A practical synthesis of enantiopure N －carbobenzyloxy－N＇－phthaloyl－cis－1，2－cyclohexan ediamine by asymmetric reductive amination and the Curtius rearrangement

メタデータ	言語：eng
	出版者：
	公開日：2017－10－03
	キーワード（Ja）：
	キーワード（En）：
	作成者： メールアドレス： 所属：
hRL	http：／／hdl．handle．net／2297／7101

Graphical Abstract

A practical synthesis of enantiopure N-carbobenzyloxy- \boldsymbol{N}^{\prime} - phthaloyl-cis-1,2-cyclohexanediamine by asymmetric reductive amination and the Curtius rearrangement	Leave this area blank for abstract info.
Jun-ichi Matsuo,* Masahiko Okano, Kosuke Takeuchi, Hiroyuki Tanaka and Hiroyuki Ishibashi*	
Division of Pharmaceutical Sciences, Graduate School of Natural Science and Technology, Kanazawa University,	
Kakuma-machi, Kanazawa 920-1192, Japan	

Stereochemistry Abstract

J. Matsuo,* M. Okano, K. Takeuchi, H. Tanaka and H. Ishibashi*

$$
\begin{aligned}
& \mathrm{Ee}=>99 \% \\
& {[\alpha]_{\mathrm{D}}{ }^{29}=+20.2\left(c 0.25, \mathrm{H}_{2} \mathrm{O}\right)}
\end{aligned}
$$

Source of chirality: asymmetric synthesis
Absolute configuration: $(1 S, 2 R)$
$\mathrm{C}_{7} \mathrm{H}_{13} \mathrm{NO}_{2}$
(1S,2R)-2-Aminocyclohexanecarboxylic acid
J. Matsuo,* M. Okano, K. Takeuchi, H. Tanaka and H. Ishibashi*

$\mathrm{Ee}=>99 \%$
O
$[\alpha]_{\mathrm{D}}{ }^{28}=+98.3(c 1.00, \mathrm{MeOH})$
Source of chirality: asymmetric synthesis
Absolute configuration: $(1 S, 2 R)$
$\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{NO}_{4}$
(1S,2R)-2-Phthalimidocyclohexanecarboxylic acid
J. Matsuo,* M. Okano, K. Takeuchi, H. Tanaka and H. Ishibashi*

$\mathrm{Ee}=>99 \%$
$[\alpha]_{\mathrm{D}}{ }^{29}=+92.1(c 0.10, \mathrm{MeOH})$
Source of chirality: asymmetric synthesis
Absolute configuration: $(1 S, 2 R)$
$\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{4}$
(1S,2R)-1-(N-Benzyloxycarbonylamino)-2-phthalimidocyclohexane
J. Matsuo,* M. Okano, K. Takeuchi, H. Tanaka and
H. Ishibashi*

$\mathrm{Ee}=>99 \%$
$[\alpha]_{\mathrm{D}}{ }^{29}=+33.6(c 0.10, \mathrm{MeOH})$
Source of chirality: asymmetric synthesis
Absolute configuration: $(1 S, 2 R)$
$\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{3}$
(1S,2R)-1-(N-Benzyloxycarbonylamino)-2-acetamidecyclohexane

A practical synthesis of enantiopure N-carbobenzyloxy- N^{\prime} -phthaloyl-cis-1,2-cyclohexanediamine by asymmetric reductive amination and the Curtius rearrangement

Jun-ichi Matsuo, ${ }^{*}$ Masahiko Okano, Kosuke Takeuchi, Hiroyuki Tanaka and Hiroyuki Ishibashi*
Division of Pharmaceutical Sciences, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan

Abstract

Enantiomerically pure N-carbobenzyloxy- N '-phthaloyl-cis-1,2-cyclohexanediamine was synthesized by asymmetric reduction of β-enamino ester formed from benzyl 2-oxocyclohexanecarboxylate and (R)-phenylethylamine, followed by hydrogenolysis, phthaloylation and the Curtius rearrangement. © 2007 Elsevier Science. All rights reserved

1. Introduction

Asymmetrically N-substituted cis-1,2-cylohexanediamines are important chiral building blocks for conformationally preorganized peptide nucleic acids ${ }^{1}$ and for biologically active small molecules such as NOC-797 (1) as an antipruritic agent, ${ }^{2}$ MEN-11467 (2) as a tachykinin NK_{1} antagonist, ${ }^{3}$ and MEN-13918 (3) as a tachykinin NK_{2} antagonist ${ }^{4}$ (Figure 1).

