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Abstract 

Previously, we reported that genipin, a herbal iridoid, had neuritogenic and 

neuroprotective actions on PC12 cells. Although nitric oxide (NO)-activated signalings 

were proposed to be neuritogenic, the neuroprotective action of genipin remains to be 

elucidated. From the standpoint of NO-activation, we tested a possible protective 

mechanism through the nitrosative Keap1/Nrf2-antioxidant response element (ARE) 

pathway in rat retinal ganglion cells (RGC-5 cells) in culture, and in vivo, against 

hydrogen peroxide and optic nerve injury (ONI) respectively, using a long-acting 

(1R)-isoPropyloxygenipin (IPRG001). IPRG001 induced NO generation and the 

expressions of antioxidative enzymes, such as heme oxygenase-1 (HO-1), in RGC-5 

cells. The protective action of IPRG001 depended on HO-1 and NO induction. We 

found that S-nitrosylation of Keap1 by IPRG001 may contribute to translocation of 

Nrf2 to the nucleus and triggered transcriptional activation of antioxidative enzymes. 

Furthermore, apoptotic cells were increased and 4-hydroxy-2-nonenal (4HNE) was 

accumulated in rat retina following ONI. Pretreatment with IPRG001 almost completely 

suppressed apoptosis and accumulation of 4HNE in RGCs following ONI accompanied 

by HO-1 induction. These data demonstrate for the first time that IPRG001 exerts 

neuroprotective action in RGCs in vitro and in vivo, through the Nrf2/ARE pathway by 

S-nitrosylation against oxidative stress. 
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Introduction 

We previously reported that a plant-derived iridoid compound, genipin, had 

neurotrophic - neuritogenic and neuroprotective - action on neural cell lines, PC12h 

cells (Yamazaki et al. 1996, 2001a, 2004) and Neuro2a cells (Yamazaki and Chiba, 

2005, Yamazaki et al., 2008). We proposed that the nitric oxide (NO)-activated protein 

kinase system was involved with the neuritogenesis of genipin. NO donor and cGMP 

produced a promotion of neurite outgrowth from PC12h cells, whereas nitric oxide 

synthetase inhibitor, NO-scavenger and cGMP-dependent protein kinase (PKG) 

inhibitor all abolished its action (Yamazaki et al. 2001a, 2004). These results strongly 

indicate that the neurite outgrowing action of genipin works with NO-cGMP-PKG 

signaling.  

In contrast to the neuritogenic action, the neuroprotective action of genipin remained 

to be elucidated. It also remained to be determined whether the neurotrophic effects of 

genipin are confined to neuronal cell lines in culture, or extend to nervous tissues in 

vivo. The objective of this study was to answer the two questions: (1) What is the 

neuroprotective mechanism of genipin? (2) Does genipin exert neuroprotective action 

on nervous tissues in vivo?  

Genipin protected neurotoxicity induced by 6-hydroxydopamine, β-amyloid protein 

and serum free conditions (Yamazaki et al. 2001b, 2008, Yamazaki and Chiba, 2005). 

The toxicity that underpins these insults was partly ascribed to the generation of reactive 

oxygen species (ROS). Recently, we investigated the protective action of 5-S-GAD, a 

radical scavenging peptide on rat retinal ganglion-like cell line (RGC-5 cells), and rat 

retinal ganglion cells (RGCs) with in vitro and in vivo models against various cytotoxic 

(hydrogen peroxide (H2O2), NMDA, serum free condition and optic nerve injury(ONI)) 

insults (Koriyama et al. 2008, 2009b). These toxic insults also generate ROS. Before 
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starting the experiments, we chemically synthesized an alkylating genipin, which is a 

stable and long-acting derivative for in vivo studies (Suzuki et al. 2010). We used a 

genipin derivative, (1R)-isoPropyloxygenipin (IPRG001), throughout this in vitro and in 

vivo study.  

As for the neuroprotective action, we focused on the NO activation mechanism 

against various oxidative stress mentioned above. It is well known that antioxidative 

proteins play a key role in the protective action against oxidative stress. Such 

antioxidative proteins including heme oxygenase-1 (HO-1: EC 1.14.99.3) are induced 

by activation of Keap1/Nrf2-antioxidative response element (ARE) signaling (Kaspar et 

al., 2009, Kurauchi et al., 2009). In the present study, we investigated a possible 

neuroprotective mechanism of IPRG001 through the Nrf2/ARE pathway in the cultured 

RGC-5 cells, and rat RGCs against H2O2 and ONI, respectively. 

Genipin is a putative therapeutic tool for preventing cell death against various 

neurodegenerative diseases, such as glaucoma.   
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Materials and methods 

Chemicals 

A long-acting genipin derivative (IPRG001) was synthesized as previously reported 

(Suzuki et al., 2010). Original genipin was purchased from Wako Pure Chemical 

Industries, Ltd. (Osaka, Japan). Genipin and IPRG001 were dissolved in dimethyl 

sulfoxide. 2-(4-Carboxyphenyl)-4, 4, 5, 5-tetramethylimidazoline-1-oxyl-3-oxide, 

sodium salt (c-PTIO), 

(±)-(E)-4-Methyl-2-[(E)-hydroxyimino]-5-nitro-6-methoxy-3-hexenamide (NOR-1), a 

NO donor and 4', 6-diamino-2-phenylindole (DAPI) were obtained from Dojindo 

(Japan). The phosphatidylinositol 3-kinase (PI3K) inhibitors, wortmannin (WT) and 

LY294002 (LY) were purchased from Sigma-Aldrich (ST Louis, MO, USA). An HO-1 

inhibitor, Sn-mesoporphyrin (SnMP), was obtained from Frontier Scientific Inc. (Logan, 

UT). 

