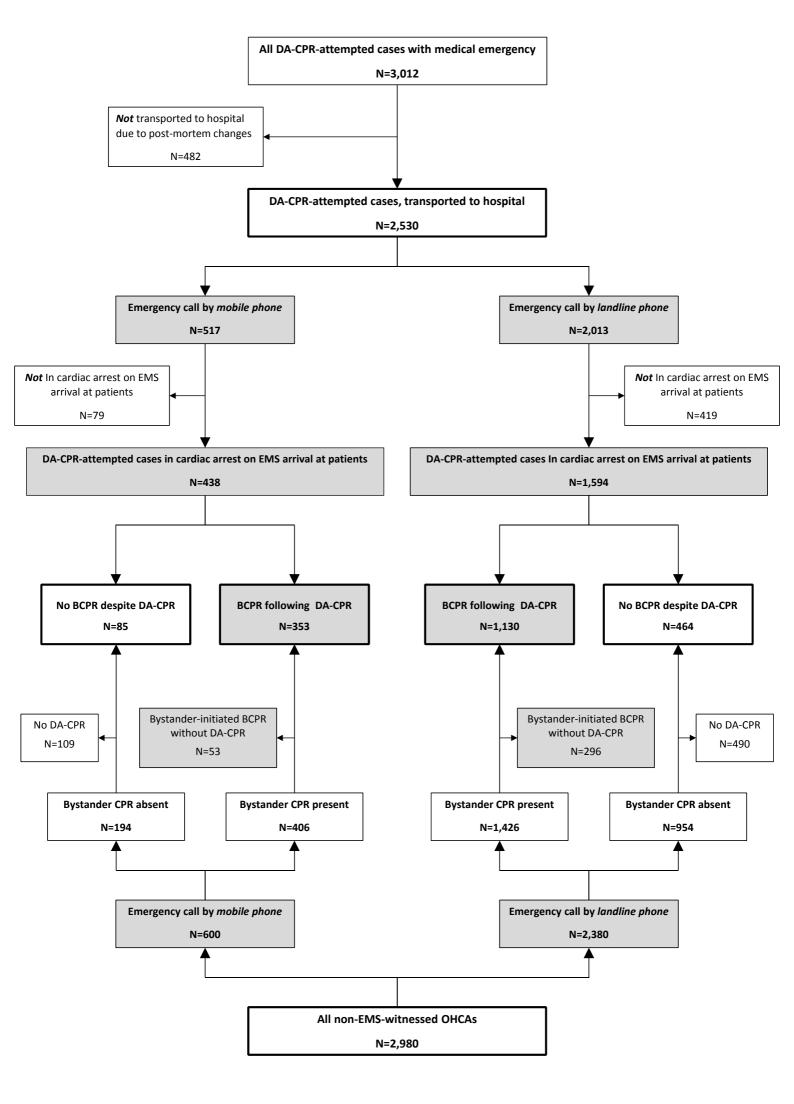
Parameters:	Emergency call		<i>P</i> value	Unadjusted OR	
definition and calculation	Mobile phone	Landline phone	(chi-square test with Yates' correction)	(95% CI)	
Positive prediction value: (number of DA-CPR-attempted cases in cardiac arrest on EMS arrival at patients) / (number of all DA-CPR-attempted cases)	438/517 = 84.7%	1,594/2,013 = 79.2%	<0.01	1.46 (1.12–1.90)	
Sensitivity: (number of DA-CPR-attempted cases in cardiac arrest on EMS arrival at patients) / [(number of all non-EMS-witnessed OHCA cases) – (number of cases receiving bystander-initiated BCPR without DA-CPR)]	438/(600-53) = 438/547 = 80.1%	1,594/(2380-296) = 1,594/2,084 =76.5%	0.08	1.24 (0.98–1.56)	
The acceptance rate of DA-CPR: (Number of cases receiving BCPR following DA-CPR) / (number of DA-CPR-attempted cases in cardiac arrest on EMS arrival at patients)	353/438 = 80.6%	1,130/1,594 = 70.9%	<0.01	1.71 (1.31–2.21)	
The degree of bystander's own performance of BCPR: (number of cases receiving bystander-initiated BCPR without DA-CPR) /[(number of all non- EMS-witnessed OHCA cases) –(number of DA- CPR-attempted cases in cardiac arrest on EMS arrival at patients)]	53/(600-438) = 53/162 = 32.7%	296/(2,380-1,594) = 296/786 = 37.7%	0.24	1.24 (0.87–1.78)	