Figure 1. Bioactive small molecules bearing a chiral unit composed of cis-1,2-cyclohexanediamine.

These chiral cis-1,2-cyclohexanediamines have been synthesized ${ }^{1}$ from chiral trans-2-azidocyclohexanol, ${ }^{5}$ which was prepared by lipase-mediated enzymatic hydrolysis of the corresponding racemic esters. ${ }^{6}$ Recently, enantioselective desymmetrization of meso-1,2cyclohexanediamine derivatives has been reported. ${ }^{7}$ Due to their unique conformational properties, the use of chiral cis-1,2-cyclohexanediamines is expected to increase in various research fields, especially in medicinal chemistry. Therefore, a more efficient method for their preparation should be developed. We planned the synthesis of enantiomerically pure N-protected cis-1,2cylohexanediamines 4 from cis-2-amino-1cyclohexanecarboxylic acid (5) by the Curtius rearrangement because 5 was readily prepared in a large scale by Palmieri's asymmetric reduction ${ }^{8}$ of β-enamino ester 6 (Scheme 1). ${ }^{9}$

Scheme 1. Synthetic plan for 4.

[^0]
2. Results and discussion

We started the synthesis of 4 by transesterification of commercially available ethyl 2-oxocyclohexanecarboxylate (7) with benzyl alcohol in refluxing toluene without any catalyst ${ }^{10}$ to afford 8 in 83% yield (Scheme 2). Asymmetric reductive amination of $\mathbf{8}$ was performed by Xu's protocol. ${ }^{11}$ That is, compound $\mathbf{6}$ was prepared in situ from (R)-phenylethylamine and 8 in the presence of isobutyric acid, and the resulting β-enamino ester 6 was reduced with sodium borohydride-isobutyric acid at $0^{\circ} \mathrm{C}$ in toluene to afford, in 87% yield, a mixture ${ }^{12}$ of two cisdiastereomers including amine 9 as a major stereoisomer. Its diastereomeric excess (82% de) was determined by ${ }^{1} \mathrm{H}$ NMR analysis referring to NMR spectra of all four diastereoisomers of the corresponding ethyl ester. ${ }^{11}$ Hydrogenolysis of two benzylic groups of thus-obtained cis-diastereomers with Perlman's catalyst followed by recrystallization with acetone-water gave enantiomerically pure 5 in 73% yield. Enantiomeric purity of 5 was checked by comparison with reported optical rotation ${ }^{13}$ and chiral HPLC analysis of $N-\mathrm{Cbz}$ derivative of 5 .

Scheme 2. Synthesis of $\mathbf{5}$ by asymmetric reductive amination.
Next, suitable protection of the amino group of 5 and the following Curtius rearrangement ${ }^{14}$ were investigated. β Amino acid 5 was protected with the Boc group, and the Curtius rearrangement of N -Boc derivative 10 with diphenylphosphoryl azide (DPPA) ${ }^{15}$ in refluxing toluene gave cyclic urea 11 in 85% yield (Scheme 3). ${ }^{16}$ The phthalimide group was then chosen as a protecting group for the β-amino acid 5.

Scheme 3. The Curtius rearrangement of N-Boc derivative 10.
Reaction of 5 with phthalic anhydride ${ }^{17}$ and recrystallization from hexane-ethyl acetate gave 12 in 75\% yield, and optical purity of $\mathbf{1 2}$ was confirmed by chiral

HPLC analysis ($>99 \%$ ee). The Curtius rearrangement of 12 with DPPA followed by hydrolysis of the corresponding isocyanate gave 13 as a mixture of two diastereomers in 63% yield (Scheme 4). Further derivatization (e.g., N acetylation) of 13, however, did not proceed.