 

Cell culture 

     RGC-5 cells were kindly provided by Dr. N. Agarwal, University of North 

Texas Health Science Center and Dr. H. Hara, Gifu Pharmaceutical University. RGC-5 

cells were cultured in low-glucose Dulbecco’s modified Eagle’s medium (DMEM), 

containing 10% fetal calf serum (FBS), 100 U/ml of penicillin and 100 μg/ml of 

streptomycin in a humidified atmosphere of 95% air and 5% CO2 at 37°C. The cells 

were passaged by trypsinization every 3-4 days. RGC-5 cells (5×103 cells/ml) were 

cultured overnight before use. After washing with DMEM, the cells were cultured in 

medium containing 1% FBS to avoid over cell growth.  

 

Measurement of NO production 
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The fluorescent dye, 4, 5-diaminofluorescein diacetate (DAF-2DA; Daiichi Pure 

Chemicals, Tokyo) is an indicator of NO production. RGC-5 cells were cultured and 

washed twice with Earle's balanced salt solution (EBSS), treated with IPRG001 at 37°C 

for 1 h, and then to which DAF-2DA at 10 μM was added to the culture dishes each 

time (30 min-2 h). The samples were then washed with EBSS and centrifuged at 100 g 

for 5 min at room temperature. The supernatants were discarded, and 500 μl of EBSS 

was added to each cell pellet. The fluorescence intensity of each cell suspension was 

measured by the emission at a wavelength of 515 nm, and excitation wavelength of 495 

nm using a Fluoroskan Ascent plate reader (Thermo Lab system). 

 

MTT assay 

Cell death was estimated using a 3-(4, 5-dimethylthiazol-2-yl)-2, 

5-diphenyltetrazolium bromide (MTT) assay. An aliquot (20 μl) of 2.75 mg/ml MTT in 

phosphate-buffered saline (PBS) was added to 200 μl of each culture medium as 

described previously (Koriyama et al. 2003). The reaction mixtures were incubated at 

37°C for 3 h, prior to adding 200 μl HCl/isopropanol. The resultant formazan was 

measured by its absorbance at 550 nm using a plate reader (Model 680, Bio-Rad 

Laboratories, Hercules, CA). The experiments were repeated at least three times and 

compared with the control experiment.  

 

RNA isolation and RT-PCR 

     Total RNA was isolated from RGC-5 cells using Sepasol RNAI (Nacalai 

Tesque, Japan). Four types of cDNA fragments were obtained by RT-PCR, using an 

RNA PCR kit (AMV) Ver.3 (TaKaRa, Japan) with following specific primers. To HO-1: 

5′-AGCATGTCCCAGGATTTGTC -3′(forward) and 
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5′-ACCAGCAGCTCAGGATGAGT-3′ (reverse), heme oxigenase-2 (HO-2): 5′- 

GAAGGAAGGGACCAAGGAAG   -3′ (forward) and 5′- 

GAGTTTTAGTGCCCGCTGAG -3′ (reverse), Nrf2: 

5′-CAGTCTTCACCACCCCTGAT -3′ (forward) and 

5′-CTAATGGCAGCAGAGGAAGG-3′ (reverse), NAD(P)H: quinine oxidoreductase-1 

(NQO-1): 5′-GCCCGGATATTGTAGCTGAA-3′ (forward), 

5′-AAGACCTGGAAGCCACAGAA-3′ (reverse), and glutamate cysteine ligase 

catalytic subunit (GCLC): 5′-TCAAAGGCCTCTAAGCCAGA-3′ (forward), 5′- 

AGATCTCCGTGTCGATGGTC-3′ (reverse). The products of PCR were 

electrophoresed and stained with ethidium bromide. The product bands were quantified 

using Scion Image software (Scion Corporation, USA), and normalized by the corrected 

data of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) mRNA.  

 

S-Nitrosylation analyses of Keap1  

S-Nitrosylation of Keap1 was assessed by a modified biotin switch assay (Jaffrey et 

al. 2001) using the S-nitrosylated Protein Detection Assay Kit (Cayman Chemical). 

RGC-5 cells exposed to 50 μM NOR1 or 20 μM IPRG001 for 1 h were harvested and 

lysed at 4°C. Free thiols were blocked by adding S-methyl methanethiosulfonate. 

Biotinylation of nitrosothiols was carried out by maleimide-biotin. Biotinylated proteins 

were further purified by overnight incubation with neutravidin-coupled agarose beads 

(Pierce-Thermo Scientific). After incubation, beads were washed three times with PBS. 

Isolated proteins were recovered from beads by addition of Laemmli sample buffer, and 

heated at 85°C for 10 min. The amount of S-nitrosylated Keap1 protein in the samples 

was analyzed by western blot analysis using anti-Keap1 antibody (Santa Cruz 

Biotechnology, CA, USA). 
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Subcellular fractions of Nrf2 protein   

Cells were lysed by hypotonic lysis buffer containing 10 mM HEPES-KOH (pH7.9), 

10 mM KCl, 1.5 mM MgCl2, 1 mM DTT, 0.5 mM phenylmethylsulfonyl fluoride, 

proteases inhibitor cocktail and centrifuged at 10,000 rpm for 15 min at 4°C. The 

supernatants were used as a cytoplasmic fraction. The pellets were incubated with a 

nuclear lysis buffer containing 20 mM HEPES-KOH (pH7.9), 400 mM NaCl, 1.5 mM 

MgCl2, 0.2 mM EDTA, 1 mM DTT, 5% glycerol, protease inhibitor cocktail (Sigma) 

and further incubated for 30 min on ice. The lysates were centrifuged at 13,000 rpm for 

15 min at 4°C. The supernatants were used as nuclear fraction samples. Immunoblotting 

analysis of β-actin and histon H4 was performed to ensure no contamination between 

cytoplasmic and nuclear fractions.  