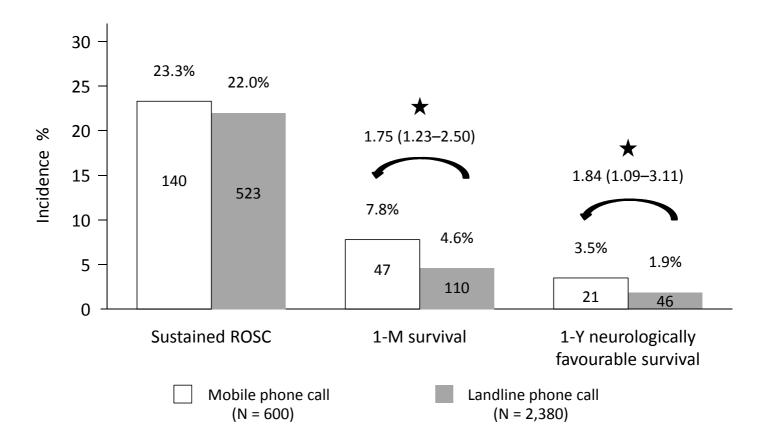
BCPR, bystander cardiopulmonary resuscitation; DA-CPR, dispatcher-assisted cardiopulmonary resuscitation; EMS, emergency medical service; OHCA, out-of-hospital cardiac arrest; OR, odds ratio; 95% CI, 95% confidence interval

Backgrounds and time factors	Emerg	ency calls	<i>P</i> value	Unadjusted OR (95% CI) with landline as reference	
	Mobile phone N=517	Landline phone N=2013	 by univariable analysis* 		
Patient's backgrounds					
Age, year, median (IQR)	74 (61–83)	81 (72–87)	<0.01	undetermined	
Sex: male, % (N)	55.1% (285)	56.6% (1,140)		0.94 (0.77–1.14)	
Cardiac arrest on EMS arrival	84.7% (438)	79.2% (1,594)		1.46 (1.12–1.90)	
at patient, % (N)					
Time factors, seconds, median					
(IQR)					
Call receipt-dispatch	83 (36–129)	59 (39–84)	<0.01	undetermined	
Call receipt-DA-CPR	92 (60–152)	78 (56–122)	<0.01	undetermined	
Call receipt–EMS arrival at	432 (343–569)	419 (324–553)	0.08	undetermined	
patients					
Backgrounds of callers					
Third party or other locations	3.1% (16)	19.7% (396)	<0.01	0.13 (0.08-0.22)	
Family or relatives	61.5% (318)	63.8% (1,285)	0.33	0.91 (0.74–1.10)	
Aged (>60 years)	20.3% (105)	30.1% (606)	<0.01	0.59 (0.47-0.75)	
Information obtained from caller					
Unknown respiration	10.4% (54)	16.9% (341)	<0.01	0.57 (0.42-0.78)	
Unknown responsiveness	5.4% (28)	8.2% (164)	0.04	0.65 (0.43-0.98)	

Table 2 Differences in backgrounds and time factors of DA-CPR between mobile and landline phone calls

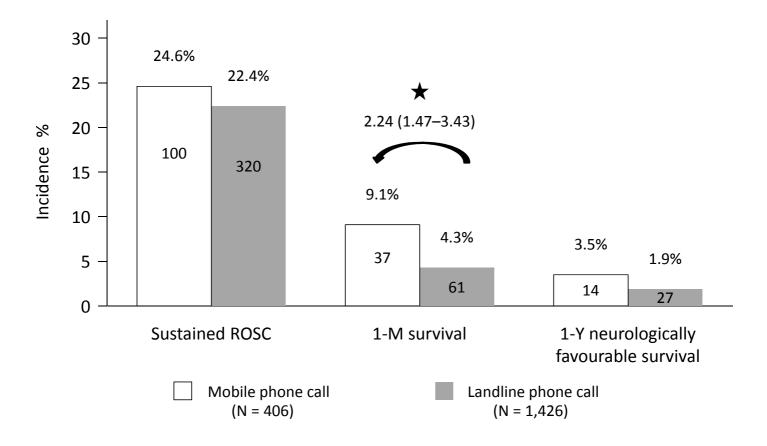
* Chi-square test with Yates' correction or Fisher's exact probability test for nominal variables, Mann-Whitney test for continuous variables

