

銅製パイプ型吸収体を用いた新しい実効エネルギー測定法

論文受付 2011年 2 月 4 日 論文受理 2011年 7 月25日 Code No. 815 飯田泰治¹⁾·能登公也¹⁾·三井 涉¹⁾·高田忠徳¹⁾·山本友行¹⁾·松原孝祐²⁾

1)金沢大学附属病院放射線部
 2)金沢大学医薬保健研究域保健学系量子医療技術学講座

緒言

近年, multi detector-row computed tomography (MDCT)の登場によりX線CT検査における被ばく 線量の増加が懸念されている^{1~5)}.そのため,医療従 事者が検査を施行する場合には使用している装置の 出力線量の把握や線質評価を行わければならない. しかし,線量を表すものとして照射線量(C/kg),吸 収線量(Gy),空気カーマ(Gy),入射線量(Gy),後方 散乱線を含んだ入射表面線量(Gy),組織吸収線量に 変換された入射皮膚線量(Gy),実効線量(Sv), CTDI(CT dose index), DLP(dose length product), MSAD(multiple scan average dose)^{6~8)}などさまざまな 概念がある.線量の基本となる物理量が照射線量で あり,電離箱線量計を用いた測定値から適切な変換 (換算)係数を用いることにより各評価線量に変換可 能である.一般撮影や interventional radiology(IVR) 分野では被ばく線量として入射皮膚線量⁹⁾, X線 CT では CTDI が使用されている.入射皮膚線量は照射 線量に後方散乱係数と組織吸収線量変換係数を乗じ て算出される.また,CTDI はファントム中で測定さ れた空気カーマで表されるが,実効線量や組織の吸 収線量に変換するには組織吸収線量変換係数が必要 となる.この二つの係数はエネルギーに依存している ため実効エネルギーが正確に測定されなければ線量 評価はできない¹⁰.

X線撮影装置,特にX線CT装置では低線量高画 質を実現する目的でさまざまな付加フィルタやビーム 形成フィルタが使用されている.そのため,フィルタ の材質や形状,厚さなどの違いから装置メーカ間や 機種間で実効エネルギーが大きく異なっていることが

A New Method of Measuring Effective Energy Using Copper-pipe Absorbers in X-ray CT

Hiroji lida,¹⁾ Kimiya Noto,¹⁾ Wataru Mitsui,¹⁾ Tadanori Takata,¹⁾ Tomoyuki Yamamoto,¹⁾ and Kousuke Matsubara²⁾

Department of Radiology, Kanazawa University Hospital
 Department of Quantum Medical Technology, Faculty of Health Sciences, Kanazawa University

Received February 4, 2011; Revision accepted July 25, 2011; Code No. 815

Summary

The general method of measuring the half-value layer (HVL) for X-ray computed tomography (CT) using square aluminum-sheet filters is inconvenient in that the X-ray tube has to be set to stationary mode. To avoid this inconvenience, we investigated a new method using copper-pipe filters that cover the ionization chamber (copper-pipe method). Using this method, the HVL can be measured at the isocenter in the rotation modes of CT. We examined the accuracy and reproducibility of the copper-pipe method compared with those of the general method. The effective energy measured using the copper-pipe method correlated well with the general method (y=1.064x, r=0.987), and its error was 1.81±1.38%. The results indicate that the copper-pipe method suited to all general X-ray equipment as well as all X-ray CT.

Key words: effective energy, half value layer (HVL), X-ray computed tomography, copper pipe absorber, dose estimation

別刷資料請求先:〒920-8641 石川県金沢市宝町13番1号 金沢大学附属病院放射線部 飯田泰治 宛 予想される. そのため, 診断用 X 線装置の線量評価 や品質管理および, 患者被ばく線量測定を行うため には実効エネルギーを正確に把握することが重要と なってくる.