 

Western blot analysis 

RGC-5 cells cultured under various conditions were extracted and their aliquots (30 

μg of protein) were subjected to polyacrylamide gel electrophoresis using a 12.5% gel 

as described previously (Koriyama et al. 2009a). The separated proteins were 

transferred to a nitrocellulose membrane and incubated with primary and secondary 

antibodies (purchased from Santa Cruz Biotechnology, CA, USA). The signals for the 

antibody-bound protein bands (57 kDa for Nrf2; 68 kDa for Keap1) were detected using 

BCIP/NBT Kit (KPL, Gaithersburg, MD). An antibody against β-actin was used as an 

internal standard. The protein bands isolated in samples from cells under various culture 

conditions were analyzed densitometrically using the Scion Image Software (Scion 

Corp.). All experiments were repeated at least three times. 
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siRNA for HO-1 gene 

We used small interfering RNA (siRNA) for the target region to rat HO-1 mRNA, 

5'-GGAAUUUAUGCCAUUAAAUG-3' (sense), 

5'-UUUACAUGGCAUAAAUUCCCA-3' (antisense),  (Sigma-Aldrich, Tokyo, Japan) 

and randomly shuffled sequence 5'-GGUUGAUUAACGUAUUCGAAG -3' (sense), 

5'-UAGAAUACGUUAAUCAACCCU -3' (antisense). Transfection of siRNA into the 

RGC-5 cell was carried out using Lipofectamine 2000 (Invitrogen Corporation, 

Carlsbad, CA, USA). To suppress HO-1 expression at the transcription levels, RGC-5 

cells were incubated for 24 h with siRNA (100 pmol). 

 

Chromatin immunoprecipitation (ChIP) assay  

ChIP assays were performed by ChIP Assay Kit (Upstate/Millipore Corporation, 

Temecula, CA, USA). Briefly, proteins and DNA were cross-linked with formaldehyde 

and cells were lysed in SDS-lysis buffer and then sonicated. To reduce non-specific 

background, the sheared chromatin was incubated with Protein A agarose/ Salmon 

Sperm DNA. The remaining chromatin was immunoprecipitated with IgG (as control) 

or Nrf2 antibodies. DNA-protein complexes were eluted from the antibody with elution 

buffer containing 1% SDS and 0.1 M NaHCO3, as well as formaldehyde reversed 

cross-links by 5 M of NaCl and heating at 65°C for 4 h. DNA was purified and PCR 

was performed using primers that spanned the rat HO-1 E1 enhancer (Alam and Cook, 

2003). The primers used were: E1, 5′- GATTTCCTCACTGCCCTGAA -3′ (forward) 

and 5′- CTTCTGCCCGAGGTTAAAGC -3′ (reverse). A 1.5% agarose gel with 

ethidium bromide was used to separate and examine the PCR products. 
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Animals and Surgery 

Sprague–Dawley rats (body-weight 250-300 g) were used. Rats were reared and 

handled according to the NIH guidelines and ARVO statement on the care and use of 

laboratory animals. Rats were anesthetized by intraperitoneal injection of sodium 

pentobarbital (30-40 mg/kg body weight). Intravitreal injection was performed with a 

Hamilton microsyringe 30G needle. The volume of injection was set at 5 μl of total 

volume after pre-suction of the same volume of vitreal fluid. One day after applying 

IPRG001 with or without SnMP, the optic nerve was crushed 1mm away from the 

eyeball with forceps as described previously (Koriyama et al. 2008). Rats were reared in 

clear plastic cages and kept under 12h/12h light dark cycle at 23°C. 

 

Immunohistochemistry 

Tissue fixation and cryosection were performed as described previously (Koriyama et 

al. 2009b). Briefly, the eyes were enucleated and fixed in 4% paraformaldehyde 

solution containing 0.1 M phosphate buffer (pH 7.4), and 5% sucrose for 2 h at 4°C. 

Sucrose concentration was gradually increased from 5 to 20%. The eyes were then 

embedded in optimal cutting temperature (OCT) compound (Tissue Tek; Miles, Eikhart, 

IN) and cryosectioned at 12 µm thickness. The frozen sections were mounted onto 

silane-coated glass slides and air-dried. After washing and blocking with Blocking One 

(Nakalai Tesque, Kyoto), retinal sections were incubated with the primary anti-HO-1 

antibody (Santa Cruz Biotechnology, 1:300) and TUJ-1 (R&D systems, Minneapolis, 

USA) at 4°C overnight. The sections were then incubated with Alexafluoro anti-IgG 

(Molecular probe, 1:2000) at room temperature. In the Nrf2 translocation study, RGC-5 

cells were fixed by 0.1% glutaraldehyde (Wako, Osaka, Japan) for 30 min at room 

temperature. Nrf2 translocation to the nucleus was stained using anti-Nrf2 antibody and 
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4',6-diamino-2-phenylindole (DAPI) nuclei staining dye. 

 

Terminal transferase dUTP nick-end labeling (TUNEL) staining 

After fixation and cryosection, retinal sections were incubated in 0.1% Triton X-100, 

as well as 0.1% sodium citrate for 15 min and rinsed in PBS. DNA fragmentation of 

cells undergoing apoptosis was detected using an in situ cell death detection kit (Roche, 

Mannheim, Germany), containing terminal transferase and fluorescence dUTP. The 

retinal sections were incubated in this reaction mixture overnight at 37˚C, and rinsed 

twice in PBS. In each retina, the number of TUNEL-positive cells within 300 μm from 

the optic disc was counted. 

 

Dot blotting analysis for 4-hydroxy-2-nonenal (4HNE) 

To assess the antioxidant effect of IPRG001, we performed dot blotting analysis for 

the 4HNE, a marker of lipid peroxidation. After 1 day of pretreatment with IPRG001, 

with or without SnMP and 4 days of treatment with ONI, the retinal samples were 

isolated and homogenized. Equal amounts of protein (30 μg) were applied to a 

Hybri-SLOT apparatus (Gibco BRL) and transferred to a nitrocellulose membrane 

(Whatman) by vacuum filtration. After blocking with 3% BSA for 1 h at room 

temperature, the samples were incubated with an anti-4HNE antibody (1:100; NOF 

Corporation) at 4°C overnight, followed by incubation with anti-mouse IgG antibody 

(Santa Cruz Biotechnology, CA, USA) for 1 h at room temperature. Antibody-bound 

protein bands were detected using BCIP/NBT Kit and analyzed densitometrically as 

described above. All experiments were repeated at least three times. 