Scheme 4. The Curtius rearrangement of 12 followed by hydrolysis of formed isocyanate to $\mathbf{1 3}$.

We next tried to trap the the intermediate isocyanate group with alcohol to form a carbamate (Scheme 5). Carboxylic acid 12 was converted to the corresponding acyl chloride, and it was reacted with sodium azide to form acyl azide 14. It was found that the Curtius rearrangement of $\mathbf{1 4}^{18}$ proceeded in reluxing toluene to afford the corresponding isocyanate, and isocyanate was allowed to react with benzyl alcohol ${ }^{19}$ to afford N -Cbz derivative $\mathbf{1 5}^{20}$ in 78% yield for three steps from 12 . Orthogonal reactivity between N-Cbz and N-phthaloyl group was demonstrated by deprotection of the phthaloyl group with hydrazine in refluxing methanol followed by acetylation to give N acetylated product 16^{20} in 84% yield.

Scheme 5. The Curtius rearrangement of $\mathbf{1 4}$ followed by the reaction with benzyl alcohol.

3. Conclusion

In conclusion, enantiomerically pure N-carbobenzyloxy- N '-phthaloyl-cis-1,2-cyclohexanediamine (15) was synthesized by diasetereoselective reduction of a β-enamino ester employing inexpensive chiral phenylethylamine as a chiral auxiliary. The appropriately N-protected compound 15 would be useful for preparing a chiral unit composed of ciscyclohexanediamine.

4. Experimental

4.1. General methods

All melting points were determined on a Yanagimoto micro melting point apparatus and are uncorrected. Infrared (IR)
spectra were recorded on a Shimadzu FTIR-8100. H NMR spectra were recorded on a JEOL JNM EX270 (270 MHz) or a JEOL JNM GSX500 (500 MHz) spectrometer; chemical shifts (δ) are reported in parts per million relative to tetramethylsilane. Splitting patterns are designated as s , singlet; d, doublet; t, triplet; m, multiplet. ${ }^{13}$ C NMR spectra were recorded on a JEOL JNM GSX500 (500 MHz) spectrometer with complete proton decoupling. Chemical shifts are reported in parts per million relative to tetramethylsilane with the solvent resonance as the internal standard ($\mathrm{CDCl}_{3} ; \delta 77.0 \mathrm{ppm}$). High resolution mass spectra (HRMS) were recorded on a JEOL JMS-SX-102A mass spectrometer. Analytical TLC was performed on Merck precoated TLC plates (silica gel 60 GF254, 0.25 mm). Silica-gel column chromatography was carried out on silica gel 60 N (Kanto Kagaku Co., Ltd., spherical, neutral, $63-210 \mu \mathrm{~m}$). Optical rotations were measured on a Horiba SEPA300 polarimeter. Elemental analyses were carried out on a Yanaco CHN Corder MT-5. High resolution mass spectra (HRMS) were recorded on a JEOL JMS-SX-102A mass spectrometer.