実効エネルギーの測定方法にはアルミニウムまた は銅の減弱曲線から半価層を求める方法(以下,従来 法)^{11~17)},とX線アナライザを用いる方法¹⁸⁾があり,

一般的に半価層を求める方法が利用されている. 半 価層を測定する場合には吸収板などからの散乱線の 影響を最小限にするような幾何学的配置での測定が 重要である. 特に, X線CT装置の半価層測定では X線管を固定するため装置メーカ側の協力が必要 であったり, コリメータなどの特別な測定器具を必要 とするなど容易に測定することができなかった. そ こで, X線CT装置ではtissue center air ratio (以 下, TCAR)法¹⁹⁾や inner-metal center-air ratio(以下, IMCAR)法²⁰⁾が考案され簡易的に測定できるように なってきた.

われわれは血管造影装置の実効エネルギーをガラ ス線量計と銅板で作製した半価層測定器を用いて測 定する方法を報告したが^{21,22)},これを応用して更に簡 便で X 線 CT 装置だけでなく診断用 X 線装置全般に 利用できる測定法を考案した.具体的には厚さの異 なる数種類の銅製パイプ型吸収体(以下,銅パイプ吸 収体という)を作製し,電離箱線量計に順次装着して 照射線量を測定することで,銅パイプ吸収体からの 散乱線を含む減弱曲線を得て実効エネルギーを求 め,従来法から求めた実効エネルギーとの回帰式に より求めた補正係数を用いることで実効エネルギーに 変換する方法である.

今回,銅パイプ吸収体による実効エネルギー測定 法(以下,銅パイプ法)について X線 CT 装置および X線撮影装置を用いて本法の有用性と汎用性につい て検討したので報告する.

1. 方法

1-1 使用機器

1-1-1 X線CT装置

1. Light Speed VCT(米国 GE 社製)ビーム幅 40 mm (0.625 mm×64)

2. SOMATOM Definition Flash(SIEMENS 製)ビー ム幅 38 mm(0.6 mm×64)

3. Aqullion 64(東芝メディカルシステムズ(株)製) ビーム幅 32 mm(0.5 mm×64)

1-1-2 診断用X線撮影装置

1. AXIOM Aristos MX/VX, X線管 Opti 150/30/50 HC-100(SIEMENS 製)

2. UD150B-10, X線管 CIRCLEX 0.6/1.2P 324DX-

120F(島津製作所製)

3. UD150L-30, X線管 CIRCLEX 0.6/1.2P 33DX-80S(島津製作所製)

 INFIX-8000C, X線管DSRX-T7345GFS(東芝 メディカルシステムズ(株)製)

1-1-3 線量計:電離箱線量 Radcal 社製 model 9015 型, 検出器 10×5-6(6 cc)

ただし,線量計は2010年4月日本放射線技術学 会認定線量標準センター(金沢大学)にて校正された ものである。

1-1-4 吸収体

吸収体としてタフピッチ銅板(C110P)(純度 99.9% 以上,厚さ精度 JISH3100 準拠)を使用した.

1. 銅パイプ吸収体 直径 20 mm, 厚さ 0.04 mm と 0.1 mm を各 1 個, 0.2 mm と 0.3 mm を各 2 個

3. 銅板 10 cm×10 cm, 厚さ0.01 mmを10枚,
 0.1 mmを1枚, 0.2 mmと0.3 mmを各2枚

1-2 散乱線の影響

銅板からの散乱線の影響を調べるため,X線撮影 装置 UD150B-10 を用いて Fig. 1 に示す幾何学的配置 で測定管電圧 60 kV から 20 kV ごとに 120 kV に対して 銅板の厚さを 0 mm から 0.01 mm ごと 0.2 mm まで増 加させ散乱線量の変化を測定した.次に,管電圧によ る前方散乱線および後方散乱線の変化を銅板 0.1 mm に対して管電圧 60 kV から 20 kV ごとに 120 kV まで 測定した.前方散乱は Fig. 1(a)に示すように銅板の 位置が A の場合と B の場合の照射線量を測定し散 乱線量を求めた.後方散乱は Fig.1(b)に示すように 位置 C に銅板を置き散乱線量を測定した.