 

Statistics 
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All results are reported as means ± S.E.M for 3-5 experiments. Differences between 

groups were analyzed using ANOVA, followed by Dunnett’s multi-comparison test with 

PASW Software (SPSS Inc., USA). P-values < 0.05 were considered statistically 

significant.  

 

 

Results 

Nitric oxide (NO) generation by IPRG001                       ----Fig. 1 

First, we tested NO-inducibility of IPRG001, because of its leading molecule as the 

first step of our neuroprotective hypothesis for genipin. 20 µM of IPRG001 significantly 

increased the fluorescence intensity of DAF-2DA, a trapping indicator of NO in RGC-5 

cells 0.5-2 h after IPRG001 treatment (Figure 1A). The increased intensity was 1.4-fold 

at 0.5 h, 1.5-fold at 1 h, 1.7-fold at 2 h and 1.8-fold at 4 h (data not shown) after 

treatment. Intensive green fluorescent cells could be seen in the RGC-5 cells in culture 

within 1 h of incubation with IPRG001 (Figure 1D) as compared to no treatment 

(Figure 1B). Figures 1C and 1E showed counterstaining of RGC-5 cell nuclei with 

DAPI.  

                                                    

Protective effect of IPRG001 and NO related compounds in the RGC-5 cells 

against H2O2 exposure.                     ----Fig. 2                        

To evaluate the neuroprotective effect of IPRG001 in RGC-5 cells against oxidative 

stress, we constructed a cytotoxic model of hydrogen peroxide (H2O2) exposure in 

culture. 300 µM of H2O2 induced cell death in 60% of total RGC-5 cells for 24 h 

(Figure 2A). IPRG001 at 5-20 µM dose-dependently suppressed cell death induced by 

H2O2. 20 µM of IPRG001 rescued 85% of total RGC-5 cells under H2O2 exposure 
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(Figure 2A). IPRG001 alone did not produce any change in cell viability (Figure 2A). In 

these experiments, IPRG001 was added to the culture medium 4 h before H2O2 exposure, 

because NO production by IPRG001 was maximized within 4 h following incubation 

(Figure 1). In Figure 2B, we decided the pretreatment time with IPRG001 before H2O2 

exposure. The maximum protective effect could be seen at 4-6 h of IPRG001 

pretreatment before H2O2 addition, but no protective effect could be seen at 0-2 h of 

pretreatment with IPRG001 before H2O2 exposure (Figure 2B). NOR1, a NO donor also 

protected RGC-5 cell death following H2O2 exposure (Figure 2C). 50 µM of NOR1 was 

almost equivalent to 20 µM of IPRG001 in the neuroprotection against H2O2 (Figure 

2C). NOR1 alone did not affect cell viability in any concentrations. On the other hand, 

c-PTIO, a NO scavenger completely suppressed the protective effect of IPRG001 

(Figure 2D). This neuroprotective effect of IPRG001 on RGC-5 cells against H2O2 

exposure was also completely suppressed by 20 µM cycloheximide (CHX), a protein 

synthesis inhibitor (Figure 2D). No effect could be seen in c-PTIO or CHX alone 

(Figure 2D).  

 

IPRG001 induces antioxidative proteins in RGC-5 cells.      ----Fig. 3 

As the protective effect of IPRG001 was dependent upon newly synthesized 

protein(s), we next tested the inducibility of antioxidative enzymes in RGC-5 cells by 

IPRG001. In Figure 3A, 20 µM of IPRG001 significantly induced heme oxygenase-1 

(HO-1) mRNA in RGC-5 cells 4-6 h after IPRG001 treatment (Figure 3A). Other 

antioxidative enzymes, such as NAD(P)H-quinone oxidoreductase-1 (NQO-1) and 

glutamate cystein ligase catalytic subunit (GCLC), were induced in RGC-5 cells 8-10 h 

after incubation of 20 µM IPRG001 (Figure 3A). A constitutive enzyme, heme 

oxygenase-2 (HO-2), was not increased by IPRG001 (Figure 3A). GAPDH mRNA did 
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not change during IPRG001 incubation. The levels of HO-1 mRNA and protein were 

quantified in Figure 3B (mRNA) and Figure 3C (protein). HO-1 mRNA and protein 

increased 1.6-1.8 fold in 4-6 h, then declined by 10 h after treatment. This time period 

of 4-6 h following treatment with IPRG001 in HO-1 induction was comparable to the 

pretreatment times of IPRG001 against H2O2 exposure (Figure 2B). 

                                                  

 HO-1 induction in RGC-5 cells by IPRG001 and related drugs.  ----Fig. 4   

 

To further confirm the correlation between HO-1 induction and NO generation by 

IPRG001, we investigated the effects of NO donor and NO scavenger on HO-1 

induction by IPRG001. IPRG001 at 10-20 µM dose-dependently induced HO-1 mRNA 

expression (Figure 4A). 20 µM of IPRG001 increased HO-1 mRNA 1.8-fold 4 h 

following treatment (Figure 4A). This increase of HO-1 mRNA was blocked by c-PTIO 

(100 µM, Figure 4B). NOR1 at 50 µM increased HO-1 mRNA level 1.8-fold, compared 

to no treatment and this increase was also blocked by 100 µM of c-PTIO (Figure 4C).  

                                                       

HO-1 dependency of the neuroprotective action of IPRG001 in RGC-5 cells 

under H2O2 exposure.                               ----Fig. 5      

IPRG001 substantially induced antioxidative protein expression such as HO-1. It is 

very important to elucidate whether this HO-1 induction by IPRG001 is an effector 

molecule for its neuroprotection. In the presence of HO-1 specific inhibitor, SnMP (10 

µM), the viability of RGC-5 cells with IPRG001 against H2O2 decreased from 80% to 

60% in the absence of treatment (Figure 5A). SnMP alone did not change the cell 

viability in RGC-5 cells with or without H2O2 (Figure 5A). The neuroprotective action 

of NOR1 (50 µM) was also blocked by a combination of SnMP and NOR1 (data not 
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shown). Next, we examined the effects of siRNA specific to HO-1 mRNA. HO-1 

mRNA levels were significantly reduced by siRNA treatment, but not by scrambled 

siRNA treatment (Figure 5B). The neuroprotective action of IPRG001 was also reduced 

by siRNA treatment, but not scrambled siRNA treatment. siRNA alone did not affect 

cell viability (Figure 5C).  

