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Abstract 

Therapeutic angiogenesis is a promising strategy for treating ischemia. The lysophospholipid 

mediator sphingosine-1-phosphate (S1P) acts on vascular endothelial cells to stimulate 

migration and tube formation, and plays the critical role in developmental angiogenesis. We 

developed poly(lactic-co-glycolic-acid) (PLGA)-based S1P-containing microparticles 

(PLGA-S1P), which are biodegradable and continuously release S1P, and studied the effects 

of PLGA-S1P on neovascularization in murine ischemic hindlimbs. Intramuscular injections 

of PLGA-S1P stimulated blood flow in C57BL/6 mice dose-dependently, with repeated 

administrations at a 3-day interval, rather than a single bolus or 6-day interval, over 28 days 

conferring the optimal stimulating effect. In Balb/c mice that exhibit limb necrosis and 

dysfunction due to retarded blood flow recovery, injections of PLGA-S1P stimulated blood 

flow with alleviation of limb necrosis and dysfunction. PLGA-S1P alone did not induce 

edema in ischemic limbs, and rather blocked vascular endothelial growth factor-induced 

edema. PLGA-S1P not only increased the microvessel densities in ischemic muscle, but 

promoted coverage of vessels with smooth muscle cells and pericytes, thus stabilizing vessels. 

PLGA-S1P stimulated Akt and ERK with increased phosphorylation of endothelial nitric 

oxide synthase in ischemic muscle. The effects of the nitric oxide synthase inhibitor, 

Nω-nitro-L-arginine methylester, showed that PLGA-S1P-induced blood flow stimulation was 

partially dependent on nitric oxide. Injections of PLGA-S1P also increased the expression of 
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angiogenic factors and the recruitment of CD45-, CD11b- and Gr-1-positive myeloid cells, 

which are implicated in post-ischemic angiogenesis, into ischemic muscle. These results 

indicate that PLGA-based, sustained local delivery of S1P is a potentially useful therapeutic 

modality for stimulating post-ischemic angiogenesis. 

 

Keywords: sphingosine-1-phosphate, poly(lactic-co-glycolic acid), sustained release, 

angiogenesis, ischemia 
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1. Introduction  

Therapeutic angiogenesis is an attractive strategy for treating patients with ischemia (Ferrara 

and Kerbel, 2005; Losordo and Dimmeler, 2004a). To date, the therapeutic efficacy of 

angiogenic peptide growth factors, including vascular endothelial growth factor (VEGF) and 

fibroblast growth factor-2 (FGF-2), and their expression plasmids, has been tested with their 

topical and systemic administration (Ferrara and Kerbel, 2005; Losordo and Dimmeler, 

2004a; Simons, 2005).  However, the trials failed to show unequivocal efficacy of the tested 

agents partly due to insufficient gene transduction or rapid washout of proteins. High local 

concentrations of angiogenic factors increase the risks including edema and atherosclerosis. A 

controlled drug delivery system for sustained release of angiogenic factors would be more 

favorable for therapeutic angiogenesis (Simons, 2005). 

Sphingosine-1-phosphate (S1P) is a lipid mediator that exerts pleiotropic effects mainly 

via G-protein-coupled receptors, S1P1, S1P2, and S1P3 (Ishii et al., 2004; Kluk and Hla, 2002; 

Morris et al., 2009; Takuwa et al., 2008). Vascular endothelial cells (ECs) largely express 

S1P1 and S1P3, which stimulate EC proliferation, migration, and capillary-like tube formation 

in vitro (Kimura et al., 2000; Lee et al., 1999; Ryu et al., 2002; Wang et al., 1999). S1P also 

maintains endothelial barrier function via S1P1 (Lee et al, 2006; Peng et al., 2004; Singleton 

et al., 2005).  S1P stimulated angiogenesis in vivo via S1P1 and S1P3 in Matrigel plugs 

implanted in mice (Lee et al., 1999). Deletion of the genes of S1P1 and the S1P-synthesizing 
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enzymes sphingosine kinases-1 and -2 in mice resulted in defects in vascular maturation, i.e. 

recruitment process of pericytes and smooth muscle cells to nascent capillaries, in 

developmental angiogenesis (Allende et al., 2003; Liu et al., 2000; Mizugishi et al., 2005). 

The S1P-S1P1 axis is involved in tumor neovascularization (Chae et al., 2004; Visentin et al., 

2006). Thus, the S1P signaling pathway is a key regulator in angiogenesis under physiological 

and pathophysiological conditions.  

Recently, we demonstrated for the first time that daily intramuscular injections of S1P 

solutions promoted blood flow in murine ischemic hindlimbs (Oyama et al., 2008). The 

stimulatory effect on the blood flow of an optimal dose of S1P was similar or a little stronger 

in magnitude as that induced by FGF-2. S1P-induced stimulation of blood flow was 

accompanied by an increase in the capillary density. However, since daily injections of a 

therapeutic agent do not seem to be favorable in clinical setting, development of sustained 

release formulation of S1P would be desirable.  

Microspheres made from poly(lactic-co-glycolic acid) (PLGA) are biocompatible and 

bioabsorbable (Crotts and Park, 1998), and have been successfully employed as a controlled 

drug delivery system for sustained release of various drugs (Allison, 2008). In the present 

study, we have developed new sustained release preparations of S1P by using PLGA-based 

microparticles (PLGA-S1P). We explored usefulness of topically applied PLGA-S1P 

microparticles. We show here that intermittent repeated local injections of PLGA-S1P into 

 6



ischemic limb muscle promoted blood flow recovery with stimulation of microvessel 

formation and vascular maturation without adverse effects including tissue edema. These 

effects involved Akt/ERK-endothelial nitric oxide synthase (eNOS) activation.  

 

 

2. Materials and Methods 

2.1. Materials   

DL-erythro-sphingosine-1-phosphate (S1P) was bought from BIOMOL (Plymouth Meeting, 

PA). Nω-nitro-L-arginine methylester (L-NAME), fatty acid-free bovine serum albumin 

(BSA), and poly(vinyl alcohol) were purchased from Sigma (St. Louis, MO). PLGAs were 

purchased from Wako Pure Chemical Industries (Osaka, Japan). Recombinant mouse 

VEGF164 and pentobarbital were purchased from R&D systems (Minneapolis, MN) and 

Kyoritsu (Tokyo, Japan), respectively.  

 

2.2. Animals 

We used C57BL/6J and Balb/c male mice of 8–12 week old (Nippon SLC, Shizuoka, Japan). 