また, X線管 – 線量計問距離を 50 cm とし銅板 – 線量計問距離を 0 cm から 40 cm まで変化させ, 前 方散乱線および後方散乱線の変化を測定した.

1-3 半価層の測定

X線のスペクトル形状の違いによる影響が予想されるため、4種類のX線撮影装置に対して、付加フィルタなし、および0.1 mm および0.2 mm Cuフィルタを挿入した場合および3種類のX線CT装置の半価層を測定した.

1-3-1 従来法による半価層測定

X線撮影装置に対する半価層測定は医療被曝測定 テキスト¹⁵⁾に従い, Fig. 2(a)に示す幾何学的配置で測 定した.測定は管電圧を 60 kV, 80 kV, 100 kV, 120 kV とし,照射野の大きさを 5 cm×5 cm とした. ただし, INFIX-8000C は装置の構造上,吸収板 – 線 量計間距離を 50 cm とした.

X線CT装置に対する半価層測定は医療被曝測定

テキスト¹⁵⁾に従い, Fig. 2(b)に示す幾何学的配置で, ビーム幅を装置の設定が可能な最大値とし照射野を 厚さ2 mm の鉛板で線量計の大きさに遮蔽して測定 した.測定条件は管電圧 80 kV, 100 kV, 120 kV, 140 kV(ただし, Aqullion64 は 135 kV)とした. X線 撮影装置, X線CT装置ともに,指頭型電離箱 (10×5-6)を用いて, Cu吸収板なし,および 0.04 mm から 0.6 mm の異なる厚さの Cu吸収板を配置して銅 減弱曲線を測定した.

1-3-2 銅パイプ法による半価層測定

厚さが 0.04 mm, 0.1 mm, 0.2 mm, 0.3 mm の銅板 を用いて, Fig. 3 に示す銅パイプ吸収体を作製した. この銅パイプ吸収体を用いて銅減弱曲線を測定した.

X線撮影装置では Fig. 4(a)に示す従来法と同じ幾何学的配置で銅パイプ吸収体なし、および 0.04 mm から 0.6 mm の厚さの異なる銅パイプ吸収体を指頭型

電離箱(10×5-6)に装着し銅減弱曲線を測定した.測 定管電圧は従来法による半価層測定の場合と同じで ある.

X線CT装置ではFig.4(b)に示す幾何学的配置で 線量計を回転中心に置き,ビーム幅を各装置の最大 で,腹部用ビーム形成フィルタを使用して銅パイプ吸 収体なし,および0.04 mmから0.6 mmの厚さの異 なる銅パイプ吸収体を指頭型電離箱(10×5-6)に装着 し,X線管を1回転スキャンした場合と固定した場合 で銅減弱曲線を測定した.

1-4 半価層の算出方法

1-4-1 従来法

半価層, 1/4 価層の算出は銅減弱曲線データの照射 線量データを対数変換したうえで(Fig. 5), 0 mm から 0.3 mm までのデータに対して 3 次関数で近似, 0.3 mm

Fig. 4 Geometric arrangements for HVL measurements using copper pipe method for (a) general X-ray equipment and (b) X-ray CT scanners.

から 0.6 mm のデータに対して 2 次関数で近似して求 めた(Fig. 5). ただし, 1/4 価層が 0.6 mm を超える場 合については直線近似で外挿して求めた. ただし, 関数近似はすべて最小 2 乗近似を使用した.

1-4-2 銅パイプ法

従来法で示すように、対数変換された銅減弱曲線 は 0~0.3 mm の範囲では 3 次関数(決定係数(R²) ≒ 1)で近似することができる.

