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Abstract 

Sphingosine-1-phosphate (S1P) has been implicated in tumor angiogenesis by acting via 

a Gi-coupled chemotactic receptor S1P1. We report here that S1P2, which, distinctly 

from S1P1, mediates S1P inhibition of Rac and cell migration via G12/13 and the Rho 

pathway, negatively regulates tumor angiogenesis and tumor growth. By using S1P2 

LacZ/+ mice, we found that S1P2 was expressed in tumor vessels and normal blood 

vessels in many organs in both endothelial cells (ECs) and vascular smooth muscle cells, 

as well as tumor-associated, CD11b-positive bone marrow-derived cells (BMDCs). 

Lewis lung carcinoma (LLC) and B16BL6 melanoma tumors implanted in 

S1P2-deficient (S1P2
-/-) mice showed accelerated tumor growth and stimulated 

angiogenesis with enhanced association of vascular smooth muscle cells and pericytes. 

Compared with S1P2
+/+ ECs, S1P2

-/- ECs showed enhanced Rac activity, Akt 

phosphorylation, cell migration, proliferation and tube formation in vitro. Co-injection 

of S1P2
-/- ECs and tumor cells into S1P2

+/+ mice enhanced tumor growth and 

angiogenesis in vivo, as compared with co-injection of S1P2
+/+ ECs and tumor cells. The 

recruitment of CD11b-positive BMDCs into tumors in S1P2
-/- mice was increased, 

compared with tumors in S1P2
+/+ siblings. The bone marrow transplantation 

experiments showed that deletion of S1P2 exclusively in BMDCs promoted tumor 

growth and angiogenesis. These results indicate that, in contrast to endothelial S1P1 

which stimulates tumor angiogenesis, S1P2 on ECs and BMDCs mediates potent 

inhibition of tumor angiogenesis, providing a novel therapeutic strategy for anti-cancer 

treatment.  
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Introduction 

Tumor growth critically depends upon neovascularization, in which endothelial 

cells (ECs) in preexisting blood vessels located in the vicinity of tumors are induced to 

migrate toward a tumor, proliferate and develop morphogenesis to form networks of 

microvessels in a tumor (1-3). Pericytes and vascular smooth muscle cells (VSMCs) are 

recruited to the newly formed microvessel wall to stabilize them (4-6), establishing 

functional tumor vessels that facilitate oxygen and nutrient supply for rapidly 

proliferating tumor cells. These processes are regulated by multiple extracellular 

signaling molecules including vascular endothelial growth factors (VEGFs), 

angiopoietin-1, fibroblast growth factors (FGFs) and platelet-derived growth factors 

(PDGFs), which are derived from both hypoxic tumor cells and infiltrating bone 

marrow-derived cells (BMDCs), the latter being also recruited by tumor itself (7-11). A 

subpopulation of BMDCs is also suggested to contribute to tumor angiogenesis through 

their differentiation into endothelial cells (12, 13). 

   Sphingosine-1-phosphate (S1P) is a pleiotropic lysophospholipid mediator that 

regulates cell proliferation, migration, survival, and differentiation by acting through 

members of the G protein-coupled S1P receptors, including widely expressed S1P1, 

S1P2 and S1P3 (14). S1P1, which is expressed on endothelial cells, mediates chemotaxis 

toward S1P and formation of capillary-like tube structures in vitro through mechanisms 

involving Gi-coupled activation of Rac small GTPase (15, 16). Deletion of S1pr1 gene 

in mice resulted in embryonic lethality due to failure of vascular maturation (17, 18). 

RNAi-mediated S1P1 silencing inhibited tumor angiogenesis and tumor growth in vivo 

in an animal model of subcutaneous tumor implantation (19), indicating that 

endogenous S1P is involved in tumor angiogenesis via S1P1.  
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In sharp contrast to S1P1, S1P2 inhibits Rac and thereby cell migration via a G12/13 

/Rho-dependent mechanism (20, 21). S1P2 is expressed at high levels in vascular 

smooth muscle cells (VSMCs) and certain types of tumor cells, mediating S1P 

inhibition of cell migration in these cell types (21-23). It was previously shown that 

deletion of S1P2 leads to an age-dependent derangement in microvascular structure in 

the inner ear (24), and that deletion of S1P1, S1P2 and S1P3 leads to a more severe 

phenotype regarding vascular maturation at the developmental stage compared with 

deletion of S1P1 alone (25). We previously observed that endogenous S1P2 mediated 

inhibition of Rac activity, cell migration and capillary-like tube formation in an 

endothelial cell line and that an S1P2-selective antagonist enhanced in vivo angiogenesis 

in Matrigel plug assays (26). In addition, using both in vitro and in vivo models, several 

other groups have shown the anti-angiogenic activity of S1P2 receptor (27, 28). 

However, it remains unknown whether and how S1P2 is involved in tumor angiogenesis. 

The expression of S1P2 in vivo in normal and tumor tissues has been little understood to 

date.  

   In the present study, by analyzing β-galactosidase (LacZ)-knockin mice in which 

LacZ gene expression is driven by endogenous S1P2 promoter, we demonstrated for the 

first time that S1P2 is expressed mainly in ECs and VSMCs of blood vessels in a variety 

of normal organs. In murine tumor isograft models, tumor vasculatures and infiltrating 

bone marrow-derived cells (BMDCs) expressed S1P2. S1P2-deficient (S1P2
-/-) mice 

showed enhanced tumor angiogenesis and vascular maturation compared with wild-type 

(S1P2
+/+) mice. Analysis of bone marrow-transplanted mice and the co-implantation 

experiments of isolated ECs and tumor cells provided evidence that S1P2 in both ECs 

and BMDCs contributes to inhibition of tumor angiogenesis and tumor growth. 
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Materials and Methods 

Tumor isograft models, Matrigel plug assay and bone marrow transplantation 

(BMT).  

The conventional S1P2-deficient mice and LacZ-knockin mice at the S1P2 locus 

were generated as described in Supplementary Materials (Supplementary Figs. 1 and 2). 

Lewis lung carcinoma cells (LLC) (106) or B16BL6 (5×105) melanoma cells were 

injected into the right flanks of 8-week-old female S1P2
+/+ and S1P2

-/- littermates 

(C57BL/6 background). In the co-implantation experiments, LLC or B16BL6 cells were 

mixed with S1P2
+/+ or S1P2

-/- primary murine lung endothelial cells (MLECs, 2×105) 

and injected subcutaneously into wild-type mice. Tumor volume was determined every 

2 days. Matrigel (300 μl, BD Biosciences) containing heparin (1 μg/ml, H3149, Sigma) 

with and without VEGF165 and FGF2 (100 ng/ml each, PeproTech) were subcutaneously 

injected. In BMT experiments, the recipients were irradiated with a sublethal dosage of 

9.6 Gy. Unfractionated bone marrow cells (107 cells) were collected by flushing the 

marrow cavity of femurs of S1P2
+/+;GFP or S1P2

Lacz/LacZ;GFP mice with PBS and 

injected into recipients via tail veins. 