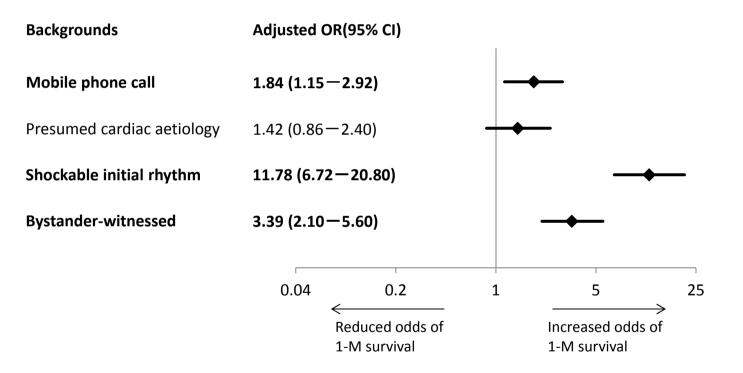

DA-CPR, dispatcher-assisted cardiopulmonary resuscitation; IQR, interquartile range; OR, odds ratio; 95% CI, 95% confidence interval


 Table 3 Differences in backgrounds and time factors of non-EMS-witnessed OHCA between mobile and landline emergency calls

Backgrounds and time factors	Emerg	ency calls	<i>P</i> value	Unadjusted OR	
U U	Mobile phone	Landline phone		(95% CI)	
	N=600	N=2,380		With landline as	
				reference	
Backgrounds					
Patient's age, years, median (IQR)	72 (58–82)	81 (71–87)	<0.01	undetermined	
Sex: male, % (N)	62.8% (377)	56.9% (1,355)	<0.01	1.28 (1.06–1.54)	
Location: home, % (N)	56.8% (341)	64.6% (1,538)	<0.01	0.72 (0.60-0.86)	
Bystander-witnessed, % (N)	41.8% (251)	42.7% (1,015)	0.72	0.97 (0.81-1.60)	
Single rescuer, % (N)	68.3% (410)	71.6% (1,705)	0.11	0.85 (0.70-1.04)	
Presumed cardiac aetiology, % (N)	39.8% (239)	44.5% (1,059)	0.04	0.83 (0.69–0.99)	
Bystander: family or relative, % (N)	55.7% (334)	60.3% (1,435)	0.04	0.83 (0.69–0.99)	
Emergency call beside the	52.7% (316)	17.2% (409)	<0.01	5.36 (4.42-6.50)	
patients, % (N) Any BCPR, % (N)	67.7% (406)	59.9% (1,426)	<0.01	1.40 (1.16–1.69)	
BCPR with good-quality, % (N)	53.5% (321)	45.0% (1,071)	<0.01	1.41 (1.18–1.68)	
Conventional bystander CPR, % (N)	4.7% (28)	6.5% (155)	0.09	0.70 (046-1.06)	
Shockable initial rhythm, % (N)	10.3% (62)	6.1% (144)	<0.01	1.79 (1.31–2.45)	
Tracheal intubation, % (N)	17.0% (102)	13.3% (317)	0.02	1.33 (1.04–1.70)	
Adrenalin administration, % (N)	42.2% (253)	39.6% (943)	0.26	1.11 (0.93–1.33)	
Time factors, minutes, median					
(IQR)					
Witness/recognition-call	2.5 (1.3–5.5)	2.7 (1.4–6.7)	<0.01	undetermined	
Call receipt–EMS arrival at patients	8.1 (6.4–10.3)	8.0 (6.4–10.3)	0.72	undetermined	
Duration of transportation	10.2 (6.7–14.7)	9.5 (6–13.8)	0.03	undetermined	

BCPR, bystander cardiopulmonary resuscitation; CPR, cardiopulmonary resuscitation; EMS, emergency


medical service; IQR, interquartile range; OHCA, out-of-hospital cardiac arrest; OR, odds ratio; 95% CI, 95% confidence interval



A. All non-EMS-witnessed OHCAs

Conflict of Interest Statement

The authors declare no conflict of interest to disclose.