しかし、従来法と同様に対数変換した0 mm から 0.3 mm までのデータ(Fig. 5)を3 次関数で近似した場 合、吸収体0 mm のデータは散乱線を含まないの で、ほかの点のデータと性質が異なっているため、 Fig. 6(a)に示すようにそのままでは3次関数に近似す ることができない。

c d

そこで、対数変換した銅減弱曲線に対して Fig. 6 (b)~(d)に示すように、 $R^2=1$ または $R^2=1$ となる吸収 体 0 mm の値を測定値から外挿して求め 3 次関数で 近似する方法を用いた. 0.3 mm から 0.6 mm のデー タに対しては 2 次関数で近似した. 得られた近似式 から半価層および 1/4 価層を求めた. ただし、1/4 価 層が 0.6 mm を超える場合については直線近似で外 装して求めた. ただし、関数近似はすべて最小 2 乗 近似を使用した.

1-5 半価層から実効エネルギーへの変換

半価層からの実効エネルギーの算出には Seltzer SM and Hubbell JH の光子減弱係数データブック²²⁾の 線減弱係数を用いた.半価層と実効エネルギーを Fig. 7 に示すように両対数変換してグラフを作成し,半価 層 0.004 mm から 1 mm まで(実効エネルギー 10 keV から 80 keV)のデータを最小 2 乗法から近似して,式 (1)を得た.

 $E_{\rm eff}(\rm keV) = \exp(0.365 \times \ln(t) + 4.365)$ $R^2 = 0.9999$ (1)

 $E_{\rm eff}({\rm keV}): 実効エネルギー$

t: Cu の半価層(mm)

測定で得られた半価層を式(1)に代入し実効エネル ギーに変換した.

2. 結果

2-1 前方散乱と後方散乱の影響

Fig. 8 に管電圧 80 kV 時の結果を示す. 前方散乱 線,後方散乱線ともに Cu 板の厚さの増加に伴い散 乱線量率が増加し,厚さ 0.03 mm でほぼ平衡になっ た.Fig. 9 に銅 0.1 mm に対する管電圧と散乱線の発

Fig. 8 Scatter ratios for 80 kV as a function of copper sheet thickness.

Fig. 9 Scatter ratios for 0.1-mm copper sheet as a function of X-ray tube voltage.

生比率の関係を示す.前方散乱線は 60 kV で 23%, 120 kV で 15%.後方散乱線は 60 kV で 17%,120 kV で 11%となり,前方散乱線および後方散乱線ともに 管電圧の上昇に伴い発生率は減少した.銅板からの 前方散乱線および後方散乱線の影響はそれぞれ,銅 板 – 線量計問距離が 20 cm で 5%および 3%,30 cm で 0.3%および 0.5%であった.

2-2 半価層と 1/4 価層

Fig. 10 に銅パイプ法(*X*)と従来法(*Y*)の相関を示 す. Fig. 10(a)は半価層, Fig. 10(b)は 1/4 価層の場合 である.

両者の半価層は Y=1.198X, R²=0.990, 1/4 価層は Y=1.202X, R²=0.995と非常に高い相関を示した.また, X 線撮影装置および X 線 CT 装置のデータはほ ぼ同じ線上に分布した.

2-3 実効エネルギー

2-3-1 銅パイプ法による実効エネルギーの算出 Fig. 11 に銅パイプ法(*X*)と従来法(*Y*)による実効エ

Fig. 10 Correlation in (a) the HVL and (b) the quarter-value layer between the general method and the copper-pipe method.

Fig. 11 Correlation in effective energy between the general method and the copper pipe method.

(2)

ネルギーの相関を示す.両者は Y=1.064X, R²=0.987 と非常に高い相関を示した.そこで,回帰分析を行 い,回帰直線(2)を得た.

$$E_{\rm eff} = 1.064 \times E_{\rm pipe}$$
 $R^2 = 0.987$ p<0.001

*E*_{eff}:実効エネルギー推定値

*E*_{pipe}: 銅パイプ法による測定値

Table 1 に 4 種類の X 線撮影装置(付加フィルタなし)の結果と 3 種類の X 線 CT 装置の結果を示す.