In hindlimb ischemia model due to femoral arteriectomy (see 2. 4.), Balb/c mice show 

retarded recovery of blood flow compared with C57BL/6J mice and consequently exhibit 

limb necrosis and functional impairments due to tissue ischemia unlike C57BL/6J mice 
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(Helisch et al., 2006; Shireman and Quinines, 2005). Therefore, we employed C57BL/6J mice 

to determine the effects of PLGA-S1P and L-NAME on angiogenesis, blood flow, cellular 

signaling, and gene expression in most experiments of the present study (Fig. 1, 3-8), and 

Balb/c mice to see its preventive effects on limb necrosis and functional impairments (Fig. 2). 

Green fluorescent protein (GFP)-transgenic (Tg) mice were kindly donated by Dr. Masaru 

Okabe at Osaka University. Mice were housed in a temperature-controlled conventional 

facility (24 °C) under a 12:12 h light–dark cycle with free access to regular chow and water. 

All experiments using mice were approved by and performed according to the Guidelines for 

the Care and Use of Laboratory Animals in Kanazawa University, which strictly conforms to 

US National Institutes of Health guidelines.  

 

2.3. Preparation of PLGA-S1P microparticles 

PLGA-S1P microparticles were prepared by a previously reported emulsion solvent diffusion 

method in water (Kawashima et al., 1998). In brief, 60 mg of either of four different PLGAs 

(PLGA5005 (lactide/glycolide (L/G) molar ratio of 50:50 and average molecular weight 

(MW) of 5,000), PLGA5010 (L/G ratio of 50:50 and MW of 10,000), PLGA7505 (L/G ratio 

of 75:25 and MW of 5,000), and PLGA7510 (L/G ratio of 75:25 and MW of 10,000)) and 1 

mg of S1P were dissolved completely in dichloromethane (2.4 ml) and acetone (0.6 ml). The 

resultant organic solution was poured into 12 ml of an aqueous poly(vinyl alcohol) solution 
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(2.5%) and stirred at room temperature overnight. The entire dispersed system was then 

centrifuged and resuspended in distilled water. The resultant dispersion was dried using a 

freeze-drying method. The encapsulated amount of S1P in PLGA-S1P microparticles was 

determined by dissolving PLGA-S1P microparticles in a physiological solution (Ham’s F12 

medium) containing 0.1% Tween 80 and measuring released amounts of S1P with high 

performance liquid chromatography as described previously (Ohkawa et al., 2008). The 

average S1P content encapsulated in PLGA-S1P microparticles was 1.2% (w/w). Analysis of 

the external surface morphology of the PLGA microparticles by microscopy exhibited a 

spherical shape with smooth and uniform surface morphology. The diameter of the final 

PLGA microparticles was ranged in 10-30 µm. Among the above four PLGAs tested, we 

found that PLGA5005 exhibited most stable release profile in vitro by continuously 

monitoring amounts of S1P released into a solution when S1P-containing PLGA 

microparticles were incubated in the physiological solution: the average amounts of S1P 

released from three different batches of PLGA5005-S1P (1 mg of the initial amount) into 1 ml 

of the physiological solution were 6.56±1.94 (mean±S.E.M) nmol in 1-3 days, 3.07±0.59 

nmol in 4-6 days, 1.13±0.18 nmol in 7-9 days, 0.82±0.06 nmol in 10-12 days, and 0.72±0.18 

nmol in 13-15 days. 

 

2.4. Unilateral hindlimb ischemia model of mice 
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Mice were subjected to surgical procedures to achieve unilateral hindlimb ischaemia after 

intraperitoneal injection of pentobarbital (60 mg/kg), according to the method described 

previously (Oyama et al., 2008).  In brief, following a skin incision at the left paracenter of 

the lower abdomen, the femoral artery, which originated from the external iliac artery and 

terminated to bifurcate into the saphenous and the popliteal arteries, was exposed. The 

femoral artery was ligated with 8-0 silk, and the whole length of the femoral artery was 

excised and the skin incision sutured.  

 

2.5. Drug administration 

Microparticles of PLGA-S1P or PLGA were suspended in Dulbecco’s phosphate-buffered 

saline (PBS) containing 0.1% fatty acid-free BSA. VEGF was dissolved in PBS, aliquoted, 

and stored at –30°C. It was diluted to the final concentration in PBS containing 0.1% fatty 

acid-free BSA. Ten microlitres each of the suspensions of either PLGA-S1P or PLGA alone 

with or without VEGF was injected intramuscularly into four sites in the medial portion of the 

thigh muscle and two sites in the calf muscle of ischemic limbs for 28 days in a single bolus 

or divided doses at 3 or 6 day intervals.  

L-NAME, a NOS inhibitor, was dissolved in the drinking water (0.5 mg/ml) containing 

1 % glucose and administered into mice for 4 weeks before and after the operation whereas 

control animals received drinking water containing 1 % glucose. We chose this dose of 
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L-NAME because it was previously shown to induce hypertension through inhibition of NO 

production (Obst et al., 2004). All animals were fed a regular chow diet. Systolic and diastolic 

blood pressure and heart rate were measured in conscious mice by the tail-cuff system using 

BP98A (Softron Co, Tokyo, Japan) according to manufacturer’s protocol.  

 

2.6. Laser Doppler blood flow analysis 

The blood flow of ischemic (left) and contra-lateral non-ischaemic (right) hindlimbs was 

measured with a laser Doppler blood flow (LDBF) analyzer (Moor Instruments, Devon, UK) 

before and after operation. Before each measurement, mice were anaesthetized with 

pentobarbital (60 mg/kg, intraperitoneally injected) and placed upon a plate warmed at 37 °C 

for 15 min. After scanning, the stored data were analyzed to quantify the mean LDBF per unit 

two-dimensional area on the en-face image of each entire hindlimb in mice at the supine 

position, which was determined by the software provided by the manufacturer (Moor 

Instruments). For each animal, the values were expressed as the ratio of LDBF values in 

ischemic (left)/non-ischaemic control (right) limb at a given time point. 

 

2.7. Assessment of limb necrosis and active hindlimb movement     

The severity of hindlimb tissue necrosis was assessed serially at indicated time points by 

using the following scale; “0”, no necrosis; “1”, necrosis of one toe; “2”, necrosis of two or 
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more toes; “3”, necrosis of the foot; “4”, necrosis of the leg; “5” autoamputation of the entire 

leg (Shireman and Quinones, 2005). The function of ischemic hindlimbs was assessed by 

using the scoring system based on the active foot movement; “0”, spontaneous movement of 

non-ischemic right hindlimbs; “1”, dragging of foot; “2”, no dragging but no active plantar 

flexion; “3”, moderately to severely reduced plantar flexion; “4”, normal or only mildly 

abnormal use (Helisch et al., 2006). Assessment of both limb necrosis and movement was 

performed by an observer who was blinded to treatment.   