 

X-gal staining, immunohistochemistry, and immunofluorescence  

Tumors or organs were snap-frozen in OCT compound. Cryosections (10 μm) were 

fixed and β-galactosidase activity was detected as blue pigments as described (29). 

Sections were counterstained with nuclear fast red (H-3403, Vector Laboratories).  

For immunohistochemistry and immunofluorescence, cryosections were incubated 

with primary antibodies against CD31 (553171, clone MEC13.3, BD Biosciences), 
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von-Willebrand factor (vWF) (A0082, DAKO), CD11b (550282, BD Biosciences), Gr-1 

(550291, BD Biosciences), desmin (M0760, clone D33, DAKO), NG2 (AB5320, 

Chemicon), phospho-Histone H3 (06-570, Upstate Biotechnology), and VE-cadherin 

(14-1441-81, eBioscinece), followed by incubation with the secondary antibodies 

conjugated with horse radish peroxidase, Alexa 594 or Alexa 488 and nuclear 

counterstaining with hematoxylin or DAPI (Molecular Probes). For determinations of 

functional microvessels with FITC-lectin staining, FITC-lectin (1mg/ml, FL-1171, 

Vector Laboratories) was injected into tail veins, followed by perfusion-fixation using 

4% paraformaldehyde in Dulbecco’s phosphate-buffered saline. The sections were 

observed with a microscope (Olympus, BX41) or confocal fluorescence microscope 

(Carl Zeiss LSM510 Pascal).  

 

Preparation of primary mouse lung microvascular endothelial cells (MLECs) and 

determinations of cell proliferation, in vitro wound healing, and pull-down assay 

for GTP-bound Rac 

MLECs were isolated from S1P2
+/+ and S1P2

-/- mice with a magnetic separation 

method using a rat anti-mouse CD105 antibody (550546, BD Biosciences) and goat 

anti-rat antibody-conjugated magnetic beads, and MS columns (Miltenyi Biotec, 

Germany). All MLECs were cultured on plastic dishes coated with type I collagen 

(Nitta Gelatin), in EBM-2 medium (Lonza) containing growth factor supplements and 

2% fetal bovine serum (FBS). MLECs showed purity greater than 95% by 

immunostaining with anti-CD31 and anti-VE-cadherin. For cell proliferation assay, the 

isolated MLECs were seeded onto 96 well plates the day before experiments, starved for 

16 h in M199 medium containing 0.5% fatty acid free bovine serum albumin (BSA) 
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(Sigma), and transferred to EBM-2 containing 2% FBS, indicated concentrations of 

VEGF and Alamar Blue (BioSource, CA), followed by colorimetric measurements 

according to the manufacturer’s instructions. For wound healing assay to evaluate cell 

migration, MLECs were seeded onto 60 mm dishes and allowed to grow until 

confluency. The cell monolayer was wounded with a plastic tip and cultured in EBM-2 

media containing either 2% FBS and VEGF (100 ng/ml) or 10% FBS alone for 

indicated time periods. The pull-down assay for GTP-bound active Rac1 was performed 

as described in detail previously (20).  

 

Bone marrow derived monocyte/macrophage (BMM) migration assay 

BMMs (30) were used for transwell cell migration assay as described (20). Briefly, 

polycarbonate filters of 8μm pore size (Nucleopore, NeuroProbe) were coated with 

fibronectin (10μg/ml, Sigma). Dulbecco’s modified Eagle’s minimal essential medium 

(DMEM) with or without various amounts of MCP-1, VEGF or S1P was placed in the 

lower compartment of the chamber, and 5×105 cells/ml suspended in DMEM were 

added to the upper compartment. After incubation for 8 hours at 37 ℃, the number of 

cells that migrated through the filter was counted under a microscope.  

 

Statistical analysis  

Unless otherwise mentioned, the data are expressed as an average ±SEM. Two-way 

ANOVA was followed by Bonferroni’s test to determine the statistical significance by 

using GraphPad Prism software. Unpaired Student’s t-test was performed for the 

comparison between two groups. Error bars represent SEM for all figures. Statistical 

significance was defined as *P<0.05; **P<0.01; ***P<0.001. 
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Results 

LLC and B16BL6 melanoma cells were implanted into S1P2
-/- and S1P2

+/+ 

littermate mice. For either LLC or B16BL6 the tumor volume was consistently larger in 

S1P2
-/- mice than in wild-type mice, resulting in significant increases in the tumor 

weight in S1P2
-/- mice at the end of experiments (Fig. 1A; supplementary Fig. 3A). 

Immunofluorescent staining of CD31 showed that the microvessel density (MVD) was 

greater in both LLC and B16BL6 tumors of S1P2
-/- mice, compared with S1P2

+/+ 

littermates (Fig. 1B and C; Supplementary Fig. 3B and C). Consistently with increased 

MVD in tumors grown in S1P2
-/- mice, the mRNA levels of CD31, VE-cadherin, 

VEGFR2 and Notch1, which are expressed in vascular ECs, were elevated in tumors of 

S1P2
-/- mice (Supplementary Fig. 4). Probing with anti-phospho-histone H3 antibody 

revealed that the density of proliferating cell nuclei in LLC and B16BL6 tumors was 

greater in S1P2
-/- compared with wild-type (Fig. 1B and C; Supplementary Fig. 3B and 

C). Most of anti-phospho-histone H3 positive proliferating cells were CD31-negative, 

suggesting that they were tumor cells. Proliferating cells were more abundantly 

observed in the areas of relatively high MVD in both S1P2
-/- and S1P2

+/+ mice.  

The extent of association of NG2-positive pericytes with CD31-positive 

microvessels in LLC tumors was more than two-fold increased in S1P2
-/- mice compared 

with S1P2
+/+ mice (Fig. 2A). Similarly, the association with tumor microvessels of 

desmin-positive mural cells was greater in S1P2
-/- compared with wild-type (Fig. 2B). 

The density of functional, perfused tumor microvessels was also more abundant in 

tumors grown in S1P2
-/- mice than wild-type, as evaluated by intravenous injection of 

FITC-dextran followed by fluorescent microscopic observations of frozen tumor 
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sections (Supplementary Fig. 3D). Thus, tumors in S1P2
-/- mice had increased numbers 

of more maturated, functional tumor microvessels.  