Table 2 に X 線 CT 装置で X 線管を固定した場合 と回転した場合の実効エネルギーを示す.両者の差 異は最大で 1.61 keV と大きな違いは見られなかった. 2-3-2 測定誤差

実効エネルギー推定値の絶対誤差を(3)式から求 めた。

 $E_{\rm rr}(\%) = abs\{(E_{\rm eff} - E_{\rm conv})\}/E_{\rm conv} \times 100(\%) \quad \dots \quad (3)$

Econv: 従来法による実効エネルギー

絶対誤差の最大は 4.86% (2.1 keV), 最小は 0.01%

(0.1 keV)で平均 1.81±1.38%(0.75±0.56 keV)であった.

a b

3.考察

患者の被ばく線量は照射線量に後方散乱係数や吸 収線量変換係数を乗じて吸収線量に変換することで 求められる.しかし、後方散乱係数や吸収線量変換 係数はエネルギーに依存する.長島ら²⁰⁾は吸収線量 変換係数の違いでアクリル製円筒ファントムの場合で 約16%の誤差を生じると報告している.したがっ て、正確な線量評価のためには実効エネルギーを計 測することが求められる.

従来法による半価層測定では電離箱に入射する散 乱 X 線を除去することが非常に重要であり,なるべ く照射野を小さくすることや散乱 X 線を発生する吸 収板から電離箱を離すなどの幾何学的配置が求めら れる.また,X線 CT 装置では X 線管の固定のため 装置メーカ側の協力が必要であった.更に,X線 CT 装置ではビーム形成フィルタの厚さや材質により線質 が変化するため,使用するビーム成形フィルタごとに 実効エネルギーを算出しなければならず,半価層測

		Effective energy (keV)		Error	
	κv	Conventional	Cu-pipe method	keV	(%)
AXIOM Aristos MX/VX	60	30.9	31.6	0.7	2.2
	81	34.8	35.0	0.2	0.7
	102	38.8	40.6	1.8	4.8
	121	42.5	43.7	1.2	2.7
UD150B-10	60	30.3	30.9	0.5	1.7
	80	33.8	35.0	1.2	3.6
	100	37.9	39.3	1.4	3.8
	120	41.3	42.8	1.5	3.6
UD150L-30	80	33.5	34.5	1.0	3.1
	90	35.4	35.9	0.5	1.3
	100	37.0	38.7	1.7	4.5
INFIX-8000C	60	32.0	32.2	0.2	0.7
	80	35.4	35.2	0.2	0.6
	100	39.7	39.0	0.7	1.7
	120	43.3	43.6	0.2	0.5
Light Speed VCT	80	44.0	44.6	0.5	1.2
	100	50.0	49.5	0.5	1.0
	120	55.3	54.9	0.4	0.6
	140	60.4	59.6	0.8	1.4
Aqullion64	80	35.4	36.1	0.7	2.1
	100	40.0	39.9	0.2	0.4
	120	44.9	44.8	0.1	0.3
	135	48.5	47.8	0.7	1.4
SOMATOM	80	46.0	46.5	0.5	1.1
	100	51.7	52.6	0.9	1.7
	120	59.0	58.7	0.3	0.6
	140	64.3	64.3	0.0	0.0

Table 1 Measured effective energies for the conversional method and the copper pipe method

定は煩雑で困難であった. そのため, TCAR 法や IMCAR 法が考案されかなり簡易的に測定できるよう になってきた. また, 個人線量計はアルミニウムや銅 などの金属フィルタを 2~3 個組み合わせて, これら のフィルタの線量比から実効エネルギーを算出してい る. 個人線量計の構造から線量計素子と金属フィル タはほとんど密着状態にあり, 線量計は人体などに 付けて測定を行うため人体やフィルタからの散乱線 を含んだ形で測定される. 実効エネルギーは測定環 境が空気中やファントム上に合わせて校正され算出 される. したがって, 線量計と吸収板を密着した状 態で測定しても校正することで散乱線の影響を排除 して正確に実効エネルギーを求めることができること を示している.