 

2.8. Immunohistochemistry and immunofluorescence 

Mice were perfused with PBS containing 4% paraformaldehyde through a cannula inserted 

into left ventricle, and the calf muscle was excised, embedded in O.C.T. compound (Sakura 

Fine Chemical, Tokyo, Japan), and frozen on dry ice. Acetone-fixed frozen sections were 

incubated with rat monoclonal anti-CD31/PECAM-1 antibody (1:100, clone MEC13.3, BD 

Biosciences, San Jose, CA), mouse monoclonal anti-α smooth muscle actin (αSMA) (1:100, 

clone 1A4, Sigma), rabbit polyclonal anti-NG2 (1:200, AB5320, Chemicon), rat monoclonal 

anti-CD11b (1:200, BD Biosciences), rat monoclonal anti-Gr-1 (1:200, BD Biosciences) and 

rat monoclonal anti-CD45(1:200, BD Biosciences). For immunofluorescence, bound 

antibodies were detected with goat AlexaFluor 488- or 594-conjugated secondary antibodies 

and fluorescent images were obtained with a confocal microscope (Carl Zeiss LSM510 
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Pascal). CD31-positive capillary densities were counted in randomly chosen 10 high power 

fields per mouse and expressed as the number of capillaries per mm2. The quantification of 

the extents of αSMA- and NG2-positive mural cell ensheathement of microvasculatures was 

carried out using Image J software (NIH). For immunohistochemistry, tissue sections probed 

with primary antibodies were incubated with a biotinylated anti-rat IgG antibody and 

streptoavidin-conjugated peroxidase (Vectastain ABC kit, Vector Laboratories, Burlingame, 

CA, USA), followed by visualization with 3,3’-diaminobenzidine tetrahydrochloride. The 

stained sections were observed with a microscope (Olympus, BX41), and the quantification of 

the number of CD11b-, CD45- and Gr-1-positive cells was carried out using Image J 

software. 

 

2.9. Western Blotting 

Excised muscle tissues were snap-frozen in liquid nitrogen and homogenated in ice-cold 

buffer (50 mM Tris/HCl (pH 7.2), 500 mM NaCl, 10 mM MgCl2, 1% Triton X-100, 0.5% 

deoxycholate, 0.1% sodium dodecyl sulfate (SDS), 10 μg/ml leupeptin, 10 μg/ml aprotinin, 1 

mM phenylmethanesulfonyl fluoride) by a glass homogenizer. After removal of tissue debris 

by centrifugation 800 g at 4 °C for 15 min, the supernatants were used for Western blot 

analysis. 75 µg proteins were loaded and separated on SDS-8% or 12% polyacrylamide gels 

and electrotransferred onto Immobilon-P membrane (Millipore, Bedford, MA), followed by 
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probing with rabbit polyclonal anti-Ser1177-phosphorylated-eNOS antibody (1:1000, Cell 

Signaling, Danvers, MA), rabbit polyclonal anti-Ser473-phosphorylated-AKT antibody 

(1:1000, Cell Signaling), rabbit polyclonal anti-Thr202,Tyr204-phosphorylated-ERK antibody 

(1:1000, Cell Signaling), rabbit polyclonal anti-eNOS antibody (1:1000, Cell Signaling), 

rabbit polyclonal anti-Akt antibody(1:1000, Cell Signaling), rabbit polyclonal anti-ERK 

antibody (1:1000, Cell Signaling).  

 

2.10. Isolation of mRNA and quantitative real-time polymerase chain reaction (PCR) 

Total RNA was isolated with TRIzol® (Invitrogen, Carslbad, CA) from calf muscle. The 

concentration of RNA was determined by spectrophotometry at 260 nm. 1 µg of total RNA 

was reverse-transcribed with Rever Tra Ace (Toyobo, Osaka, Japan). Real-time quantitative 

PCR analysis was performed using the ABI PRISM 7300 sequence detection system (Applied 

Biosystems, Foster, CA). The following primers and TaqMan probes (Applied Biosystems) 

were used: VEGF164 (Vegfa, ID# Mm00437308_m1), FGF-2 (Fgf2, ID# Mm00433287_m1), 

HGF (Hgf, ID# Mm01135185_m1), angiopoietin-1 (Angpt-1) (Angpt1, ID# 

Mm00456498_m1), transforming growth factor-β1 (TGF β1) (Tgfb1, ID# Mm00441726_m1), 

platelet-derived growth factor B (PDGF-B) (Pdgfb, ID# Mm01298578_m1), interleukin-1β 

(IL-1β) (Il1b, ID# Mm00434228_m1), stromal cell-derived factor-1 (SDF-1) (Cxcl12, ID# 

Mm00445553_m1). TaqMan Rodent Glyceraldehyde-3-phosphate Dehydrogenase (GAPDH) 
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Control Reagents (Applied Biosystems) were used as an endogenous control. The cycling 

condition was programmed as follows: activation of AmpErase uracil-N-glycosylase for 

prevention of carryover contamination at 50 °C for 2 min, activation of AmpliTaq Gold DNA 

polymerase at 95 °C for 10 min, 40 cycles of denaturation at 95 °C for 15 s and 

annealing/extension at 60 °C for 1 min. ΔCt was calculated as (gene of interest 

Ct) − (GAPDH Ct) using Sequence detector (Applied Biosystems) and Microsoft Excel 

(Microsoft corp., Redmond, WA, USA). The relative quantity of mRNA of gene of interest 

was calculated by ΔΔCt calculation as 2−((ΔCt of treated sample)−(ΔCt of control sample)). The amplification 

efficiencies of the target and the endogenous reference were confirmed by observing the equal 

relationship between cDNA dilution and ΔCt.  All experiments included negative controls 

consisting of no cDNA for each primer pair. 

 

2.11. Bone marrow transplantation  

The recipient mice were irradiated 1 day before bone marrow transplantation by a sublethal 

dosage of 9.6 Gray. Bone marrow cells were collected by flushing the marrow cavity of 

femurs of GFP-Tg donor mice. Unfractionated bone marrow cells (1×107) were injected into 

recipient mice via a tail vein. We analyzed GFP fluorescence in peripheral blood cells by 

using a fluorescence activated cell sorter (FACS, JSAN Cell sorter, Bay bioscience, Japan). 
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2.12. Evaluation of tissue edema using X-ray computed tomography (CT)  

Mice given injections of PLGA or PLGA-S1P were subjected to X-ray computed tomography 

using LaTheta LCT-100 (Aloka, Tokyo, Japan) at indicated time points. The CT images of 

hindlimbs were acquired by cutting 8 slices every 1 mm distance from greater trochanter of 

femur to patella, and the volume of soft tissue except bone tissue in ischemic (left) and 

non-ischemic (right) limbs were calculated to evaluate the tissue edema using Image J 

software.  