                                                         

IPRG001 induces release and translocation of Nrf2 to the nucleus in RGC-5 cells.              

----Fig. 6  

To test the involvement of Nrf2 in the process of antioxidative HO-1 induction by 

IPRG001, we compared localization of Nrf2 in RGC-5 cells under 3 incubation 

conditions, (1) no treatment (Figures 6A-C), (2) 20 µM of IPRG001 (Figures 6D-F) and 

(3) IPRG001 plus c-PTIO (Figures 6G-I) in immunohistochemistry. Panels A, D and G 

show Nrf2 immunohistochemical staining images. Panels B, E and H show DAPI 

staining images. Panels C, F and I show merge images. When no treatment was given to 

RGC-5 cells, Nrf2 staining was diffusely in the cytoplasm (Figure 6A). IPRG001 

induced intensive staining of Nrf2 in the nucleus (Figure 6D). This increase of nuclear 

staining of Nrf2 protein by IPRG001 was completely blocked with 100 µM of c-PTIO 

treatment (Figure 6G). c-PTIO alone did not affect any changes compared to no 

treatment (data not shown). Subcellular fractionation analysis further confirmed 

translocation of Nrf2 from cytoplasm to nucleus quantitatively. The levels of Nrf2 

protein in the cytoplasm rapidly decreased 2-4 h following IPRG001 treatment, and then 

returned to the pre-stimulus levels by 6-8 h (Figure 6J). In contrast, the levels of Nrf2 

protein in the nucleus rapidly increased 2-4 h following IPRG001 treatment, and 

gradually returned to the pre-stimulus condition 6-8 h (Figure 6K). 
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PI3K regulates IPRG001-induced Nrf2 accumulation to the nuclei in RGC-5 

cells                                                 ---- Fig. 7                       

The mechanism of IPRG001-mediated Nrf2 translocation to the nuclei was explored. 

Immunostaining study showed translocation of Nrf2 by IPRG001 treatment for 2 h in 

RGC-5 cells (Figure 7). Although Nrf2 had diffusely localized cytoplasm under no 

treatment (Figure 7A-C), Nrf2 was translocated into DAPI-labeled nuclei by IPRG001 

treatment (Figure 7D-F). Wortmannin (WT), a PI3K inhibitor, significantly inhibited 

nuclear translocation of Nrf2 (Figure 7 G-I). The proportion of Nrf2 translocation to the 

nuclei was calculated and graphed in Figure 7J. Both WT and LY294002 (LY), another 

PI3K inhibitor, significantly suppressed HO-1 induction by IPRG001 (Figure 7K). WT 

and LY alone did not affect HO-1 mRNA levels, when compared to no treatment. Next, 

we verify the importance of PI3K for cell survival associated with HO-1 expression by 

IPRG001. WT alone did not affect the cell viability of no treatment cells (Figure 7L). 

WT treatment 1 h before IPRG001 addition significantly decreased the cell survival of 

IPRG001 against H2O2 –induced cell death.  

 

IPRG001 stimulates HO-1 expression through Nrf2/ARE pathway via 

S-nitrosylation of Keap1                   ---- Fig. 8 

 

To further assess the involvement of Nrf2 on HO-1 gene expression, we determined 

binding of Nrf2 to HO-1 enhancer E1 in the element of genomic HO-1 DNA. ChIP 

assays with an antibody directed against Nrf2 showed high binding of Nrf2 to the E1 

enhancer. IPRG001 treatment for 2 h significantly enhanced Nrf2 binding to the E1 

enhancer by about 3-fold (Figure 8A). 1 h pretreatment with c-PTIO before IPRG001 

addition completely reversed increase in the binding of Nrf2 to E1 enhancer. The ChIP 



 18

assay with IgG did not show increased binding of Nrf2 to E1 enhancer, compared with 

no treatment (Figure 8A). Next, we investigated whether IPRG001 modified sensor 

molecule, intracellular Keap1 in the oxidative condition. After separation of free thiols 

and nitrosothiols of Keap1 protein, biotinylated nitrosothiols (S-nitrosylation) of Keap1 

were isolated by avidin-coupled beads, and then measured by western blotting with 

anti-Keap1 antibody. S-nitrosylated proteins were increased 2-fold by IPRG001 

compared to no treatment (Figure 8B). NOR1 also S-nitrosylated Keap1 3-fold. The 

increase of S-nitrosylation of Keap1 by IPRG001 was completely blocked by 

pretreatment with c-PTIO (Figure 8B). On the other hand, IPRG001 did not modify 

S-nitrosylation of caspase-3 (data not shown). 

 

Neuroprotective action of IPRG001 in rat RGCs in vivo following nerve injury.  

---- Fig. 9 

 

To further validate the protective effect of IPRG001 in rat RGCs in vivo after ONI, 

we first investigated induction of HO-1 expression in rat RGCs after intraocular 

injection of IPRG001 for 1 d. Figure 9A-F show HO-1 immunohistochemistry in rat 

retina. Panels (A-C) show the untreated retina (Figures 9A-C). Panels D-F show retina 

treated with IPRG001 (Figures 9D-F). Immunoreactivity of HO-1 was increased in the 

rat ganglion cell layer (GCL) by 0.1 nmol of IPRG001 (Figure 9D), compared to 

untreated retina (Figure 9A). The increase in HO-1 expression in GCL was confirmed to 

be localized in the RGC with TUJ-1 immunohistochemistry (Figure 9E). It could clearly 

be seen in the merged image (Fig. 9F).  