In Matrigel plug assay, both S1P2
+/+ and S1P2

-/- mice showed only moderate 

angiogenic activity of the similar extents in the absence of the growth factors as 

evaluated with anti-vWF staining of the Matrigel (Fig. 3A and B). In the growth 

factor-supplemented Matrigel, S1P2
-/- mice showed a greater extent of stimulated 

neovessel formation with a 1.5-fold higher number of anti-vWF-positive cells compared 

with S1P2
+/+ mice. Immunohistochemistry using anti-desmin antibody, which stains 

both pericytes and VSMCs, showed a larger number of vascular mural cells in the 

Matrigel in S1P2
-/- mice (Fig. 3C and D).  

In normal tissues of S1P2
LacZ/+ mice, in which LacZ gene is knocked-in at the locus 

of S1pr2 allele and LacZ expression is under the control of endogenous S1P2 promoter, 

LacZ activity was detected with X-gal staining in various sizes of blood vessels in a 

variety of organs, which included lung, brain, skeletal muscle, kidney, and liver 

(Supplementary Fig. 5A). Vascular cells appeared to be the major cell types that 

expressed S1P2 in many organs. Double staining with anti-CD31 and X-gal staining 

showed that ECs in microvessels and both ECs and VSMCs of larger vessels (for 

example, arteries in liver) expressed LacZ (Supplementary Fig. 5B). In addition, a 

limited population of bone marrow cells and non-vascular cells in the brain expressed 

LacZ (Supplementary Fig. 5A and B).  

In LLC tumor isografts in S1P2
LacZ/+ mice, prominent LacZ expression was 

observed in hypervascular regions which were located at the tumor periphery, and blood 

vessels of a larger size in the adjacent peritumoral host tissue (Fig. 4A-a, b). The 

magnified views (Fig. 4A-c, d) revealed that LacZ-positive cells included microvascular 
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ECs in the tumor stroma and ECs and mural cells of a larger vessel in the peritumoral 

host tissue. Double staining with anti-CD31 immunohistochemistry and X-gal staining 

revealed that both ECs and mural cells of tumor vessels expressed LacZ (Fig. 4A-e, f). 

In addition, LacZ expression was detected in the scattered host-derived non-vascular 

cells both in the tumor stroma and in the tumor-surrounding host tissue (Fig. 4A-c, d). 

Compared with peripheral hypervascular regions, LacZ expressing cells were scanty in 

the central region of tumors (Fig. 4A-a).          

More than 95% of MLEC monolayer cells isolated from S1P2
+/+ and S1P2

-/- mice 

showed VE-cadherin assembly at the cell-cell boundary (Supplementary Fig. 6A). 

Essentially all of the MLECs cultured from S1P2
LacZ/+ mice were positive for X-gal 

staining (Supplementary Fig. 6A), whereas MLECs from S1P2
+/+ mice were negative, 

indicating that MLECs express S1P2 in mice. The mRNA expression levels of S1P1 or 

S1P3 were not different between the ECs from S1P2
+/+ and S1P2

-/- mice (Supplementary 

Fig. 7B). Immunofluorescence showed that S1P1 expression in tumor blood vessels was 

similar between S1P2
+/+ and S1P2

-/- mice (Supplementary Fig. 7A). MLECs derived 

from S1P2
-/- mice showed significantly higher rates of cell proliferation in response to 

serum with different concentrations of VEGF compared with S1P2
+/+ mice (Fig. 4B). 

S1P2
-/- MLECs also showed augmented cell migration in in vitro wound healing assay in 

the presence of serum plus VEGF (Fig. 4C and Supplementary Fig. 6B) and serum 

alone (data not shown) as compared with S1P2
+/+ MLECs. In in vitro tube formation 

assay, S1P2
-/- MLECs showed a higher morphogenic activity over S1P2

+/+ MLECs in the 

presence of serum with or without VEGF, with respect to both the numbers of branching 

points and total length of tube-like structure (Supplementary Fig. 6C and D).       

The basal Rac1 activity in unstimulated condition was approximately 1.6-fold 
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higher in S1P2
-/- MLECs compared with S1P2

+/+ MLECs (Fig. 4D). Stimulation with 

VEGF or S1P resulted in Rac activation in both S1P2
-/- and S1P2

+/+ MLECs over the 

respective basal levels, with greater extents of activation in S1P2
-/- MLECs; VEGF- and 

S1P-stimulated Rac1 activity in S1P2
-/- MLECs were higher by 1.5- and 2-fold, 

respectively, compared with S1P2
+/+ MLECs. The total amounts of Rac1 protein were 

similar in S1P2
+/+ and S1P2

-/- MLECs. Akt phosphorylation in response to S1P was 

different between S1P2
+/+ and S1P2

-/- MLECs. In S1P2
+/+ MLECs S1P rather reduced the 

extent of Akt phosphorylation, which was totally abolished in S1P2
-/- MLECs 

(Supplementary Fig. 8). The basal and VEGF-stimulated Akt phosphorylation was 

similar in both ECs. In contrast to Akt phosphorylation, the extents of ERK 

phosphorylation were not different between S1P2
-/- and S1P2

+/+ MLECs under the basal 

or stimulated conditions.  

We co-implanted tumor cells together with either S1P2
-/- or S1P2

+/+ MLECs into 

wild type mice to evaluate the role of endothelial cell S1P2 in the early phase of tumor 

growth and tumor angiogenesis. Tumor growth of either LLC or B16BL6 was 

accelerated when tumor cells were co-inoculated with S1P2
-/- MLECs compared with 

co-inoculation of tumor cells and S1P2
+/+ MLECs (Fig. 5A and B, and Supplementary 

Fig. 9). Tumor microvessel density and FITC-lectin stained functional microvessel 

number in LLC tumors were significantly higher when co-injected with S1P2
-/- MLECs 

compared with S1P2
+/+ MLECs (Fig. 5C and D).  

Accumulated evidence shows that tumor infiltrating BMDCs, particularly CD11b+ 

cells, are involved in tumor neovascularization through multiple mechanisms (31). We 

found that LLC tumors of S1P2
-/- mice showed a nearly 2-fold increase in the number of 

tumor infiltrating CD11b positive cells compared with S1P2
+/+ mice (Fig. 6A, upper). 
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We explored the expression of S1P2 in tumor-infiltrating bone marrow-derived cells 

(BMDCs) by inoculating LLC cells in S1P2
+/+ mice that had received transplantation of 

bone marrow from S1P2
LacZ/+ mice. LacZ-positive BMDCs were abundantly infiltrating 

into the tumor stroma in a scattered manner (Supplementary Fig. 10A). Double staining 

for LacZ activity and either of CD31, CD11b and Gr1 revealed that most, if not all, of 

LacZ-positive, infiltrating BMDCs were CD11b+Gr1-CD31- cells (Supplementary Fig. 