4.2. Benzyl 2-oxocyclohexanecarboxylate (8) ${ }^{21}$

A solution of ethyl 2-oxocyclohexanecarboxylate (7, 5.01 g , 29.4 mmol) and benzyl alcohol ($3.85 \mathrm{~g}, 35.6 \mathrm{mmol}$) in toluene (44 mL) was stirred at $120^{\circ} \mathrm{C}$ (oil bath temp.) for three days. After evaporation of toluene, the residue was purified by column chromatography on silica gel (hexaneether $=10 / 1)$ to afford $8(5.64 \mathrm{~g}, 24.3 \mathrm{mmol}, 83 \%)$ as a colorless oil. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$, a mixture of keto and enol forms (keto/enol $=1: 3)) \delta: 1.56-1.70(4 \mathrm{H}, \mathrm{m}$, enol), 1.74-1.88 ($2 \mathrm{H}, \mathrm{m}$, keto), 1.91-1.99 ($1 \mathrm{H}, \mathrm{m}$, keto), 2.08-2.20 ($2 \mathrm{H}, \mathrm{m}$, keto), 2.26 ($4 \mathrm{H}, \mathrm{m}$, enol), 2.30-2.38 (1 H , m , keto), 2.45-2.52 ($1 \mathrm{H}, \mathrm{m}$, keto), 3.42 (1 H , ddd, $J=10.0$, $5.5,1.0 \mathrm{~Hz}$, keto $), 5.16(1 \mathrm{H}, \mathrm{d}, J=12.5 \mathrm{~Hz}$, keto $), 5.19(2 \mathrm{H}$, s , enol), 5.21 ($1 \mathrm{H}, \mathrm{d}, J=12.0 \mathrm{~Hz}$, keto), 7.29-7.44 ($5 \mathrm{H}, \mathrm{m}$), $12.1(1 \mathrm{H}$, s, enol OH$) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ : 21.8, 22.3, 22.3, 23.3, 27.0, 29.1, 29.9, 41.5, 57.2, 65.6, 66.7, 97.6, 127.8, 128.0, 128.1, 128.1, 128.2, 128.3, 128.5, $128.5,129.6,132.9,135.6,136.1,169.8,172.3,172.5$, 205.8.

4.3. Benzyl (1S,2R)-2-\{[(1’R)-1’-
 phenylethyl]amino\}cyclohexanecarboxylate (9) ${ }^{8 \mathrm{C}}$

A solution of $8 \quad(4.79 \mathrm{~g}, \quad 20.6 \mathrm{mmol}),(R)$ phenylethylamine ($2.57 \mathrm{mmol}, 21.2 \mathrm{mmol}$), and isobutyric acid ($1.9 \mathrm{~mL}, 20.5 \mathrm{mmol}$) in toluene (21 mL) was refluxed for 2 h with azeotropic removal of water. This solution was cooled to room temperature, and added to the reducing medium prepared as follows.
To isobutyric acid ($57.3 \mathrm{~mL}, 618 \mathrm{mmol}$) was added sodium borohydride ($2.34 \mathrm{~g}, 61.9 \mathrm{mmol}$) portion wise under nitrogen at $0-10^{\circ} \mathrm{C}$. The mixture was stirred at $20^{\circ} \mathrm{C}$ for 0.5 h and then cooled to $0^{\circ} \mathrm{C}$. The above-mentioned enamine solution in toluene was added dropwise at $0{ }^{\circ} \mathrm{C}$, and the mixture was stirred for 2 h at $0^{\circ} \mathrm{C}$. The reaction
was quenched with water, and the mixture was basified with $10 \% \mathrm{NaOH}$ solution ($\mathrm{pH} 9 \sim 10$). The resulting mixture was extracted with ether, and combined organic extracts were dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo. The crude product was purified by column chromatography on silica gel (hexane-ethyl acetate $=10: 1$ to $5: 1$) to afford a mixture of $\mathbf{9}$ and diastereomers ($5.95 \mathrm{~g}, 86 \%, 82 \%$ de by ${ }^{1} \mathrm{H}$ NMR analysis) as a colorless oil. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$, major isomer) $\delta: 1.17$ ($3 \mathrm{H}, \mathrm{d}, J=6.7 \mathrm{~Hz}$), 1.20-1.32 ($2 \mathrm{H}, \mathrm{m}$), 1.40-1.68 ($5 \mathrm{H}, \mathrm{m}$), $1.84-1.93(1 \mathrm{H}, \mathrm{m}), 2.79(1 \mathrm{H}, \mathrm{dt}, J=7.3,3.7 \mathrm{~Hz}), 2.86(1 \mathrm{H}$, $\mathrm{dt}, \quad J=7.9,3.7 \mathrm{~Hz}), 3.78(1 \mathrm{H}, \mathrm{q}, J=6.7 \mathrm{~Hz}), 5.16(2 \mathrm{H}, \mathrm{s})$, 7.13-7.43 (10H, m); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$, minor isomer) $\delta: 1.27(3 \mathrm{H}, \mathrm{d}, J=6.7 \mathrm{~Hz}), 2,57(1 \mathrm{H}, \mathrm{dt}, J=9.2$, $3.7 \mathrm{~Hz}), 3.85(1 \mathrm{H}, \mathrm{t}, J=6.7 \mathrm{~Hz}), 4.97(1 \mathrm{H}, \mathrm{d}, J=12.8 \mathrm{~Hz}$, one of $\mathrm{OCH}_{2} \mathrm{Ph}$); ${ }^{13} \mathrm{C}$ NMR ($68 \mathrm{MHz}, \mathrm{CDCl}_{3}$, major isomer) $\delta: 22.6,23.2,24.4,25.3,29.7,44.7,53.3,54.9$, $65.8,126.5,126.6,128.0,128.2,128.5,136.2,146.4$, 174.2; ${ }^{13} \mathrm{C}$-NMR ($68 \mathrm{MHz}, \mathrm{CDCl}_{3}$, minor isomer) $\delta: 21.4$, 23.9, 24.7, 25.4, 27.6, 46.5, 51.7, 54.2, 65.8, 126.6, 126.7, $128.0,128.1,128.4,136.2,145.9,174.3$.