 

2.13. Blood cell counts, plasma collection, blood biochemistry and urine test 

The abdomen of mice that were sacrificed by an overdose (2 mg) of pentobarbital was quickly 

opened and blood was collected into a heparinized syringe via vena cava.  Plasma was 

derived after centrifugation (2,500 × g, 4°C, 15 min) and stored at −80°C.  Measurement of 

blood cells, leukocyte fractions, blood urea nitrogen and alanine aminotransferase was 

determined by SRL (Hachiohji, Japan). The bladder area on the abdomen of conscious mice 

held by hands was gently massaged, and expelled urine was collected in a 1.5 ml microtube. 

Urine glucose and protein were determined by a urine test paper (Wako, Osaka, Japan). 

 

2.14. Statistics 

All values are expressed as the mean ± S.E.M. (standard error of mean). The data were 
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analyzed using two-way analysis of variance (ANOVA) followed by Dunnett’s post-hoc test 

(Fig. 1) or followed by Bonfferoni post test (Fig. 3 and 7A), and one-way ANOVA followed 

by Bonfferoni post test (Fig. 7B) (Prism 5.0, GraphPad Software, Inc., San Diego, CA). 

Statistical significance between two groups was analyzed by Student's t test (Fig. 2-6 and 8). 

Values of P< 0.05 were considered statistically significant. 

 

 

3. Results  

3.1. Local administration of S1P-containing PLGA microparticles stimulates blood flow 

recovery and ameliorates necrosis and dysfunction in ischemic hindlimbs  

We studied the effects of S1P-containing PLGA (PLGA-S1P) microparticles on blood flow in 

ischemic hindlimbs after surgical femoral arteriectomy in C57BL/6 mice. The identical total 

amount of PLGA-S1P microparticles was injected into ischemic limb muscle as either a 

single bolus or divided doses at either 3-day interval or 6-day interval for 28 days (Fig. 1A). 

The standard total amount (180 pmol S1P per mouse) was determined based upon our 

previous observations obtained with daily injections of S1P solutions (Oyama et al., 2008). 

Divided injections of PLGA-S1P at a 3-day interval, but not single bolus injection or divided 

injections at a 6-day interval, significantly enhanced the blood flow recovery compared with 

PLGA alone on postoperative day 14 and 28 (Fig. 1B and C). The single bolus injection and 
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the divided injections at a 6-day interval also tended to stimulate blood flow recovery, 

although statistically not significant (Fig. 1B and C). PLGA alone did not affect blood flow 

recovery compared with vehicle solution, indicating that PLGA microparticle alone was 

without any effect on blood flow recovery. We compared the effects of different doses of 

PLGA-S1P microparticles on blood flow. The 3-day interval injections of 1.8, 18 and 54 pmol 

PLGA-S1P/mouse stimulated blood flow on postoperative day 28 and other time points with 

the optimal effect obtained at 18 pmol (Fig. 1D). A previous study (Forrest et al., 2004) 

showed that systemic administration of S1P and its derivatives induced bradycardia and 

lymphopenia in rodents. Local injections of PLGA-S1P did not affect the body weight, blood 

pressure, heart rate, blood cell count including lymphocyte number, blood chemistry, and 

urinary glucose and protein (Table 1). For the following experiments, we took advantage of 

3-day interval injections of the optimal dose.   

It was previously shown that the extent and the time course of blood flow recovery and 

consequently the extent of limb damage due to ischemia differ in different inbred mouse 

strains (Helisch et al., 2006; Shireman and Quinones, 2005). For example, the Balb/c strain 

shows delayed and poor recovery of blood flow compared with C57BL/6 mice, and is 

complicated by limb tissue damage and impaired limb activity. As shown in Fig. 2A, Balb/c 

mice that received injections of PLGA alone had relatively low perfusion in ischemic 

hindlimbs compared with C57BL/6 mice (Fig. 1C). The 3-day interval injections of 
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PLGA-S1P significantly increased the blood flow in ischemic limbs on postoperative day 7, 

21, and 28 in Balb/c mice compared with PLGA alone (Fig. 2A). PLGA-S1P significantly 

reduced severity of limb necrosis on postoperative day 5, 7, 10 and 28, as assessed by using a 

five-point scale (Shireman and Quinones, 2005) (Fig. 2B). We applied the scoring for 

classifying the active hindlimb movements to evaluate limb function (Helisch et al., 2006). 

Injections of PLGA-S1P promoted recovery of limb function at 14, 21 and 28 days (Fig. 2C). 

These results indicated that local injections of PLGA-S1P stimulated blood flow recovery, 

inhibited tissue damage, and improved the functional capacity in ischemic hindlimbs in 

BALB/c strain. 

 

3.2. PLGA-S1P microparticles inhibit VEGF-induced edema in ischemic hindlimbs of 

C57BL/6 mice 

S1P acts on vascular ECs to suppress vascular permeability via S1P1 receptor in vitro (Lee et 

al., 2006; Peng et al., 2004; Singleton et al., 2005). In contrast, a potent angiogenic factor 

VEGF induces vascular hyperpermeability and consequently tissue edema (Ferrara and 

Kerbel, 2005; Losordo and Dimmeler, 2004a; Simons, 2005; Takahashi and Shibuya, 2005). 

We studied the effect of PLGA-S1P on VEGF-induced edema formation. Either VEGF (a 

total of 56 ng per mouse over 28 days) or PLGA-S1P (a total of 180 pmol per mouse) alone 

stimulated blood flow recovery to the similar extent (Fig. 3A). This dose of VEGF was 
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determined in our preliminary experiments, which showed that higher VEGF doses than the 

employed dose induced more severe limb edema but did not further enhance blood flow. The 

combination of VEGF and PLGA-S1P did not show an additive or synergistic effect on blood 

flow recovery. We evaluated the extent of edema in ischemic limbs by determining soft tissue 

volumes of hindlimbs with a microCT scanner. The limb edema, which was elicited by the 

surgery by itself and peaked on postoperative day 1, was similar in magnitude among the four 

groups of PLGA vehicle, PLGA-S1P alone, VEGF alone, and the combination of VEGF and 

PLGA-S1P (Fig. 3B). The edema subsided by postoperative day 5 in PLGA and PLGA-S1P 

groups. In contrast, in VEGF-administered mice the edema was still persistent throughout the 

observation period of time although the extent of edema declined after postoperative day 1 

(Fig. 3C). The combination of PLGA-S1P and VEGF did not induce edema at the sustained 

phase, indicating that PLGA-S1P prevented VEGF-induced edema.  