そこで、われわれは実効エネルギーを求める方法と して Fig. 3 に示す銅パイプ吸収体を線量計に装着し て測定した減弱曲線から実効エネルギーを算出する 銅パイプ法を試みた. 渡邊²⁴⁾や岡本ら²⁵⁾の報告では、 X線 CT 装置の実効エネルギーが最大 60 keV 以下で

 Table 2
 Measured effective energies for the stationary mode and the rotation mode of X-ray CT

	kV	Rotation (kV)	Stationary (keV)	Difference (keV)
Light Speed VCT	80	41.9	41.0	0.9
	100	46.5	45.2	1.3
	120	51.6	50.6	1.0
	140	56.0	55.8	0.2
Aqullion64	80	34.0	33.5	0.5
	100	37.5	39.1	1.6
	120	42.1	41.8	0.3
	135	44.9	44.5	0.4
SOMATOM	80	43.7	44.0	0.3
	100	49.4	49.2	0.2
	120	55.2	54.8	0.3
	140	60.4	59.5	0.9

あることから, 銅パイプ吸収体の厚さを 0.6 mm まで として, 0.04 mm, 0.1 mm, 0.2 mm, 0.3 mm, 0.4 mm, 0.5 mm, 0.6 mm とした.

銅パイプ法により得られた減弱曲線はFig.5に示

すように、X=0の測定点だけは吸収体がなく散乱線 を含まない値であり、ほかの点のデータと性質が異 なる. そのため、従来法による減弱曲線データは3 次関数で近似することができるが、銅パイプ法の データは、Fig. 6(a)に示すように近似することができな かった. そこで, 銅パイプ法のデータに対して Fig. 6 (b)~(d)に示すように決定係数 R²≒1 となる X=0 の ときの値を外挿して求め3次関数で近似する方法を 考案した. 銅パイプ吸収体による散乱線量率は管電 圧が高くなるに従い減少した(Fig. 9). そのため, Fig. 5 に示すように銅パイプ法の減弱率は従来法より も大きくなり、銅パイプ法の測定値は従来法より小さ くなると考えられた. 測定の結果, 実効エネルギーは *E*_{eff}=1.064×*E*_{pipe}で表わされ予測と一致した. 測定誤 差は 1.81±1.38% であり、本法によって精度よく実効 エネルギーを測定できた.

銅パイプ法は銅吸収体やガントリなどからの散乱 線を含んだ照射線量を測定する.しかし,ガントリか らの散乱線量は少量であること,線量計がガントリか ら30 cm以上離れていることから影響はないと考え る.本法は従来法のように散乱線の影響を考慮する ことなく簡便に実効エネルギーを測定できる方法であ り,測定時の幾何学的配置の影響を受けることは少 ないと考えられる.またX線CT装置では,使用する ビーム形成フィルタが同じであれば,回転中心で測定 した場合にはX線管を固定した場合と回転した場合 の実効エネルギーに大きな差異はなかった(Table 2).

銅パイプ法は臨床条件で X 線 CT 装置の実効エネ ルギーの測定が可能であり, 散乱 X 線を気にするこ となく, また X 線管を固定することなく, 簡便かつ高 精度に実効エネルギーを算出できる方法であること が示唆された. X線CT装置ではビーム形成フィルタの使用によっ て同一断面内でも中心部と周辺部では実効エネル ギーが異なると考えられるが²⁶⁾,従来法では測定する ことは非常に困難であった.しかし,銅パイプ法では 銅パイプ吸収体を被せた線量計を有効視野内の任意 の位置に配置して測定できる.更に,銅パイプ法は ペンシル型線量計に適した銅パイプ吸収体を用いる ことでファントム内の実効エネルギー測定を可能にす るものと期待できる.