4.4. (1S,2R)-2-Aminocyclohexanecarboxylic acid (5) ${ }^{8 \mathrm{C}}$

A mixture of 9 and a diastereomer $(2.01 \mathrm{~g}, 5.96 \mathrm{mmol})$ and $20 \% \mathrm{Pd}(\mathrm{OH})_{2} / \mathrm{C}(210 \mathrm{mg}, 0.30 \mathrm{mmol})$ in $\mathrm{MeOH}(8 \mathrm{~mL})$ was heated at $50^{\circ} \mathrm{C}$ under H_{2} atmosphere (50 atm .) for 24 h . Then, the mixture was filtered through Celite pad, and the filtrate was concentrated in vacuo to afford a crude product. The crude product was recrystallized twice from $\mathrm{H}_{2} \mathrm{O}$ and acetone to afford 5 ($458 \mathrm{mg}, 3.20 \mathrm{mmol}, 54 \%$, not optimized) as a colorless needles. ${ }^{1} \mathrm{H}$ NMR (270 MHz , $\left.\mathrm{D}_{2} \mathrm{O}\right) \delta: 1.18-1.42(3 \mathrm{H}, \mathrm{m}), 1.42-1.60(2 \mathrm{H}, \mathrm{m}), 1.60-1.72$ $(2 \mathrm{H}, \mathrm{m}), 1.72-1.90(1 \mathrm{H}, \mathrm{m}), 2.51(1 \mathrm{H}, \mathrm{dt}, J=6.8,4.1 \mathrm{~Hz})$, $3.33(1 \mathrm{H}, \mathrm{td}, J=6.2,4.3 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($68 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta: 23.9,24.0,28.0,28.8,44.5,51.8,180.1 ; \mathrm{mp} 215-220{ }^{\circ} \mathrm{C}$ (dec.) (lit. 217-220 ${ }^{\circ} \mathrm{C}^{13}{ }^{13} 220-223{ }^{\circ} \mathrm{C}^{8 \mathrm{c}}$); $[\alpha]_{\mathrm{D}}{ }^{29}=+20.2$ (c $\left.0.25, \mathrm{H}_{2} \mathrm{O}\right)\left(\right.$ lit. $\left.{ }^{13}[\alpha]_{\mathrm{D}}{ }^{24}=+20.0\left(c 0.25, \mathrm{H}_{2} \mathrm{O}\right)\right)$.

HPLC analysis of $\mathrm{N}-\mathrm{Cbz}$ derivative of thus obtained 5 by using chiralcel ODH (hexane $/ i-\mathrm{PrOH} / \mathrm{HCO}_{2} \mathrm{H}=95 / 5 / 1,0.5$ $\mathrm{mL} / \mathrm{min}, 254 \mathrm{~nm}$) indicated that only ($1 S, 2 R$)-enantiomer was included $((1 S, 2 R)$-enantiomer: $13.8 \mathrm{~min},(1 R, 2 S)$ enantiomer: 15.3 min).