10B-D). Immunohistochemistry of a pan-macrophage marker F4/80 showed that 

F4/80-positive macrophages were increased in tumors of S1P2
-/- mice compared with 

S1P2
+/+ mice (Fig. 6A, lower). We studied motility of CD11b+ bone marrow derived 

monocyte/macrophage (BMM). In a transwell migration assay, S1P in the lower 

chamber strongly inhibited migration toward VEGF of S1P2
+/+-BMM, which was totally 

abolished in S1P2
-/--BMM (Fig. 6B). VEGFR1 mRNA expression was not different 

between S1P2
+/+- and S1P2

-/--BMM (data not shown).  

To address the role of S1P2 expressed in BMDCs in tumor growth and neovessel 

formation, we inoculated LLC cells in S1P2
+/+ mice that had undergone transplantation 

of bone marrow (BM) from either S1P2
-/- or S1P2

+/+ donors. S1P2
+/+ recipients 

reconstituted with S1P2
-/- BM cells showed significant stimulation of tumor volume and 

weight (Fig. 6C upper) and neovessel formation (Fig. 6D), compared with those 

reconstituted with S1P2
+/+ BM cells. Conversely, S1P2

-/- recipients that had received 

S1P2
+/+ marrow cells showed inhibition of tumor volume compared with those that had 

received S1P2
-/- marrow cells (Fig. 6C lower). We did not observe LacZ-positive cells in 

the vascular wall in LLC tumor in S1P2
+/+ mice that had received transplantation of 

S1P2
LacZ/+ BM (Supplementary Fig. 10B), suggesting that the contribution of 

S1P2-expressing BMDCs as vascular cell precursors was minimal. In addition, the 
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mRNA levels of the angiogenic signaling molecules VEGF-A, TGFβ1, bFGF, and IL-1β 

among others were elevated in LLC tumors in S1P2
-/- mice compared with wild-type 

(Supplementary Fig. 11).  

 

Discussion 

Accumulating evidence shows the emerging roles of the S1P signaling pathway in 

the regulation of blood vessel functions including vascular formation, vascular 

permeability, and the proliferative responses to injury (22, 32). Compared with S1P1, the 

roles of S1P2 in vascular pathophysiology are relatively poorly understood. In the 

present investigation, we studied the role of S1P2 in tumor angiogenesis. The present 

study demonstrated that S1P2 is expressed in both ECs and VSMCs of tumor blood 

vessels and BMDCs infiltrating in the tumor stroma, as well as in normal blood vessels 

in a variety of organs. Deletion of host S1P2 resulted in stimulation of tumor 

angiogenesis with enhanced vascular mural cell recruitment and myeloid cell 

mobilization, leading to acceleration of tumor cell proliferation and tumor growth. 

These data collectively suggest that S1P2, that is expressed in ECs and BDMC, is 

involved in suppression of tumor angiogenesis. The action of S1P2 in tumor 

angiogenesis contrasts with S1P1.   

We found by the analysis of S1P2
LacZ/+ mice that vascular cells are the major cells 

that express S1P2 in many organs. LacZ activity was particularly intense in pulmonary 

microvasculatures among other vascular beds (Supplementary Fig. 5A). Comparison of 

cultured lung ECs isolated from S1P2
+/+ and S1P2

-/- mice demonstrated that Rac activity, 

cell proliferation, migration, and tube formation were enhanced in S1P2-deficient 

MLECs in vitro (Fig. 4B-D, and Supplementary Fig. 6D). These observations, together 
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with the previous findings that S1P2 is a negative regulator of Rac and cell migration 

(20, 33), suggested that deletion of S1P2 induced de-inhibition of Rac activity in ECs, 

which, probably together with additional signaling pathways including PTEN 

downstream of G12/13 and Rho, resulted in stimulation of cell migration and tube 

formation in S1P2
-/- MLECs. Furthermore, co-implantation studies of tumor cells and 

isolated MLECs (Fig. 5) provided evidence that deletion of endogenously expressed 

S1P2 in ECs rendered them to become more potent in promoting tumor neovessel 

formation and tumor growth in vivo in an endothelial cell autonomous manner.  

Increasing evidence shows that myeloid cells participate in tumor angiogenesis 

(31). In the present study, the bone marrow transplantation experiments revealed that 

S1P2 expressed in BMDCs plays a significant role in the negative regulation of tumor 

neovascularization and tumor growth (Fig. 6C and D). We observed that 

S1P2-expressing BMDCs include CD11b+Gr1- myelomonocytic lineage cells 

(Supplementary Fig. 10C and D). Immunohistochemistry using anti-macrophage marker 

F4/80 showed that macrophages were more abundant in tumors of S1P2
-/- mice than of 

S1P2
+/+ mice (Fig. 6A). Therefore, it is likely that at least a portion of CD11b+Gr1- 

infiltrating cells represent macrophages.  

These BMDCs were probably recruited by chemoattractants including chemokines, 

VEGF and other mediators that were secreted by tumor cells and tumor stroma cells. 

The migration study of isolated bone marrow-derived monocytes/macrophages showed 

that S1P2 by itself was inhibitory for cell migration and exerted a strong inhibitory 

effect on VEGF-directed migration (Fig. 6B). The observations together with the 

increased infiltration of CD11b+ and F4/80+ myeloid cells in tumors of S1P2
-/- mice (Fig. 

6A) suggest that S1P2 exerts an inhibitory effect on recruitment of myeloid cells into 
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tumors. The infiltrating myeloid cells accumulating in tumors are known to release 

pro-angiogenic factors including VEGF, FGF2, PDGF and matrix metalloproteases 

(MMPs), the enzymes that contribute to angiogenesis through degradation of the 

extracellular matrix proteins and also release VEGF and TGFβ that had been deposited 

in the matrix (31, 34, 35). With this respect, we observed that tumors grown in S1P2
-/- 

mice showed increased mRNA expression levels of a panel of angiogenic molecules 

including VEGF and TGFβ. We also found an increased MMP9 activity in tumors of 

S1P2
-/- mice compared with S1P2

+/+ mice by an in situ zymography technique, and 

increased VEGF mRNA expression in bone marrow-derived monocytes/macrophages 

from S1P2
-/- mice compared with S1P2

+/+ mice (W. Du, unpublished observations). 

These observations suggest that more abundant BMDCs infiltrating in tumors of S1P2
-/- 

mice contribute to promotion of tumor growth at least in part through release of 

pro-angiogenic factors. Recent studies (35, 36) also suggested that a subpopulation of 

BMDCs is capable of transdifferentiating into vascular ECs and become incorporated 

into the new blood vessels in tumors. However, we could not detect LacZ-expressing 

bone marrow-derived ECs in tumor blood vessels in mice that underwent 

transplantation of S1P2
LacZ/+ bone marrow.  