 

3.3. Local administration of PLGA-S1P microparticles stimulates neovascularization 

with promotion of vascular maturation in C57BL/6 mice  

We studied the effects of PLGA-S1P injection on neovascularization by double 

immunofluorescence using anti-CD31 (EC marker) and anti-αSMA (smooth muscle marker) 

antibodies in C57BL/6 mice. Injections of PLGA-S1P resulted in a 30% increase in the 

anti-CD31 staining-positive microvessel density in calf muscle of ischemic limbs on 
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postoperative day 28, compared with injections of PLGA alone (Fig. 4A and 4C). 

Anti-αSMA-positive blood vessels were also increased in ischemic muscle of mice given 

PLGA-S1P injections compared with PLGA injections (Fig. 4A and 4C). The 

anti-αSMA-positive vascular cross-sectional area was increased in PLGA-S1P administered 

mice compared with PLGA (Fig. 4C), indicating that relatively larger blood vessels were 

formed in ischemic muscle of mice given PLGA-S1P injections. Thus, in PLGA-S1P 

administered mice, blood vessels paved with mural smooth muscle were better developed 

compared with PLGA. Double immunofluorescence using anti-CD31 and anti-NG2 (pericyte 

marker) antibodies showed that NG2-positive microvessels in ischemic muscle were 

increased in mice given PLGA-S1P injections compared with PLGA injections (Fig. 4B and 

4C). These observations indicate that PLGA-S1P increases pericyte-covered capillaries and 

smooth muscle-paved larger vessels in ischemic muscle.  

                

3.4. PLGA-S1P promotes blood flow recovery in a nitric oxide (NO)-dependent manner 

in C57BL/6 mice 

We studied the mechanisms for PLGA-S1P-induced stimulation of angiogenesis and blood 

flow. We first explored the effects of PLGA-S1P on the mRNA expression of various 

angiogenic factors by real time-PCR analysis. Among the angiogenic factors examined, the 

mRNA expression of IL-1β, HGF, TGF- β1, SDF-1, and PDGF-B increased in ischemic limb 
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muscle compared with non-ischemic muscle (Fig. 5). Furthermore, injections of PLGA-S1P 

in ischemic muscle increased the expression of angiopoietin-1, HGF, IL-1β and SDF-1, 

suggesting that S1P-induced increases in the expression of these angiogenic factors might at 

least in part contribute to stimulated neovascularization in ischemic limbs. 

We next examined the involvement of NOS in S1P-induced neovascularization in 

ischemic limbs. Previous in vitro studies showed that S1P activates Akt to stimulate eNOS 

through Akt-mediated phosphorylation of eNOS in vascular ECs (Igarashi et al., 2001; Nofer 

et al., 2004; Rikitake et al., 2002). Recently, ERK1/2 was also shown to mediate eNOS 

stimulation through phosphorylation of eNOS (Urano et al., 2008). Stimulation of eNOS and 

consequent increase in NO production contributes to stimulation of post-ischemic 

angiogenesis and blood flow recovery (Ferrara and Kerbel, 2005; Simons, 2005; Ziche et al., 

1997). We observed that PLGA-S1P injections stimulated phosphorylation of both Akt and 

ERK with an increase in phosphorylation of eNOS in ischemic limb muscle (Fig. 6), 

suggesting that S1P stimulated eNOS probably through Akt and ERK in ischemic limb 

muscle in vivo. Systemic administration of L-NAME, a NOS inhibitor, into mice given PLGA 

injection profoundly inhibited blood flow recovery in ischemic limbs (Fig. 7A). L-NAME 

administration into mice given PLGA-S1P injections abolished PLGA-S1P induced increase 

in blood flow over the levels of mice given PLGA injection. We confirmed that the 

administration of the employed dose of L-NAME induced an increase in systolic blood 
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pressure (120 ± 4.6 mmHg in control mice vs. 150 ± 4.1 mmHg in L-NAME-treated mice), 

indicating the effectiveness of L-NAME. L-NAME administration tended to inhibit 

PLGA-S1P-induced increase in the microvascular density in ischemic muscle as evaluated 

with anti-CD31 immunohistochemistry (P=0.11, L-NAME+PLGA-S1P versus PLGA-S1P) 

(Fig. 7B). 

  

3.5. PLGA-S1P mobilizes bone marrow-derived cells (BMDCs) into ischemic limb 

muscle in C57BL/6 mice 

Previous studies (Asahara et al., 1999; Ohki et al., 2005) showed that BMDCs are recruited to 

ischemic sites and contribute to neovascularization in the murine hindlimb ischemic model. 

We studied the effect of PLGA-S1P injections on recruitment of BMDCs into ischemic limb 

muscle by analyzing C57BL/6 mice that had received transplantation of bone marrow from 

GFP-Tg mice. Peripheral blood cells of the recipients were almost completely (> 95%) 

reconstituted with GFP-positive cells after 5 weeks. Fluorescence microscopic observations of 

frozen sections of limb muscle showed that GFP-positive BMDCs infiltrating into ischemic 

muscle were increased in mice given PLGA-S1P injections compared with PLGA injections 

(Fig. 8A). GFP-positive cells were virtually not observed in non-ischemic muscle in mice. 

Immunohistochemical staining using antibodies against the pan-myeloid cell marker CD45, 

the myelomonocytic lineage cell marker anti-CD11b, and the neutrophil marker Gr-1 showed 
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that myeloid cells positive for these markers were infiltrating in ischemic muscle (Fig. 8B, 8C 

and 8D). Injections of PLGA-S1P increased BMDCs positive for either CD45, CD11b or Gr-1, 

indicating that S1P stimulated recruitment of BMDCs into ischemic limb muscle.  

 

 

4. Discussion    

Current attempts to develop therapeutic angiogenesis are categorized into the angiogenic 

factor therapy to supply angiogenic growth factors by either their direct administration or 

gene transduction of the expression vectors and the cell therapy to supply bone 

marrow-derived vascular precursor cells and/or angiogenic molecules-producing cells. In the 

previous approaches of direct administration of the angiogenic factors, one of the major 

limitations was thought to be the short tissue half-life of the angiogenic proteins. One 

approach to overcome this problem would be to employ slow release formulations of 

angiogenic factors. In the present study, we developed a slow release formulation of the lipid 

angiogenic factor S1P by using PLGA as a drug-delivery system. We showed here that 

repeated, local injections of PLGA-S1P microspheres at a regular interval are effective in 

stimulating blood flow in ischemic limbs and improving ischemia-induced limb necrosis and 

impaired function without the side effects including tissue edema and bradycardia. These 

beneficial effects of PLGA-S1P are achieved by increases in both microvessels and smooth 

 24



muscle-covered larger vessels in ischemic limb muscle. In addition, the present study 

provided novel insight into the mechanisms of S1P actions in post-ischemic 

neovascularization, which includes the involvement of Akt/ERK-mediated eNOS activation 

and recruitment of BMDCs. These observations collectively show usefulness of PLGA-S1P 

for therapeutic neovascularization.   