4.5. (1S,2R)-2-Phthalimidocyclohexanecarboxylic acid (12)

A mixture of $5(325.6 \mathrm{mg}, 2.27 \mathrm{mmol})$ and powdered phthalic anhydride ($371 \mathrm{mg}, 2.50 \mathrm{mmol}$) was heated at 150 ${ }^{\circ} \mathrm{C}$ for 2 h . The mixture was purified by column chromatography on silica gel (hexane-ethyl acetate $=3: 1$ to 1:1) gave 12 ($552 \mathrm{mg}, 89 \%$) and recrystallization with hexane (30 mL) and ethyl acetate (3 mL) gave $12(465 \mathrm{mg}$, $1.70 \mathrm{mmol}, 75 \%$) as a colorless cubic crystals. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 1.34-1.45(1 \mathrm{H}, \mathrm{m}), 1.53-1.59(1 \mathrm{H}$, $\mathrm{m}), 1.63-1.72(1 \mathrm{H}, \mathrm{m})$, 1.77-1.84 $(1 \mathrm{H}, \mathrm{m}), 1.91-2.02(2 \mathrm{H}$, m), 2.13-2.19 ($1 \mathrm{H}, \mathrm{m}$), 2.83 ($1 \mathrm{H}, \mathrm{qd}, J=9.3,3.4 \mathrm{~Hz}$), 3.16 $(1 \mathrm{H}, \mathrm{td}, J=4.6,3.2 \mathrm{~Hz}), 4.34(1 \mathrm{H}, \mathrm{ddd}, J=12.5,5.1,3.4$
$\mathrm{Hz}), 7.66(2 \mathrm{H}, \mathrm{dd}, J=5.4,2.9 \mathrm{~Hz}), 7.77(2 \mathrm{H}, \mathrm{dd}, J=5.4$, 2.9 Hz) ${ }^{13}{ }^{3} \mathrm{C}$ NMR ($127 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 21.1,25.9,25.9$, $27.4,42.8,52.7,123.1,131.9,133.8,168.6,178.0$; IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right) 3020,1709 ; \mathrm{mp} 159-160{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{28}=+98.3$ (c $1.00, \mathrm{MeOH}$); Anal. Calcd. for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{NO}_{4}: \mathrm{C}, 65.92 ; \mathrm{H}$, 5.53 ; N, 5.13. Found: C, $65.93 ; H, 5.56 ;$ N, 5.15 .

4.6. (1S,2R)-1-(N-Benzyloxycarbonylamino)-2phthalimidocyclohexane (15)

To a stirred solution of $12(100 \mathrm{mg}, 0.367 \mathrm{mmol})$ and dimethylformamide (3 drops) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(6 \mathrm{~mL}$) was added thionyl chloride ($0.27 \mathrm{~mL}, 3.70 \mathrm{mmol}$) at $0{ }^{\circ} \mathrm{C}$, and the mixture was stirred at room temperature for 1 h . After evaporation of volatiles, dry acetone (5 mL) was added to the residue. To this solution was added a saturated aqueous solution of $\mathrm{NaN}_{3}(1 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$, and the mixture was stirred for 10 min . Excess amount of $\mathrm{H}_{2} \mathrm{O}$ was added to the reaction mixture, and the precipitated solid was collected by filtration, and dried in vacuo to give crude acyl azide $\mathbf{1 4}$ $(102.9 \mathrm{mg})$.