Figures 9 G-L show TUNEL staining in the rat retina. Optic nerve crush induced 

apoptotic cell death of RGCs with TUNEL staining 7 d after injury (Figure 9I) 
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compared to the intact retina (Figure 9G). RGCs cell death after ONI was clearly 

blocked by pretreatment with 0.1 nmol IPRG001 (Figure 9K). This neuroprotective 

effect of IPRG001 in rat RGCs following nerve crush could not be seen by the original 

genipin (0.1 nmol/eye, Figure 9J), or IPRG001 (0.1 nmol/eye) plus SnMP (Figure 9L). 

SnMP alone did not affect RGC cell death (Figure 9H). Figure 9M illustrates the 

quantitative data of RGCs cell death after ONI. Finally we checked the appropriation of 

our rat ONI experiment as in vivo model of oxidative stress. We measured 

4-hydroxynoneral (4HNE), a final product of lipid peroxidation (Koriyama et al., 

2009b). Optic nerve crush increased 4HNE accumulation in the rat retina 1.4-fold at 

post lesioned 4 days compared to the intact retina (Figure 9N). Intraocular IPRG001 

(0.1 nmol) significantly decreased the levels of ONI-induced 4HNE accumulation. The 

decreasing action of IPRG001 on 4HNE accumulation after nerve injury was 

significantly suppressed by co-injection of SnMP (Figure 9N). IPRG001 or SnMP alone 

did not change 4HNE accumulation.  
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Discussion 

IPRG001 generates NO and induces HO-1 expression 

The object of this study was to investigate the neuroprotective mechanism of genipin 

in neuronal cell line against oxidative stress conditions which we described previously 

(Yamazaki et al. 1996). The second purpose was to investigate the adaptability of the 

neuroprotective action of genipin to the nervous tissues in vivo. According to our 

previous NO-activating hypothesis for the neuritogenic action of genipin (Yamazaki et 

al. 2004), we examined a possible mechanism for genipin to exert neuroprotective 

action, through induction of antioxidative protein by NO activation. In the present study, 

we designed in vitro and in vivo models using rat retinal ganglion cells (RGC-5 cells 

and RGCs) against H2O2 exposure and ONI, respectively (Koriyama et al., 2008, 

2009b). Under consideration of the structural lability of genipin (Fig. 9M), we used 

IPRG001, a long-acting alkyloxygenipin (Suzuki et al. 2010) throughout this study. 

Therefore, we first measured NO production by IPRG001 using NO sensitive 

fluorescent dye, DAF-2DA. Fluorescence was rapidly increased in RGC-5 cells within 

0.5-4 h following IPRG001 exposure (Figure 1). We reported that genipin directly 

bound to neuronal nitric oxide synthase (nNOS) and thus activated nNOS to generate 

NO gas (Ohkubo et al. 2004, Suzuki et al., 2007). The binding of genipin to nNOS was 

based on its binding domain similar to that of tetrahydrobiopterin, a co-factor of nNOS 

(Suzuki et al. 2010). The neuroprotective action of IPRG001 was certainly NO 

dependent. NOR1, a NO donor, can be replaced by IPRG001 and c-PTIO, a NO 

scavenger clearly blocked the protective action of IPRG001 (Figure 2). The protective 

action of IPRG001 was completely blocked by CHX (Figure 2D). It strongly suggests 

that neuroprotection of IPRG001 is mediated by newly synthesizing protein(s). We 

showed that IPRG001 induced antioxidative enzymes, such as HO-1, NQO and GCLC 
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(Figure 3A). HO-1 (Maines, 1988, Poss and Tonegawa, 1997) is an enzyme, which 

degrades intracellular heme to free iron, carbon monoxide (CO) and biliverdin. CO 

plays a significant role in anti-apoptosis and anti-inflammation (Otterbein et al., 2000, 

2003). Furthermore, bilirubin, converted from biliverdin (Nishimura et al., 1996) acts as 

reactive oxygen species scavenger and attenuates lipid peroxidation related 4HNE 

(Deguchi et al., 2008). Biliverdin also exerts anti-inflammatory and neuroprotective 

effects (Hung et al., 2010). In this study, induction of HO-1 by IPRG001 in RGC-5 cells 

was also NO dependent (Figure 4). SnMP and HO-1 siRNA showed the partial 

cancellation of IPRG001 protection against oxidative stress. HO-1 mainly involves in 

the survival effect against oxidative stress. However we can not deny that NQO-1 

and/or GCLC have the neuroprotective effect because they are also induced within 24 h. 

The data all together strongly indicate that the neuroprotective action of IPRG001 is 

caused by NO generation following antioxidant HO-1 induction in RGC-5 cells against 

H2O2. Furthermore, the crucial role HO-1 plays as an effector molecule for the 

neuroprotection by IPRG001 was confirmed by specific HO-1 inhibitor, SnMP and 

siRNA specific to HO-1 (Figure 5). 

 

IPRG001 S-nitrosylates Keap1 and activates Nrf2/ARE pathway in RGC-5 cells 

against oxidative stress.           

IPRG001 induced antioxidative enzymes, such as HO-1, NQO and GCLC, in RGC-5 

cells (Figure 3A). Especially, HO-1 was expressed in a NO-dependent manner (Figure 

4). Thus, we next investigated the signaling pathway leading to induction of these 

proteins. It is well known that such antioxidative enzymes are induced by various 

electrophilic compounds, including the oxygen radicals (Wakabayashi et al., 2004, 

Hong et al., 2005). Therefore, we tested the possibility to induce HO-1 through the 
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Nrf2/ARE pathway under NO stimulus condition generated by IPRG001. It is well 

known that Nrf2 is a key transcriptional factor for the induction of antioxidative 

enzymes against oxidative stress (Kaspar et al., 2009). IPRG001 rapidly induced release 

and nuclear translocation of Nrf2 within 2-4 h, and then the levels of Nrf2 in nucleus 

were returned to the pre-stimulus condition 6-8 h after exposure (Figure 6). 

Translocation of Nrf2 was PI3K dependent, because wortmannin and LY 294002 

completely blocked all these processes: translocation, neuroprotection and HO-1 

induction by IPRG001. The release and translocation of Nrf2 being dependent upon 

PI3K was reported in various cell types (Nakaso et al., 2003, Martin et al., 2004). 