PLGAs have been widely studied for use as vehicles for sustained-release preparations 

because of their desirable biocompatible and biodegradable properties (Crotts and Park, 1998). 

In fact, injections of PLGA alone did not induce adverse tissue reactions in ischemic limbs or 

any abnormality in blood cell count, blood biochemistry and urinalysis in the present study. 

Several different methods have been proposed for synthesizing PLGA microspheres. Among 

these, the solvent diffusion method in water that we employed in the present study enabled 

one to generate PLGA microspheres with a favorable property: the PLGA microspheres 

synthesized by this method had the internal structure of a polymeric matrix containing 

dispersed drugs, giving continuous release of a drug (Kawashima et al., 1998). In the present 

study, we confirmed that S1P was continuously released from synthesized PLGA-S1P 

microparticles into the solution in vitro (see 2.4.). Repeated injections of the divided amounts 

over 28 days, rather than the single bolus injection, of PLGA-S1P microparticles conferred 

better results about stimulation of blood flow. This might have resulted from the fact that 

PLGA microspheres exhibit the initial burst of drug release and that higher local 
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concentrations of S1P in ischemic limbs than the optimal concentration do not effectively 

stimulate neovascularization as observed in our dose-response study of S1P solution 

injections (Oyama et al., 2008; Qi, X. unpublished results). The 3-day interval injections may 

have given the more favorable condition that permits an optimal range of local S1P 

concentration and its persistence. The particle size of PLGA microspheres could also affect 

release profile of drugs encapsulated in microspheres; smaller particles release more drugs per 

a given particle weight compared with larger particles because of the relatively greater surface 

area per weight in smaller particles (Kawashima et al., 1998). Therefore, it is possible that 

different sizes of PLGA microspheres show different dose-response relationships and optimal 

inter-injection time intervals even if they are made from an identical PLGA type. 

The present study suggested that local injections of PLGA-S1P induced 

neovascularization at least through two ways, i.e. angiogenesis and recruitment of vascular 

mural cells, medial smooth muscle cells and pericytes (Fig. 4). Angiogenesis is the process in 

which new vessels arise by branching from existing microvessels, and involves the 

dissolution of the basement membrane underneath the endothelium, and EC migration and 

proliferation. Previous studies and our data suggest that S1P seems to stimulate angiogenesis 

through multiple mechanisms. First, S1P is capable of acting on ECs to stimulate endothelial 

proliferation, migration, cell-cell adhesion in vitro, and microvessel formation in vivo in 

matrices implanted in animals (Krump-Konvalinkova et al., 2008; Lee et al., 1999; Lee et al., 
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2000; Ryu et al., 2002). Second, injections of PLGA-S1P increased the expression of several 

angiogenic factors including HGF, angiopoietin-1, SDF-1 and IL-1β in ischemic muscle (Fig. 

5). Third, S1P recruited BMDCs, which release angiogenic growth factors and the powerful 

matrix-degrading enzymes matrix metalloproteinases, into ischemic muscle (Losordo and 

Dimmeler, 2004b; Ohki et al., 2005). With respect to this, in vitro activation of BMDCs via 

S1P3 increased the capacity of the infused BMDCs to restore blood flow in ischemic limb 

(Walter et al., 2007). In that study, S1P3 was suggested to be involved in homing of BMDCs 

through sensitization of SDF-1/CXCR4 signaling pathway. Therefore, the observed 

PLGA-S1P-induced increase in BMDCs in ischemic limb muscle (Fig. 8) may have been 

caused through S1P3-SDF-1/CXCR4 pathway. These observations collectively suggest that 

exogenous S1P stimulates neovascularization by promoting angiogenesis through both 

EC-autonomous and non-autonomous mechanisms.  

Injections of PLGA-S1P increased the number of αSMA-positive blood vessels in 

ischemic muscle (Fig. 4C middle), suggesting that S1P promoted smooth muscle-coverage of 

blood vessels, i.e. arteriogenesis. Arteriogenesis generally involves growth and remodeling of 

preexisting collateral vessels or reflects de novo formation of mature vessels (Carmeliet, 

2000; Simons, 2005). The maturation of blood vessels into multilayer structure is essential for 

their persistence. In addition, we observed that PLGA-S1P promoted the association of 

pericytes with microvessels (Fig. 4B and 4C right), stabilizing newly formed vessels 
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(Carmeliet, 2000; Simons, 2005). The stabilization of capillaries probably inhibits regression 

of newly formed vessels and vascular permeability (Carmeliet, 2000; Simons, 2005). Previous 

studies (Allende et al., 2003; Choi et al., 2008; Liu et al., 2000; Paik et al., 2004) showed that 

S1P plays the essential role in mural cell recruitment at developmental vascular formation in 

an EC-autonomous manner. Therefore, it is the likely possibility that the vascular maturation 

effects of PLGA-S1P in ischemic limbs are mediated through S1P action on ECs. These 

stimulatory effects of S1P on angiogenesis and arteriogenesis may at least in part account for 

PLGA-S1P-induced increase in blood flow.  

In the present study, we for the first time reported the evaluation of limb edema by taking 

serial CT images of the thigh of hindlimbs and calculating soft tissue volume of hindlimbs. 

This technique is non-invasive and can be repeatedly applied to the same animals so that one 

can follow the time course of edema. We detected transient edema due to femoral 

arteriectomy itself. As reported previously with other methods (Ferrara and Kerbel, 2005; 

Losordo and Dimmeler, 2004a; Simons, 2005; Takahashi and Shibuya, 2005), VEGF induced 

sustained edema after the surgery-induced initial edema (Fig. 3B). Importantly, injections of 

PLGA-S1P suppressed VEGF-induced edema in ischemic limbs, which was consistent with 

the vascular stabilizing (see above) and barrier-protecive actions (Lee et al., 2006; Peng et al., 

2004; Singleton et al., 2005) of PLGA-S1P. 