A mixture of thus-obtained acyl azide $\mathbf{1 4}(102.9 \mathrm{mg})$ in dry toluene (3 mL) was refluxed for 1 h . After confirming the disappearance of acyl azide by TLC analysis, benzyl alchohol ($0.19 \mathrm{~mL}, 1.84 \mathrm{mmol}$) was added and the mixture was refluxed for 27 h . After the addition of $\mathrm{H}_{2} \mathrm{O}$, the mixture was extracted with ethyl acetate, and combined organic extracts were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo. The crude product was purified by column chromatography on silica gel (benzene-ethyl acetate) to afford 15 (108.8 mg , $0.288 \mathrm{mmol}, 78 \%$) as a white solid. ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta: 1.33-1.53(2 \mathrm{H}, \mathrm{m}), 1.53-1.73(3 \mathrm{H}, \mathrm{m}), 1.84-2.13$ $(2 \mathrm{H}, \mathrm{m}), 2.69(1 \mathrm{H}, \mathrm{qd}, J=13.1,3.3 \mathrm{~Hz}), 4.03-4.08(0.1 \mathrm{H}$, brs), $4.11(0.9 \mathrm{H}, \mathrm{d}, J=3.4 \mathrm{~Hz}), 4.24-4.32(0.1 \mathrm{H}$, brs $), 4.36$ ($0.9 \mathrm{H}, \mathrm{dt}, J=13.4,3.7 \mathrm{~Hz}$), 4.73-4.86 (0.1 H , brs), 4.96 $(0.9 \mathrm{H}, \mathrm{d}, J=12.5 \mathrm{~Hz}), 5.02(0.9 \mathrm{H}, \mathrm{d}, J=12.5 \mathrm{~Hz}), 5.65-$ $5.75(0.1 \mathrm{H}, \mathrm{brs}), 5.98(0.9 \mathrm{H}, \mathrm{d}, J=6.8 \mathrm{~Hz}), 7.07-7.34(5$ H , m plus brs), $7.68(2 \mathrm{H}, \mathrm{dd}, J=5.2,3.1 \mathrm{~Hz}), 7.68(2 \mathrm{H}$, dd, $J=3.1,5.1 \mathrm{~Hz}), 7.79(2 \mathrm{H}, \mathrm{dd}, J=3.2,5.2 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($127 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 19.4,24.3,25.7,30.2,51.1$, 52.8, 66.2, 123.2, 127.7, 127.7, 128.3, 131.6, 133.9, 136.7, 156.0, 168.9; IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right) 1709,1518 ; \mathrm{mp} 114.0-$ $115.0{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{29}=+92.14$ (c $0.10, \mathrm{MeOH}$); HRMS (EI) Calculated for $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{4}: 378.15796$. Found 378.15866.

4.6. (1S,2R)-1-(N-Benzyloxycarbonylamino)-2acetamidecyclohexane (16)

A mixture of $15(82.4 \mathrm{mg}, 0.218 \mathrm{mmol})$ and 1 M solution of hydrazine in $\mathrm{MeOH}(2.5 \mathrm{~mL})$ in $\mathrm{MeOH}(10 \mathrm{~mL})$ was refluxed for 10 h . After evaporation of the solvent, ethyl acetate was added to the residue, and the mixture was washed with water and brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. To the obtained residue was added pyridine $(0.9 \mathrm{~mL})$ and acetic anhydride $(3 \mathrm{~mL})$, and the mixture was stirred at room temperature for 2 h .

After evaporation of volatiles, ethyl acetate and saturated aqueous NaHCO_{3} were added. The organic layer was separated, and washed with water and brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. The crude product was purified by preparative thin-layer chromatography on silica gel $\left(\mathrm{CHCl}_{3} / \mathrm{MeOH}=9: 1\right)$ to afford 16 ($54.8 \mathrm{mg}, 0.189 \mathrm{mmol}, 87 \%$) as a colorless solid. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 1.30-2.00(8 \mathrm{H}, \mathrm{m}), 1.95$ $(3 \mathrm{H}, \mathrm{s}), 3.90(1 \mathrm{H}, \mathrm{s}), 4.02(1 \mathrm{H}, \mathrm{s}), 5.10(2 \mathrm{H}, \mathrm{s}), 5.28(1 \mathrm{H}$, s), 5.75-5.95 (0.2 H, brs), 6.05-6.23 (0.8 H , brs), 7.30-7.38 $(5 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR $\left(67.8 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 21.3,22.6,23.4$, 28.0, 29.2, 50.1, 50.8, 66.9, 128.1, 128.5, 136.3, 156.6, 170.2; IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right)$ 1713, 1667; mp 163.0-164.0 ${ }^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}{ }^{29}=+33.6$ (c 0.10, MeOH); Anal. Calcd. for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{3}$: C, 66.18; H, 7.64; N, 9.65. Found: C, 66.24; H, 7.66; N, 9.58.