In S1P2
-/- mice, the recruitment of mural cells to tumor blood vessels was promoted 

(Fig. 2). This may be explained by stimulated local production of angiogenic factors 

with a vascular maturation-promoting activity, which include TGFβ (Supplementary Fig. 

11), the loss of chemorepulsion mediated by S1P2 on mural precursor cells in the tumor 

microenvironment in which the concentration of S1P in the blood is presumed to be 

higher than in the perivascular tumor stroma, and the greater contribution of BMDCs as 

mural cell precursors (35, 36) in S1P2
-/- mice. Concerning the latter possibility, 
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LacZ-expressing mural cells were not readily detected in the vascular wall in tumors of 

mice that had received transplantation of S1P2
LacZ/+ BM (Supplementary Fig. 10), 

suggesting that the incorporation of bone-marrow-derived mural cell precursors into the 

vascular wall was unlikely.  

Recent studies showed that inhibition of S1P1 action by either siRNA-mediated 

silencing (19) or functional downregulation of S1P1 by the S1P analogue FTY720 

phosphate inhibited tumor angiogenesis and tumor growth, suggesting the possibility 

that S1P1 could be a target for ani-angiogenic therapy (37-39). Our observations that 

tumor neovessels, especially those in peripheral angiogenic hot spot regions, abundantly 

express S1P2 (Fig. 4) strongly suggest the possibility that selective activation of S1P2 

may lead to inhibition of tumor angiogenesis and thus tumor growth. S1P1 was shown to 

be upregulated in tumor blood vessels (19). It remains to be defined how the expression 

of S1P2 is regulated in tumor vasculatures. It is an interesting possibility that S1P 

receptor subtype-selective pharmacological targeting strategies, i.e. S1P1 inhibition in 

combination with S1P2 activation, could lead to more effective inhibition of tumor 

angiogenesis. In addition to an expected anti-angiogenic action of S1P2-selective 

agonist, which is mediated through S1P2 expressed on ECs and BMDCs, selective 

activation of S1P2 expressed on tumor cells is expected to directly inhibit tumor cell 

migration in vivo, leading to inhibition of invasion and metastasis, as we previously 

demonstrated in an animal model (40). 

In conclusion, the present study demonstrated the novel inhibitory role of the S1P 

signaling pathway via S1P2 in tumor angiogenesis. The S1P2 effects involve 

EC-autonomous actions and myeloid cell-dependent actions. These observations open 

the possibility of a novel anti-angiogenic therapy to target S1P2. 
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Figure Legends 

Figure 1. Enhanced tumor growth and angiogenesis of LLC in S1P2 deficient mice. 

(A) Tumor volumes (left) and weights (right) of LLC inoculated subcutaneously in 

S1P2
+/+ (solid lines) and S1P2

-/- (dotted lines) littermate mice were measured (n=14). (B) 

Representative images of LLC tumor blood vessel (left) and proliferating cell nuclei 

(middle) which were detected by anti-CD31 (red) and a mitotic marker, 

anti-phospho-Histone H3 (green) immunofluorescence, respectively. Tumors from 

S1P2
-/- hosts show increased vascularity and enhanced tumor cell proliferation. Scale 

bar=100 μm. (C) Numbers of tumor microvessels (left) and proliferating cell nuclei 

(right) in LLC tumors (n=9).  

 

Figure 2. Tumor microvessels in S1P2 deficient mice show increased mural cell 

recruitment. (A) and (B), the pericyte marker NG2 (A) and both pericyte and smooth 

muscle marker desmin (B) were detected by immunofluorescence (green) in LLC 

tumors grown in S1P2
+/+ and S1P2

-/- mice. Representative images of double 

immunofluorescence for CD31 (red) and either of the mural cell markers are shown. 

The ratios in pixels of NG2 (A) and desmin (B) over CD31 were quantified by Image J 

software (right). (n=9). 

 

Figure 3. S1P2 deficient mice show enhanced angiogenesis with stimulated mural 

cell recruitment in endothelial growth factor-containing Matrigel Plugs. (A) The 

plugs that were either supplemented with VEGF (200 ng/ml) and FGF2 (100 ng/ml) or 

growth factor-deficient (PBS), were excised 10 days after implantation. The sections of 

Matrigel plugs obtained from S1P2
+/+ and S1P2

-/- mice were immunostained with 
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anti-von Willebrand factor (vWF) antibody. Representative images are shown. (B) The 

numbers of vWF positive cells were quantified. (C) Representative images of 

immunostaining against desmin. Arrow heads, desmin positive cells. Scale bars (A and 

C):100 μm. (D) The quantified data of anti-desmin staining. In (B) and (D), the numbers 

of vWF positive cells and desmin positive cells per high power field (HPF) were 

quantified in S1P2
+/+ and S1P2

-/- plug sections. (n=4). 

 

Figure 4. Expression of S1P2 in tumor vasculatures, and cell proliferation, 

migration, and Rac pull-down assay in vitro in S1P2
 deficient mouse lung 

endothelial cells (MLECs). (A) X–gal staining and CD31 immunostaining of serial 

sections of a LLC tumor at 14 days in S1P2
LacZ/+ mice. a and b, X-gal staining positive 

cells were especially rich in peripheral hypervascular hot spot regions (a) where CD31 

is strongly positive (b, yellow dash). Scale bar=500 μm. The magnified views of two 

boxed areas in a are shown in c and d. c, X-gal staining positive host cells are localized 

in both vessel walls and outside of vessels in the peri-tumoral region. T, tumor. d, X-gal 

staining-positive cells on the vascular wall (black arrows) and scattered cells in the 

tumor stroma outside of vessels (orange arrows). Scale bar=50 μm. e and f, double 

staining for X-gal and CD31 of tumor sections showing that S1P2 is expressed in both 

endothelial and mural cells of tumor vessels. Scale bar=20 μm. (B) S1P2
-/- MLECs 

showed significantly higher rate of cell proliferation and saturation density compared 

with S1P2
+/+ MLECs in the presence of indicated concentrations of VEGF. (C) In vitro 

wound healing assay of MLECs. S1P2
-/- MLECs showed significantly stimulated cell 

migration in the presence of serum and VEGF alone after 24 and 48 hours compared 

with S1P2
+/+ MLECs. (D) Rac pull-down assay of S1P2

+/+ and S1P2
-/- MLECs 

25 
 



stimulated with S1P (10-7 M) or VEGF(100 ng/ml) for 5 min.  