Although the ARE for HO-1 gene remains unclear, E1 enhancer was identified as a 

candidate of ARE for HO-1 gene (Alam and Cook 2003, Liu et al. 2007). In our data, 

the several antioxidative enzymes including HO-1, NQO-1 and GCLC were induced by 

addition of IPRG001 in a different time frame. One of the reasons may be in the 

difference of ARE site and/or its binding affinity of Nrf2 in each enzyme. Actually, E1 

enhancer is known as a specific ARE to HO-1 and has different DNA sequences of ARE 

from that of the other enzymes’ARE (Alam and Cook, 2003). By using the ChIP 

method, we confirmed increased levels of Nrf2 bound to the E1 enhancer in RGC-5 

cells treated with IPRG001 (Figure 8A). c-PTIO completely blocked binding of Nrf2 to 

the E1 element. The release and translocation of Nrf2 from the cytoplasm to the nucleus 

was initiated by modifications of intracellular sensor protein, Keap1. NO activated the 

Nrf2/ARE pathway by S-nitrosylation of Keap1 protein in colon carcinoma cells (Li et 

al., 2009). In this study, NO certainly S-nitrosylated Keap1 protein by biotin-switch 

assay (Figure 8B). IPRG001 and NOR1 S-nitrosylated Keap1 2-3-fold following 

exposure, compared to no treatment. c-PTIO clearly blocked this modifications. In this 

study, Keap1 is the molecule which can regulate Nrf2 translocation by its 
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S-nitrosylation of cysteine residues and threby promotes the transcription of 

antioxidative enzymes. Although we can not yet provide precise target of S-nitrosylation 

in Keap1 protein, two reactive cysteines, Cys273 and Cys288, of Keap1 have been 

identified as determinant site of translocational activity of Nrf2 at least (Buckley et al., 

2008). Tomita et al. (2002) reported that the neuroprotective action of nipradilol in the 

PC12 cells against serum deprivation was due to inhibition of caspase-3 via 

S-nitrosylation. In this study, it was not the case of caspase-3 S-nitrosylation. These 

results demonstrate for the first time that the neuroprotective action of IPRG001 is 

caused by induction of HO-1 antioxidative protein in the neuronal cells (RGC-5 cells) 

through the Nrf2/ARE pathway from NO generation to Keap1 S-nitrosylation. 

 

Neuroprotective action of IPRG001 in the rat RGCs in vivo after nerve injury. 

In our previous publication (Homma et al. 2007), more than half of rat RGCs became 

apoptotic 6-7 days after ONI. The RGC cell death following nerve crush was partly 

caused by hydroxy radical or super oxide anion (Levkovitch-Verbin et al. 2000). 

Therefore, cell death was blocked by antioxidants (Castagné and Clarke 1996). In this 

study ONI increased 4HNE accumulation in the retina by 1.4-fold (Figure 9N). 

Therefore, we used rat RGCs after ONI as an in vivo model of oxidative stress. 

Intraocular injection of 0.1 nmol IPRG001 specifically induced HO-1 expression in the 

RGCs 1 d post-injection (Figure 9D). This RGCs localization was confirmed by a 

specific marker of RGCs (Figure 9E). IPRG001 also induced NADPH diaphorase 

activity (NO synthase activity) in the RGCs (Y. Koriyama unpublished data). These 

results suggest that IPRG001 induces HO-1 expression via NO generation. It is well 

known that HO-1 expression in the RGCs is induced as a self-defense system following 

ischemia/reperfusion insults (Peng et al., 2008). Further studies are needed to elucidate 
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the molecular signaling of this HO-1 induction in the retina in vivo by IPRG001. 

RGC cell death after nerve crush was almost completely protected by IPRG001, as 

demonstrated by TUNEL staining (Figure 9K). This protection depended on the HO-1 

induction, because the protective action of IPRG001 was suppressed by co-injection 

with HO-1 inhibitor, SnMP (Figures 9L and 9M). IPRG001 decreased the levels of 

4HNE accumulation in the retina after ONI. The reducing action of IPRG001 on 4HNE 

accumulation was also significantly suppressed by SnMP (Figure 9N). The present 

results demonstrate for the first time that genipin protects rat RGC cell death  in vitro 

and in vivo against oxidative stress by antioxidant HO-1 induction via the Nrf2/ARE 

pathway. The neurotrophic actions - neuritogenesis and neuroprotection - of genipin 

become a useful therapeutic tool to rescue degenerative neuronal diseases, such as 

glaucoma.      
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Figure legends  

Fig. 1 

NO production by IPRG001 in RGC-5 cells. NO production levels by IPRG001 in 

RGC-5 cells were evaluated and observed by DAF-2DA staining (A, B, D). RGC-5 cell 

nuclei were stained with DAPI (C, E). (A) Quantitative data for fluorescence intensity 

were measured by fluorescence plate reader. *P<0.01 vs. 0 h (n=4). (B, C) No treated 

cells. (D, E) Treated cells with 20 μM IPRG001 for 1 h. Scale = 20 μm. 

 

Fig. 2 

Protective effect of IPRG001 on cell death of RGC-5 cells induced by H2O2 exposure. 

Cell viability was estimated by MTT assay. (A) Cell viability of RGC-5 cells was 

performed with IPRG001 at various concentrations 4 h prior to 300 μM H2O2 exposure 

for 24 h. (B) Various pretreatment times of IPRG001 to 300 μM H2O2 exposure. The 

pretreatment of 4-6 h with IPRG001 was sufficient to prevent from H2O2-induced cell 

death. *P<0.01 vs. no treatment (n=6). (C) RGC-5 cells were pretreated with NOR1 at 

various concentrations for 4 h and then cultured with 300 μM H2O2 for 24 h. (D) A 

NO-scavenger, c-PTIO or an inhibitor of protein synthesis, cycloheximide (CHX) was 

first treated 1 h prior to IPRG001 addition, and then IPRG001 was added 4 h prior to 

the H2O2 and finally H2O2 was added to RGC-5 cells for further 24 h. *P<0.01 vs. no 

treatment; +P<0.01 vs. H2O2 alone (n=6). 