Injections of PLGA-S1P stimulated Akt and ERK in ischemic limb muscle (Fig. 6). Akt 
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and ERK are key signaling molecules in cell proliferation, survival, migration, eNOS 

activation in ECs, and thereby angiogenesis. In fact, injections of PLGA-S1P induced an 

increase in phosphorylation level of eNOS at Ser1177, which is the Akt and ERK 

phosphorylation site critical for its activation. Available evidence (Losordo and Dimmeler, 

2004b; Rubic et al., 1998; Ziche et al., 1997) suggest that the eNOS/NO pathway contributes 

to angiogenesis. Administration of the NOS inhibitor L-NAME reduced blood flow in both 

PLGA-S1P treated and PLGA treated control mice; PLGA-S1P still stimulated blood flow in 

L-NAME-administered mice (Fig. 7A), suggesting that mechanisms distinct from NO could 

also participate in PLGA-S1P-induced blood flow stimulation in ischemic limbs. Consistently, 

L-NAME tended to only partially inhibit PLGA-S1P-induced angiogenesis (Fig. 7B), 

suggesting that PLGA-S1P-induced neovascularization is in part dependent on eNOS/NO. 

These observations also suggest that NO may increase blood flow independently of stimulated 

neovascularization; NO-induced vasodilation may be involved in blood flow stimulation in 

ischemic limbs (Ziche et al., 1997). The eNOS/NO-independent angiogenic actions of 

PLGA-S1P likely involve Akt/ERK-mediated stimulation of endothelial cell proliferation and 

migration (Kimura et al., 2000; Lee et al., 1999; Ryu et al., 2002; Wang et al., 1999;). In 

addition, injections of PLGA-S1P partially rescued ischemia-induced limb necrosis (Fig. 2). 

Because both Akt and ERK act as the signaling pathways to mediate cell survival in various 

cell types including skeletal muscle (Woodgett, 2005), it is possible that S1P-induced 
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activation of Akt and ERK in skeletal muscle also contributed to protection of muscle from 

necrosis. 

In conclusion, we developed PLGA-based slow release formulation of S1P for therapeutic 

angiogenesis. Repeated, local injections of the sustained release preparation promoted 

angiogenesis with stabilization and arteriogenesis through mechanisms involving 

Akt/ERK-eNOS and recruitment of BMDCs, resulting in stimulation of blood flow, 

prevention of necrosis and functional impairment without the adverse effects of local limb 

edema, bradycardia and lymphopenia. Thus, sustained delivery of S1P by topical injections of 

PLGA-S1P microspheres may represent a promising strategy for angiogenic therapy.  
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Legends for Figures

Figure 1. Local PLGA-S1P injections enhance the blood flow recovery in C57BL/6 mice. 

(A) Protocol of administration of PLGA-S1P microparticles. (B) Laser Doppler blood flow 

(LDBF) pseudocolour images, as determined with an LDBF analyser, in mice that received 

either PLGA-S1P (180 pmol total S1P) at single bolus, 6-day interval or 3-day interval or 

PLGA alone at 3-day interval on postoperative day 28. (C) Ischaemic/non-ischaemic limb 

LDBF ratio value in mice that received either PLGA-S1P (180 pmol total S1P) at various 

administration interval or PLGA alone at 3-day interval for 28 days. Data represent the mean 

± S.E.M. (n = 8 mice per group). * P< 0.05, PLGA-S1P at 3-day interval versus the PLGA.  

(D) Ischaemic/non-ischaemic limb LDBF ratio value in mice that received either various 

doses of PLGA-S1P or PLGA alone at 3-day interval for 28 days. Data represent the mean ± 

S.E.M. (n = 8 mice per group). * P< 0.05, the 54 pmol PLGA-S1P treated mice versus the 

PLGA treated mice; § P< 0.05, the 18 pmol PLGA-S1P treated mice versus the PLGA treated 

mice; † P< 0.05, the 1.8 pmol PLGA-S1P treated mice versus the PLGA treated mice.   

 

Figure 2. Local PLGA-S1P injections enhance the blood flow recovery (A), inhibit the 

tissue damage (B), and improve the functional recovery (C) of the limbs in Balb/c mice. 

(A) Ischaemic/non-ischaemic limb LDBF ratio value in mice that received either PLGA-S1P 

(180 pmol total S1P) or PLGA alone at 3-day interval for 28 days. (B) Mean severity scores 
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for tissue necrosis. The severity of hind limb tissue necrosis was serially assessed after 

operation. (C) Spontaneous active use scores of left hindlimbs. The functional recovery of 

hind limb was serially assessed after operation. Data represent the mean ± S.E.M. (n = 15 

mice per group). * P< 0.05 and ** P< 0.01 versus the PLGA treated mice.    

  

Figure 3. Effects of either alone of PLGA-S1P and VEGF and the combination on blood 

flow recovery (A) and tissue edema (B, C) in C57BL/6 mice. Ischaemic/non-ischaemic 

limb LDBF ratio value (A) and ischemic/non-ischemic tissue volume evaluated by X-ray 

imaging analysis (B) in mice that received either PLGA-S1P (180 pmol total S1P) or PLGA 

alone at 3-day interval with or without daily injections of 56 ng VEGF for 28 days. Data 

represent the mean ± S.E.M. (n = 8 mice per group). In A: * P< 0.05, PLGA treated mice 

versus PLGA-S1P treated mice; § P< 0.05, PLGA treated mice versus PLGA plus VEGF 

treated mice; † P< 0.05, PLGA treated mice versus the PLGA-S1P plusVEGF treated mice. 

In B, * P< 0.05, the PLGA treated mice versus the PLGA plus VEGF treated mice. § P< 0.05, 

the PLGA plus VEGF treated mice versus the PLGA-S1P plus VEGF treated mice; † P< 0.05, 

the PLGA-S1P treated mice versus the PLGA with VEGF treated mice. (C) Representative 

X-ray images on postoperative day 28 are shown. R: right; L: left. 

 

Figure 4. PLGA-S1P stimulates angiogenesis and arteriogenesis in C57BL/6 mice. A and 
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B, EC marker CD31 (red) and smooth muscle cell marker αSMA (A) and pericyte marker (B) 

were detected by double immunofluorescence (green) in the ischemic hindlimb of PLGA 

treated (upper panel) and PLGA-S1P treated (lower panel) mice. Representative 

immunofluorescence images of of either marker and merge images are shown. (C) CD31 

positive microvessels, αSMA positive vessels, αSMA positive vascular area and NG2 positive 

microvessels were quantified by Image J software (NIH). Data represent the mean ± S.E.M. 

(n = 4 or 5 mice per group). * P< 0.05 and ** P< 0.01 versus the PLGA treated mice. Scale 

bar =100 µm. 