 

Figure 5. S1P2
 deficient MLECs co-injected with tumor cells promote tumor 

growth and angiogenesis in vivo. (A) Representative images of LLC tumors, which 

had been implanted together with either S1P2
+/+ or S1P2

-/- MLECs. (B) Growth curves 

of LLC tumors which were co-implanted with either S1P2
+/+ or S1P2

-/- MLECs. (C) 

Tumor vessels in LLC co-implanted with either S1P2
+/+ or S1P2

-/- MLECs were 

visualized by anti-CD31 immunostaining (left). Scale bar=100 μm. (D) FITC-lectin 

(1mg/ml) were i.v. injected into mice, and 3 min later mice were perfusion-fixed. The 

cryosections were immuno-stained with anti-CD31 antibody and observed under a 

fluorescent microscope. FITC-lectin labeled perfused microvessels and CD31-stained 

microvessels were counted per field. The ratio of FITC-lectin labeled microvessel 

number to CD31-positive microvessel number is shown in the bar graph (right). Scale 

bar=50 μm. 

 

Figure 6. Deletion of S1P2 in BMDCs promote tumor growth and tumor 

angiogenesis in S1P2
+/+ mice. (A) CD11b+ myeloid cell recruitment into tumors is 

promoted in S1P2
-/- mice. Sections of LLC tumors in S1P+/+ and S1P2-/- mice were 

immunostained with anti-CD11b antibody, and CD11b+ myeloid cells were counted. (B) 

Transwell migration of bone marrow derived monocyte/macrophage (BMM) from 

S1P2
+/+ and S1P2

-/- mice. DMEM with 0.1% fatty acid free BSA (vehicle); MCP-1 

(10ng/ml); VEGF (100ng/ml); S1P (10-7M); were added to the lower compartment. 

Migrated cells in each microscopic field were counted. (C) LLC tumor growth curves 

and tumor weight for S1P2
+/+ (left) and S1P2

-/- (right) mice that had received 
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transplantation of BM from either S1P2
+/+ (solid line) or S1P2

-/- (dashed line) donors 5 

weeks prior to LLC tumor cell inoculation (left, n=16 and 18, respectively; right, n=10 

and 6, respectively). (D) Representative photomicrographs of anti-CD31 staining of of 

LLC tumors grown in S1P2
+/+ mice which had received BM from either S1P2

+/+ or 

S1P2
-/- donor. Scale bar=100 μm. Microvessel numbers are quantified in high power 

field (HPF) (left). 
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Supplemental materials 

Generation of S1P2 knockout mice and LacZ knockin mice 

For the construction of S1P2 targeting vector, the S1p2 genomic clones were used 

along with the plasmid containing a neomycin-resistance cassette (Neor) (pMC1Neo 

vector) and diphtheria toxin-expression cassette (DTA) (pMC1DT-ApA) (1). The 

DTA gene in the targeting vector was located outside of the homologous sequence to 

prevent random integration (Supplementary Fig. 1). A 2.8-kb BglII/BglII genomic 

fragment that contains the entire 1.1-kb open reading frame (ORF) of S1p2, which was 

flanked with 5’ and 3’ flanking regions of 1.1- and 0.6-kb, respectively, was cloned 

into pLITMUS29 vector. NaeI digest of this vector, which lack 0.75-kb 5’ region of 

ORF including the start codon, was ligated with 1.1-kb BamHI/HincII fragment of 

pMC1Neo vector, which resulted in substitution of 0.75-kb 5’ region of ORF with 

Neo gene flanked with thymidine kinase promoter at 5’ end. The further ligation of 

S1p2 genomic DNA fragments resulted in the targeting vector that contains the 5’ (left) 

and 3’ (right) arms of 8.2- and 0.9-kbp sequences, respectively, for homologous 

recombination. For the construction of S1P2 knockout/lacZ knock-in targeting vector, 

the previously constructed pLITMUS29 vector containing S1p2 genomic clone with 

the partial substitution with the Neo cassette was digested by BamHI and ligated with 

3.2-kb NcoI/BamHI fragment of lacZ/RSV-polyA cassette vector (2). The 5’ S1p2 

genomic fragment was ligated in frame with the start codon of LacZ DNA in 

pMCDT-ApA vector with the ligation of the 3’ S1p2 genomic fragment, resulting in 

the generation of the targeting vector with the identical 5’ (left) and 3’ (right) arms of 

S1p2 genomic sequences to the above-mentioned targeting vector for S1P2 knockout 

(Supplementary Fig. 2). Details of vector construction are available upon request. 

The E14-1 ES cells were electroporated (1.25×107 cells) with 20 µg of linearized 

DNA and subjected to positive selection with G418 (0.25 mg/ml). For Southern 

blotting of NcoI-digested DNA, the 0.43-kb BglII-NcoI DNA fragment located outside 

of the 3’ right arm of the targeting vector (3’ probe), which detects 1.6-kb fragment in 

the targeted S1p2 allele and 2.1-kb fragment in the wild-type allele, was used. For 
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S1P2 knockout/LacZ knockin ES cells, the 5’ probe (a 0.66-kb NdeI-NotI DNA 

fragment) hybridized to NdeI-digested DNA fragments of 11.9- and 9.7-kb fragments 

in the targeted and wild-type alleles, respectively, and followed by verification with 

the 3’ probe (a 0.85-kb BglII-BglII DNA fragment) hybridized to BamHI-digested 

DNA, which detects 2.6- and 6.8-kb fragments in the targeted and wild-type alleles, 

respectively. The ES cells carrying the targeted alleles were aggregated with 8-cell 

stage embryos, resulting in male chimeric mice (3). Chimeras were mated with 

C57BL/6 females to obtain F1 mice carrying each of the targeted alleles. We analyzed 

S1P2-knockout mice and their littermates on C57BL/6 background (N4) and LacZ 

knockin mice that were back-crossed to C57BL/6 more than 10 times. We observed 

seizure attacks in S1P2-knockout mice around the weaning, which resulted in death in 

8-10% of mice. This was similar to the previous report (4) but was different from 

another report which showed that an independently established S1P2-knockout mice 

did not exhibit seizures or epileptic death during the similar ages (5). We did not 

observe seizures or epileptic death in backcrossed homozygous LacZ knockin mice. 

All mice used in this study were bred and maintained at Institute for Experimental 

Animals, Advanced Science Research Center, Kanazawa University, under specific 

pathogen-free conditions. All procedures were conducted in accordance with 

Fundamental Guidelines for Proper Conduct of Animal Experiment and Related 

Activities in Academic Research Institutions under the jurisdiction of the Ministry of 

Education, Culture, Sports, Science and Technology of Japan approved by the 

Committee on Animal Experimentation of Kanazawa University. The guidelines 

strictly conform to the Guide for the Care and Use of Laboratory Animals published 

by the US National Institutes of Health (NIH Publication No. 85-23, revised 1996). 