Fig. 10, 11 に示すように, 銅パイプ法で求めた4種 類のX線撮影装置(付加フィルタ0.0 mm, 0.1 mmCu, 0.2 mmCu),および3種類のX線CT装置の測定値 と従来法によって得られた実効エネルギーが非常に 高い相関を示したことは,本法がX線スペクトル形 状の違いに関係なく(2)式を用いることでX線CT装 置だけでなくX線撮影装置全般の実効エネルギーを 測定できることを示唆するものであり非常に有用な測 定法と考える.

4. 結 語

従来, X線 CT 装置の実効エネルギーの測定は非 常に煩雑,困難であったが,銅パイプ吸収体を用い ることで実効エネルギーを精度よく算出することがで きた.銅パイプ法はX線管を固定することなく臨床 条件での測定が可能であり,非常に簡便で汎用性に 優れた実効エネルギー測定法と言える.また,銅パイ プ法はX線 CT 装置だけでなくほとんどのX線撮影 装置に応用することが可能であり,使用している装置 の出力線量の把握や線質評価に有用であると考える.

本論文の要旨は日本放射線技術学会第 39 回秋季 学術大会(2010年, 仙台)で発表した.

参考文献 -

- 1) Berrington de González A, Darby S. Risk of cancer from diagnostic X-rays: estimates for the UK and 14 other countries. Lancet 2004; 363: 345-351.
- Brenner DJ, Hall EJ, Phil D. Computed tomography—an increasing source of radiation exposure. N Engl J Med 2007; 357: 2277.
- 3) Berrington de Gonz lez A, Mahesh M, Kim K-P, et al. Projected cancer risks from computed tomographic scans performed in the United States in 2007. Arch Intern Med 2009; 169(22): 2071-2077.
- 4) Smith-Bindman R, Lipson J, Marcus R, et al. Radiation dose associated with common computed tomography examinations and the associated lifetime attributable risk of cancer. Arch Intern Med 2009; 169(22): 2078-2086.
- 5) Einstein AJ, Henzlova MJ, Rajagopalan S. Estimating risk of cancer associated with radiation exposure from 64-slice

computed tomography coronary angiography. JAMA 2007; 298: 317-323.

- 6) 小山修司. CTDI の解説と測定法. INNERVISION 2003; 18(1): 116-119.
- 7) 小林謙一, 佐藤眞爾, 豊田昭博, 他. マルチスライスヘリ カル CT における可変管電流制御システム(Real-EC)の被 曝線量評価. 映像情報 (M) 2002; 34(3): 328-332.
- 8) 青山隆彦,小山修司,前越 久. シンチレーション・ポイント線量計による X線 CT 被曝線量の精密測定. 日放技学誌 2000; 56(1): 87-94.
- 9) IVR 等に伴う放射線皮膚障害とその防護対策検討会. IVR に伴う放射線皮膚障害の防止に関するガイドライン および測定マニュアル. 医療放射線防護 NEWSLETTER 2004; 40: 86-90.
- 10) 松本光弘,井ノ上信一,松澤利絵. 実効エネルギーに基 づく患者表面線量推定式,日放技学誌 2001; 57(12): 1519-

1526.