 

Figure 5. mRNA expression of angiogenic factors in ischemic hindlimb muscle in 

C57BL/6 mice.  mRNA expression levels of angiogenic factors in calf muscle from 

PLGA-S1P treated (stippled) and PLGA-treated (open) mice on postoperative day 3, 7, and 

14 were determined by real-time PCR. GAPDH was used as an endogenous control. Data are 

expressed as the ratio of the values in ischemic over non-ischemic muscle and represent the 

mean ± S.E.M. (n = 5 or 6 mice per group). * P< 0.05, ischemic limb versus non-ischemic 

limb; § P< 0.05, the PLGA-S1P treated mice versus the PLGA treated mice. 

 

Figure 6. Phosphorylation of Akt, ERK and eNOS in ischemic muscle following 

injections of PLGA-S1P or PLGA in C57BL/6 mice. Muscle tissue homogenates from 
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PLGA-S1P treated (filled) and PLGA-treated (open) mice on postoperative day 28 were 

subjected to Western blot using antibodies against phospho-Akt and total Akt (A), 

phospho-ERK and total ERK (B), and phospho-eNOS and total eNOS (C) as described 

in ”Materials and Methods”. Quantitative analyses of band densities are also shown. Data 

represent the mean ± S.E.M. (n = 5 mice per group).  * P< 0.05, ** P< 0.01 versus the 

PLGA treated mice. 

 

Figure 7. Effect of Nω-nitro-L-arginine methylester (L-NAME) on PLGA-S1P induced 

stimulation of blood flow recovery in C57BL/6 mice. (A) Ischaemic/non-ischaemic limb 

LDBF ratio value in mice of the 4 experimental groups; PLGA treated mice with or without 

L-NAME, PLGA-S1P treated mice with or without L-NAME. Data represent the mean ± 

S.E.M. (n = 8 mice per group).  * P< 0.05, PLGA-S1P treated mice versus PLGA treated 

mice. § P< 0.05, PLGA-S1P treated mice versus PLGA-S1P with L-NAME treated mice; † 

P< 0.05, PLGA treated mice versus PLGA with L-NAME treated mice. (B) 

Immunohistochemical analysis of CD31 in ischemic hindlimbs of PLGA treated and 

PLGA-S1P treated mice with or without L-NAME. Shown are representative images (upper 

panel) from calf muscle on postoperative day 28. Quantitative analysis of CD31-positive 

microvessel density is also shown (lower panel). Data represent the mean ± S.E.M. (n = 5 

mice per group).* P< 0.05. Scale bar =100 µm. 
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Figure 8. PLGA-S1P promotes bone marrow-derived cells (BMDCs) recruitment into 

the ischemic area in C57BL/6 mice. (A) GFP-positive cell recruitment into the ischemic 

area is promoted by PLGA-S1P.  Ischemic calf muscle was excised on postoperative day 28 

from C57BL/6J mice that had received transplantation of bone marrow (BM) cells from 

GFP-transgenic mice 4 weeks before the operation, and GFP-positive BMDCs in muscle 

were counted . B, C, and D, CD11b- (B), CD45- (C), or Gr-1-(D) positive cells recruitment 

into the ischemic area are promoted by PLGA-S1P. Sections of the calf muscle in PLGA 

treated and PLGA-S1P treated mice were probed with anti-CD11, anti-CD45, or anti-Gr-1 

immunostaining, and CD11b-, CD45-, or Gr-1-positive cells were counted. Quantitative 

analyses of positive cell number are also shown. Data represent the mean ± S.E.M. (n = 6 

mice per group). * P< 0.05, the PLGA-S1P treated mice versus the PLGA treated mice. Scale 

bar =50 µm



 

Table 1.  

Effects of PLGA-S1P injectons on body weight, BP, heart rate, CBC, BUN, ALT, and urine test in mice 

 Systolic 
blood 
pressure 

Treatment 
Body 
weight 
(gram) 

(mmHg) 

Heart rate 
(beats/min) 

RBC 

(x10
4
/µl) 

WBC 

(x10
2
/µl) 

Plt 

(x10
4
/µl) 

lymphocyte 
(%) 

BUN 
 

 

 

 

 

 

(mg/dL) 
ALT 
(IU/L)

Urine 
test 

PLGA 25.2±0.5 108.2±1.2 543±12 923±18 24±2.4 29±9 82±8 27±2 19±3 Normal 

PLGA-S1P 25.4±0.3 107.1±3.8 565±23 948±8 23±2.4 41±20 82±5 25±1 16±4 Normal 

RBC, red blood cell; WBC, white blood cell; Plt, platelet; BUN, blood urea nitrogen; ALT, alanine aminotransferase.  

Wild-type C57BL/6J mice that received repeated injections of PLGA or PLGA-S1P into hindlimbs at 3-day interval for 28 days were analysed 

for the indicated items, as described in the Method section. The values are mean±S.E.M. (n=6 in each group). There was no significant 

difference in any of these parameters between PLGA-S1P-administered and control mice.  

 

 

 44 



Figure 1
Click here to download high resolution image

http://ees.elsevier.com/ejp/download.aspx?id=211133&guid=54850a5a-bead-4a37-9f5d-59b8824b28e8&scheme=1


Figure 2
Click here to download high resolution image

http://ees.elsevier.com/ejp/download.aspx?id=211134&guid=229b242a-ab54-43c6-9b5e-688707361c61&scheme=1


Figure 3
Click here to download high resolution image

http://ees.elsevier.com/ejp/download.aspx?id=211135&guid=37638305-1181-40eb-b2b5-5410bec12cdc&scheme=1


Figure?4
Click here to download high resolution image

http://ees.elsevier.com/ejp/download.aspx?id=211158&guid=128f079b-fc27-48ca-a19e-97a5228cf8ee&scheme=1


Figure 5
Click here to download high resolution image

http://ees.elsevier.com/ejp/download.aspx?id=211159&guid=26cd9243-c5eb-4379-abb2-bb56f3f45890&scheme=1


Figure 6
Click here to download high resolution image

http://ees.elsevier.com/ejp/download.aspx?id=211160&guid=bc2d8b58-f166-40bb-9025-d8b8e92ffcec&scheme=1


Figure 7
Click here to download high resolution image

http://ees.elsevier.com/ejp/download.aspx?id=211161&guid=b588abd5-e697-45f4-ab6f-e9a5c1063144&scheme=1


Figure 8
Click here to download high resolution image

http://ees.elsevier.com/ejp/download.aspx?id=211162&guid=129108ab-6849-448a-ae4b-6549366c0ea1&scheme=1