 

Genotyping of S1P2-deficient and LacZ-knockin mice  

Mice were genotyped by PCR analysis of genomic DNA prepared from tail 

biopsies using the primers shown in Supplementary Fig. 1 and 2. The primer 

sequences were as follows: F1, 5’-cagtgacaaaagctgccgaatgctgatgct-3’; F2, 5’- 

tggctacccgtgatattgctgaagagcttg-3’; R1, 5’-tgagcagtgagttaagggtggcaaaggcaa-3’. The 
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PCR conditions were: 33 cycles of 94°C (30 sec), 59°C (45 sec), 72°C (30 sec) for F1 

and R1, and 33 cycles of 94°C (30 sec), 59°C (45 sec), 72°C (30 sec) for F2 and R1. 

The amplified products were 424-bp in the wild-type allele and 241-bp in the targeted 

alleles in S1P2-knockout mice and LacZ-knockin mice.  

 

Tumor blood vessel perfusion analysis 

Vascular perfusion was visualized by injecting fluorescent isothiocyanate 

(FITC)-conjugated dextran (Sigma) via tail vein at a dose of 2 mg/kg and harvesting 

tumors after 1h. 

 

Tube formation assay 

Capillary-like tube formation was performed as described previously (6), and the 

obtained images were analyzed for the average number of tube branching points and 

tube length by using Image J software (NIH). 

 

Reverse transcription (RT)-PCR and Real-time PCR 

Total RNA was isolated from LLC tumors grown in either S1P2
+/+ or S1P2

-/- 

mice for 7-days using TRIZOL reagent (Invitrogen, USA). One microgram of total 

RNA was transcribed into first-strand cDNA using oligo(dT) 18 primer and 

ReverTraAce (Toyobo, Japan) according to the manufacturer’s instructions. One μl of 

the reaction mix (out of 25 μl in total) was amplified by PCR conducted for 25-28 

cycles with reverse transcribed DNA as template. The extract without RT reaction was 

used as a template for the negative control. After amplification, PCR products were 

separated on 2% agarose gels and visualized by ethidium bromide staining. They were 

determined from the 3 independent experiments and normalized for expression levels 

of GAPDH mRNA (20 cycles of PCR). Sequences of specific primers and amplified 

product sizes are listed in Supplementary Table 1.  

Quantitative real-time PCR was performed using the 7300 real-time PCR System 

and the Assays-on-Demand Gene Expression product (Taqman, Mammalian Gene 

Collection probes) according to the manufacture’s instructions (Applied Biosystems). 
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Primers for murine VEGF (Vegfa, Mm00437308_m1), TGFβ (Tgfb1, 

Mm00441726_m1), bFGF (Fgf2, Mm00433287_m1), IL-1β (Il1b, 

Mm00434228_m1), angiopoitin-1 (Angpt1, Mm00456498_m1), PDGF-B (Pdgfb, 

Mm01298578_m1), HGF (Hgf, Mm01135185_m1), CXCL12 (Cxcl12, 

Mm00445553_m1), S1P1 (S1p1r, Mm00514644_m1), S1P3 (S1p3r, 

Mm00515669_m1), VEGFR1(flt1, Mm00438980), VEGFR2(kdr, Mm00440099_m1) 

were also obtained from Applied Biosystems. TaqMan Rodent 

Glyceraldehyde-3-phosphate Dehydrogenase (GAPDH) Control Reagents (Applied 

Biosystems) were used as an endogenous control. ΔCt was calculated as (gene of 

interest Ct) − (GAPDH Ct) using Sequence detector (Applied Biosystems) and 

Microsoft Excel (Microsoft corp., Redmond, WA, USA). The relative quantity of 

mRNA of gene of interest was calculated by ΔΔCt calculation as 2−((ΔCt of S1P2-/- 

sample)−(ΔCt of S1P2+/+ sample)). The amplification efficiencies of the target and the 

endogenous reference were confirmed by observing the equal relationship between 

cDNA dilution and ΔCt.  All experiments included negative controls consisting of no 

cDNA for each primer pair. 

 

S1P1/CD31 double immunofluorescent staining 

S1P1 polyclonal antibody was provided by Dr. S. Mandala (Merck).  

 

Western blotting 

MLECs were serum-starved in M199 medium with 0.5% BSA (fatty acid free) 

for 36 h before stimulation with VEGF (100 ng/ml) or S1P (10-7 M) for 10 minutes. 

Cells were rinsed with ice-cold PBS and lysed in 2× Laemmli’s loading buffer and 

subjected to Western blotting with antibodies against phospho-Akt (#4060, Cell 

signaling), total Akt (#9272, Cell signaling), phospho-ERK1/2 (#4370, Cell signaling), 

and total ERK1/2(#9102, Cell signaling).  
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Supplementary Figure Legends 

Supplementary Figure 1. Generation of S1P2 knockout mice. (A) S1P2 knockout 

mice were generated as described in “Generation of S1P2 knockout mice and S1P2 

knockout/lacZ knock-in mice.” (B) Southern blot analysis of S1P2 knockout mouse 

genomic DNA. The wild type and the targeted alleles show 2.1- and 1.6-kb fragments 

hybridized by the probe. (C) Northern blot analysis shows that the expression levels 

of S1P1 and S1P3 mRNAs were similar in S1P2
+/+ and S1P2

-/- mice. 

 

Supplementary Figure 2. Generation of S1P2 knockout/lacZ knock-in mice. (A) 

S1P2 lacZ knockin mice were generated as described in “Generation of S1P2 knockout 

mice and S1P2 knockout/lacZ knock-in mice.” (B) Southern blot analysis of S1P2 

knockout/lacZ knock-in mouse genomic DNA. The wild type allele shows 9.7 kb (5’ 

probe) and 6.8-kb (3’ probe) bands, and the targeted allele shows 11.9-kb (5’ probe) 

and 2.6-kb (3’ probe) bands, respectively. (C) Genotyping of wild type, heterozygous 

and knockout mice by PCR using tail genomic DNA. The amplified PCR products 

were 424-bp and 241-bp in the wild-type and the targeted alleles, respectively.  