Acknowledgments

The authors are grateful for the financial support from Takeda Science Foundation, and this work was partially supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science, and Technology of Japan.

References

1. Govindaraju, T.; Kumar, V. A.; Ganesh, K. N. J. Org. Chem. 2004, 69, 1858-1865.
2. Okano, M.; Oyama, T. U.S. Patent, 2005, 0176741 A1.
3. Palma, C.; Nardelli, F.; Manzini, S. Eur. J. Pharm. 1999, 374, 435-443.
4. Meini, S.; Bellucci, F.; Catalani, C.; Cucchi, P.; Patacchini, R.; Rotondaro, L.; Altamura, M.; Giuliani, S.; Giolitti, A.; Maggi, C. A. Eur. J. Pharm. 2004, 488, 61-69.
5. Review: (a) Schneider, C. Synthesis 2006, 3919-3944; (b) de Parrodi, C. A.; Juaristi, E. Synlett 2006, 2699-2715.
6. (a) Faber, K.; Honig, H.; Seufer-Wasserthal, P. Tetrahedron Lett. 1988, 29, 1903-1904. (b) Honig, H.; Seufer-Wasserthal, P. J. Chem. Soc., Perkin Trans. 1 1989, 2341-2345.
7. (a) Kitagawa, O.; Yotsumoto, K.; Kohriyama, M.; Dobashi, Y.; Taguchi, T. Org. Lett. 2004, 6, 3605-3607; (b) Kitagawa, O.; Matsuo, S.; Yotsumoto, K.; Taguchi, T. J. Org. Chem. 2006, 71, 2524-2527.
8. (a) Cimarelli, C.; Palmieri, G.; Bartoli, G. Tetrahedron: Asymmetry 1994, 5, 1455-1458; (b) Cimarelli, C.; Palmieri, G. J. Org. Chem. 1996, 61, 5557-5563; (c) Cimarelli, C.; Palmieri, G.; Volpini, E. Synth. Commun. 2001, 31, 29432953.
9. Compound $5-\mathrm{HCl}$ salt was prepared by conjugate addition of enantiomerically pure lithium amides. See: (a) Davies, S. G.; Ichihara, O.; Lenoir, I.; Walters, L. A. S. J. Chem. Soc., Perkin Trans. 1 1994, 1411-15; (b) Davies, S. G.; Smith, A. D.; Price, P. D. Tetrahedron: Asymmetry 2005, 16, 28332891.
10. Mottet, C.; Hamelin, O.; Garavel, G.; Deprés, J.-P.; Greene, A. E. J. Org. Chem. 1999, 64, 1380-1382.
11. Xu, D.; Prasad, K.; Repič, O.; Blacklock, T. J. Tetrahedron: Asymmetry 1997, 8, 1445-1451.
12. The two cis-diastereomers were not separated by chromatography on silica gel.
13. Priego, J.; Flores, P.; Ortiz-Nava, C.; Escalante, J. Tetrahedron: Asymmetry 2004, 15, 3545-3549.
14. Review: Smith, P. A. S. Org. React. 1967, 3, 337-449.
15. Ninomiya, K.; Shioiri, T.; Yamada, S. Tetrahedron 1974, 30, 2151-2157.
16. For intramolecular cyclization of a NHBoc group to an isocyanate group: Dunn, P. J.; Häner, R.; Rapoport, H. J. Org. Chem. 1990, 55, 5017-5025.
17. Sheehan, J. C.; Chapman, D. W.; Roth, R. W. J. Am. Chem. Soc. 1952, 74, 3822-3825.
18. The use of isolated acyl azide $\mathbf{1 4}$ gave compound 15 in better yields than the combination of $\mathbf{1 2}$ and DPPA.
19. t-Butanol did not react with the isocyanate.
20. Enantiomeric purity was assigned by reference to compound 12.
21. Plieninger, H.; Castro, C. E. Chem. Ber. 1954, 87, 1760-1767.

[^0]: * Corresponding author. Tel \& fax.: +81 76234 4439; e-mail: jimatsuo@p.kanazawa-u.ac.jp