- 岡本英明,鈴木敬一,上田講紀,他.CT 装置の線質,被 曝線量の検討. 胸部 CT 検診 1998; 5(2): 119-122.
- 12) 佐藤 斉. 診断用 X 線の線質測定法の検討. 日放技学誌 1995; 51(1): 8-12.
- 13) 津坂正利.第2回計測分科会報告 4.半価層測定精度と 実効エネルギー評価.日放技学誌 1995; 51(4): 539-547.
- 14) 大釜 昇. 診断領域 X 線の実効エネルギー測定. 日放技 学誌 2001; 57(5): 550-556.
- 15) 前川昌之 編,日本放射線技術学会計測分科会. 医療被 曝測定テキスト. 放射線医療技術学叢書 (25). 京都:日 本放射線技術学会,2006.
- 16) Kruger RL, McCollough CH, Zink FE. Measurement of half-value layer in x-ray CT: a comparison of two noninvasive techniques. Med Phys 2000; 27(8): 1915-1919.
- ImPACT. CT scanner dose survey: measurement protocol. Version 5.0 July 1997.
- 18) 松本政雄, 窪田英明, 小鮮裕二, 他. 診断時の被曝線量 低減を目的とした X線 CT 装置の品質管理システムの開 発. INNERVISION 2002; 17(8): 37.
- 19) 小山修司. 第3回計測部会報告 X線 CTの被曝線量は 如何に測定すべきか 3. 撮影条件の最適化に関連して.

日放技学誌 1995; 51(5): 631-635.

- 20) 長島宏幸,須永眞一,見留豊久,他. X線CT装置の線 量評価に不可欠な実効エネルギーの新たな測定および算 出法の検討.日放技学誌 2005; 61(3): 385-391.
- 21) 飯田泰治, 能登公也, 高田忠徳, 他. 蛍光ガラス線量計 を用いた IVR 装置の実効エネルギーと入射表面線量の測 定(半価層測定器と測定用ファントムの作製). 日放技学誌 2010; 66(5): 487-494.
- 22) 飯田泰治, 能登公也, 高田忠徳, 他. 蛍光ガラス線量計 による X線 CT 装置の実効エネルギーの測定. 放射線防 護分科会会誌 2010; 30, 66-67.
- Seltzer SM, Hubbell JH. 前越 久 監修. 光子減弱係数 データブック. 京都:日本放射線技術学会, 1995.
- 24)日本放射線技師会・医療被曝ガイドライン委員会.医療 被曝ガイドライン.医療科学社,東京,2002:55-56.
- 25) 岡本英明, 熊谷年起, 上田講紀, 他. CT 装置の半価層お よび X 線スペクトルについて(3 機種の比較). 日放技学誌 1997; 53(8): 1243.
- 26) 森本智弘,安藤 隆,平野浩志,他.CT装置のファント ム内における実効エネルギーの測定.日本放射線技術学 会総会学術大会一般研究発表後抄録 1999; 55, 326.

- Fig. 1
 前方散乱線および後方散乱線の発生率測定のための幾何学的配置

 (a)前方散乱線
 (b)後方散乱線
- Fig. 2 半価層測定のための幾何学的配置
 - a) 一般 X 線撮影装置
 - b) X 線 CT 装置
- Fig. 3 銅製パイプ型吸収体の構造と概観

 a) 銅製パイプ型吸収体の構造と概略図
 b) 銅製パイプ型吸収体の概観
- Fig. 4
 銅パイプ法による半価層測定のための幾何学的配置

 a) 一般 X 線撮影装置
 - b) X 線 CT 装置
- Fig. 5 従来法と銅パイプ法により得られた銅減弱曲線
- Fig. 6 銅パイプ法による銅減弱曲線に対する 3 次関数近似法
 a) 元データに対する近似
 b)~d) X=0 の値を外挿した時の近似
- Fig. 7 銅半価層と実効エネルギーの関係
- Fig. 8 管電圧 80 kV における銅板の厚さと散乱線の発生率の関係
- Fig. 9 銅 0.1 mm における管電圧と散乱線の発生率の関係
- Fig. 10 銅パイプ法と従来法による半価層および1/4 価層の比較
- a)半価層
 - b) 1/4 価層
- Fig. 11 銅パイプ法と従来法による実効エネルギーの比較
- Table 1 銅パイプ法と従来法から求められた実効エネルギー(keV)
- Table 2 銅パイプ法による X線 CT 装置の回転時と固定時の実効エネルギー