 

Supplementary Figure 3. Increased tumor angiogenesis and tumor cell 

proliferation in B16BL6 melanoma grown in S1P2 deficient mice. (A) Tumor 

volumes of B16BL6 inoculated subcutaneously in S1P2
+/+ (solid lines) and S1P2

-/- 

(dotted lines) littermate mice were measured every other day (n=14). (B) Tumor blood 

vessels and proliferating cell nuclei were detected by anti-CD31 (red) and 

anti-phospho-Histone H3 (green) double immunofluorescence. Representative images 

are shown. (C) The numbers of tumor microvessels (left) and proliferating cell nuclei 

(middle) were counted in each high power field (HPF) (n=6). (D) Intravenously 

administered FITC-dextran (green) was detected in LLC tumors grown in S1P2
+/+ and 

S1P2
-/- mice under a fluorescent microscope. White arrows, tumor microvessels 

identified with functional perfusion. Scale bar=100 μm. The pixels of FITC-dextran 

per high power field (HPF) were quantified (right). 
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Supplementary Figure 4. Upregulation of vascular gene expression in LLC 

tumors grown in S1P2 deficient mice. The mRNA expression levels of CD31, 

VE-cadherin, VEGFR2, Notch1 were determined by RT-PCR. Data are representative 

of three independent experiments. GAPDH served as the internal control. The data 

(means ± SEM) are shown as -fold changes over the values in tumors of S1P2
+/+ mice, 

which are expressed as 1.0. Sequences of specific primers are listed in Supplementary 

Table 1. 

 

Supplementary Figure 5. S1P2 is mainly expressed in blood vessels of various 

tissues in adult S1P2
LacZ/+ mice. (A) X-gal staining of S1P2

LacZ/+ mouse tissues 

including lung, brain, skeletal muscle, kidney, liver, and bone marrow. Scale bars=100 

μm. (B) Double staining for LacZ activity and CD31 immunoreactivity disclosed that 

S1P2 is expressed widely in all adult S1P2
LacZ/+ mouse tissues examined. The major 

cells that are positive for LacZ activity are vascular endothelial cells and smooth 

muscle cells in many tissues. The arrowheads in skeletal muscle indicate capillaries 

and larger sizes of vasculatures. In the liver, V, central vein; P, portal vein; A, artery. 

 

Supplementary Figure 6. Mouse lung endothelial cells (MLECs) isolated from 

S1P2
-/- mice showed increased cell migration and tube formation in vitro. (A) 

Primary cultures of MLECs isolated from S1P2
LacZ/+, S1P2

+/+ and S1P2
-/- mouse lungs, 

in which either LacZ activity (left) or VE-cadherin (middle and right) was detected by 

X-gal staining and immunofluorescence staining, respectively. Scale bars: 100 μm 

(X-gal staining) and 20 μm (anti-VE-cadherin immunofluorescence), respectively. (B) 

Representative photomicrographs of in vitro wound healing assay. (C) Left, 

representative photomicrographs of in vitro tube formation assay in the presence of 

2% fetal bovine serum (FBS) alone (control) and 2% FBS plus 100 ng/ml VEGF 

(VEGF). Right, the tube formation by MLECs isolated from S1P2
LacZ/+ mice in the 

presence of 2% FBS plus VEGF is visualized by X-gal staining. (D) Numbers of 

branching points and total tubular length in the presence or absence of VEGF were 
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quantified from tube formation assay. 

 

Supplementary Figure 7. S1P1 expression in LLC tumor isograft and the 

expression of S1P1 and S1P3 in S1P2
+/+ and S1P2

-/- MLECs. (A) 

Immunofluorescence staining of S1P1 and CD31 in LLC tumor isografts. There is no 

difference in S1P1 expression in tumor blood vessels between S1P2
+/+ and S1P2

-/- 

mice. (B)Total RNA was isolated from S1P2
+/+ and S1P2

-/- MLECs. The mRNA 

expression levels of S1P1, S1P3, and VEGFR2 were determined by real-time PCR. 

Data are representative of three independent experiments. The data (means ± SEM) 

are shown as -fold changes over the values in S1P2
+/+ MLECs, which are expressed as 

1.0. 

  

Supplementary Figure 8. Phosphorylation of Akt and ERK in S1P2
+/+ and S1P2

-/- 

MLECs. (A) and (B), MLECs from the S1P2
+/+ and S1P2

-/- were starved 36h in M199 

medium plus 0.5% BSA (fatty acid free), and then stimulated with VEGF (100ng/ml) 

or S1P (10-7 M) for 10 minutes. Cell lysates were subjected to Western blotting using 

antibodies against phospho-Akt, total Akt (A), phospho-ERK1/2, and total ERK1/2 

(B) as described in Supplementary Materials. Right, representative blots are shown. 

Left, the quantitative analyses. The data (means ± SEM) are shown as -fold increases 

above the basal levels in S1P2
+/+ MLECs, which are expressed as 1.0.  

 

Supplementary Figure 9. S1P2
 deficient MLECs co-injected with B16BL6 tumor 

cells promote tumor growth in vivo. (A) Representative images (left) and growth 

curves (right) of B16BL6 tumors, which had been implanted together with either 

S1P2
+/+ or S1P2

-/- MLECs (1×106 tumor cells mixed with 2×105 MLECs) into 

wild-type mice. (B) Representative X-gal staining image of LLC with S1P2
LacZ/LacZ 

MLECs co-injected to wild-type mouse.  

 

Supplementary Figure 10. X-gal staining and immunostaining for myeloid cell 

markers of LLC tumor sections from S1P2
LacZ/+ mice. LLC tumor cells were 
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inoculated into S1P2
+/+ mice that had received transplantation of bone marrow (BM) 

cells from S1P2
LacZ/+ mice at 5 weeks prior to LLC cell inoculation, and tumors were 

excised at 21 days. (A), Sections of LLC tumors were probed with X-gal staining and 

counterstained with nuclear fast red. (B)-(D), Sections of LLC tumors were subjected 

to double staining of X-gal and immunohistochemistry using either anti-CD31 (B), 

anti-CD11b (C) or anti-Gr-1 (D). (A) Tumor peripheral region shows a scattered 

pattern of abundant infiltration of X-gal staining-positive BMDCs, scale bar=100 μm. 

(B) CD31-positive vascular endothelial cells are negative for X-gal staining. X-gal 

staining-positive cells are localized in the tumor stroma outside the blood vessel 

(black arrowheads). (C) Co-localization of LacZ activity (black arrowheads) and 

CD11b+ (red arrowheads). All X-gal-positive cells in the high power field are also 

positive for CD11b staining. (D) Independent expression of LacZ activity (black 

arrowheads) and Gr-1 (red arrowheads). Scale bar=20 μm. 

 

Supplementary Figure 11. Upregulation of angiongenesis-related gene expression 

in LLC tumors grown in S1P2 deficient mice. The mRNA expression levels of 

angiogenic factors and related molecules were determined by real-time PCR. The 

mRNA expression of VEGF-A, TGFβ1, bFGF, IL-1β differed between S1P2
+/+ and 

S1P2
-/- mice. The data (means ± SEM) are shown as -fold changes over the values in 

tumors of S1P2
+/+ mice, which are expressed as 1.0, and representative of three 

independent experiments.  

 

 

 

 

 9


