 

Fig. 3 
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Induction of antioxidative enzymes in RGC-5 cells by IPRG001. (A) Candidate 

antioxidant genes upregulated after IPRG001 treatment in RGC-5 cells. (B) 

Upregulation of HO-1 mRNA in RGC-5 cells after IPRG001 treatment. *P<0.01 vs. 0 h 

(n=3). (C) Upregulation of HO-1 protein after IPRG001 treatment. *P<0.01 vs. 0 h 

(n=3). 

 

Fig. 4 

HO-1 induction by IPRG001 through NO dependent mechanism. (A) IPRG001 

induced HO-1 mRNA expression in dose-dependent manner after 4 h treatment *P<0.01 

vs. 0 μM (n=3). (B) c-PTIO cancelled the HO-1 mRNA induction by IPRG001 *P<0.01 

vs. no treatment (n=3). (C) c-PTIO cancelled the HO-1 mRNA induction by NOR1 

*P<0.01 vs. no treatment (n=3).  

 

Fig. 5 

HO-1 dependent protection of IPRG001 in RGC-5 cells. (A) A HO-1 inhibitor, SnMP 

cancelled the neuroprotection by IPRG001 against H2O2 *P<0.01 vs. no treatment (n=6).  

(B) Decreased levels of HO-1 mRNA following treatment with HO-1 specific siRNA 

relative to the no treatment or scrambled siRNA. *P<0.01 vs. no treatment (n=3). (C) 

HO-1 specific siRNA significantly cancelled neuroprotective action by IPRG001 

against H2O2 *P<0.01 vs. no treatment (n=6). 

 

Fig. 6  

Translocation of Nrf2 to nucleus by IPRG001. (A, D, G,) Immunohistochemical 

staining of Nrf2. C-PTIO was treated 1 h prior to IPRG001 addition. (A) No treatment, 

(D) IPRG001 at 20 μM for 2 h, (G) IPRG001 with c-PTIO. (B, E, H) DAPI staining, (C, 
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F, I) Merged images. Scale bar= 10 μm. (J) Levels of Nrf2 protein in cytoplasm 

fractions treated with IPRG001 at various exposure times. *P<0.01 vs. 0 h (n=3). (K) 

Levels of Nrf2 protein in nuclear fractions treated with IPRG001 at various exposure 

times. *P<0.01 vs. 0 h (n=3).  

 

Fig. 7  

PI3K regulates the IPRG001-induced Nrf2 accumulation to nuclei in RGC-5 cells. (A, 

D, G) Immunohistochemical study on Nrf2. (A) No treatment, (D) IPRG001 treatment 

for 2 h, (G) Wortmannin (WT) pretreatment for 1 h before IPRG001 addition. (B, E, H) 

DAPI staining. (C, F, I) Merged images. Scale bar = 20 μm. (J) Evaluation of Nrf2 

translocation to nuclei. We counted the number of Nrf2 stained cells per total 

DAPI-stained cells. *P<0.01 vs. no treatment (n=30); +P<0.01 vs. IPRG001 alone 

(n=30). (K) PI3K dependent HO-1 induction by IPRG001. PI3K inhibitors, wortmannin 

(WT) or LY294002 (LY) completely suppressed the levels of HO-1 mRNA expression 

induced by IPRG001. *P<0.01 vs. no treatment (n=3). (L) PI3K regulates 

neuroprotection by IPRG001. WT completely cancelled neuroprotective effect of 

IPRG001 against H2O2 –induced cell damages. *P<0.01 vs. no treatment; +P<0.01 vs. 

H2O2  alone (n=6).  

 

Fig. 8  

IPRG001 stimulates Nrf2 binding to the HO-1 promoter and S-nitrosylation of Keap1. 

(A) ChIP assay demonstrates binding of Nrf2 to the HO-1 E1 enhancer following 

treatment of IPRG001 for 2 h with or without c-PTIO pretreatment for 1 h. The band 

shows PCR products of E1 enhancer. (B) S-Nitrosylation of Keap1 by IPRG001. 

RGC-5 cells were exposed to 20 μM IPRG001 for 1 h and submitted to biotin-switch 
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assay of protein. Biotinylated proteins were mixed with avidin-beads eluted and 

analyzed by Western blotting with anti-Keap1 antibody. *P<0.01 vs. no treatment (n=3).  

 

Fig. 9  

HO-1 induction and neuroprotective effect of IPRG001 in the rat retina in vivo. (A-F) 

HO-1 induction by IPRG001 in the rat retina. (A, D) No treated retina (A) and 

intraocularly injected retina with IPRG001 for 1 day (D). (B, E) TUJ-1-positive RGCs 

in no treatment (B) and IPRG001 treated retina (E). (C, F) Merged images. (G-L) 

TUNEL staining in retina after optic nerve injury for 7 days. (G) Intact retina, (H) 

SnMP at 0.1 nmol, (I) optic nerve injured retina, (J) genipin at 0.1 nmol (K) injury plus 

IPRG001, (L) injury plus IPRG001 with SnMP. Scale bar = 100 μm. (M) Graphical 

representation of number of TUNEL-positive cells in the GCL in visual fields. *P< 0.01 

vs. intact retina, +P<0.01 vs. injury (n=30). (N) Prevention of nerve injury induced 

4HNE production by IPRG001 via HO-1 activation. 4HNE production was measured by 

dot blotting analyses with an anti-4HNE antibody. Graphical representation of 4HNE 

bands in the blot. *P< 0.01 vs. intact retina, +P<0.01 vs. injury, #P<0.01 vs injury plus 

IPRG001. (n=3).   

 

 

 

 

 

 

 

 



 33

Fig.1 

 

 

Fig.2  

 

 

Fig.3 



 34

 

 

Fig.4 

 

 

Fig.5 



 35
 



 36

Fig.6 

 

 

Fig.7 



 37
 



 38

Fig.8 

 

 

Fig.9 

 



 39

 


