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Abstract: Ethyl glyoxylate O-tert-butyldimethylsilyloxime (12), 
on treatment with various alkenes 7 in the presence of 2.2 equiv. 
of BF3•OEt2, generated C-ethoxycarbonyl N-boranonitrone (13), 
which underwent intermolecular cycloaddition to afford 3-
(ethoxycarbonyl)isoxazolidines 14 in moderate to high yields. 
Key words: cycloaddition, boron trifluoride, N-boranonitrone, 
alkenes, cycloadducts 

 
Intramolecular oxime-olefin cycloaddition, so called 
IOOC, appears to be one of the operationally simplest 
cycloadditions. Thus, heating oximes 1 bearing an olefin 
moiety in the molecule give N-nonsubstituted 
isoxazolidines 3 via tautomerization from 1 to NH-
nitrone 2.1,2 However, the cycloaddition often require 
very high temperature conditions because of the 
thermodynamically unfavorable tautomerization 
(Scheme 1).3 In addition, intermolecular oxime-olefin 
cycloaddition is known to be restricted to reactions of 
only a few oximes with N-methyl or N-
phenylmareimides.4,5 

 

Scheme 1 

 
Scheme 2 

Recently, we reported BF3-mediated cycloaddition of O-
tert-butyldimethylsilyloximes (O-TBS oximes) as an 
alternative method for the efficient synthesis of 
isoxazolidines 3. Treatment of oximes 4 with BF3•OEt2 
generates N-boranonitrones 5, which undergo 
intramolecular cycloaddition affording the products 3 
after extractive workup (Scheme 2).6 This procedure is 
highly useful for synthesis of isoxazolidine derivatives 
because the reaction proceeds smoothly at room 
temperature using the strong N-B and Si-F affinity and is 
applicable to various substrates giving the corresponding 
products in good to high yields.  
We envisioned the extension of this procedure to the 
intermolecular counter part, and have now found that 
exposure of ethyl glyoxylate O-TBS oxime 12 to 
BF3•OEt2 in the presence of various alkenes 7 underwent 
intermolecular cycloaddition to afford cycloadducts 14 
in moderate to good yields.7,8 

Our investigation began with the simplest extension of 
the intramolecular cycloaddition to intermolecular 
version (Scheme 3). When benzaldehyde O-TBS oxime 
6 was treated with styrene (7a) (10 eq.) in the presence 
of 2.2 eq. of BF3•OEt2 in (CH2Cl)2 at 60 °C for 24 h, 
intermolecular cycloaddition proceeded, however, to 
give only 40% yield of cycloadduct 9.9 

X

N

R1

R2

HO
X

H
N

R1

R2

O
X

H
N

O

R2R1
H

H

1 2 3

 

Scheme 3 

From the viewpoint of the electrophilic nature of N-
boranonitrone, replacement of the phenyl group in 
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nitrone 8 by an ester group was examined to activate the 
intermediary N-boranonitrone.10 The requisite O-TBS 
oxime 12 was readily prepared from chloral hydrate (10) 
which react with hydroxyammonium sulfate in the 
presence of MgCl2 in ethanol solution to furnish 
glyoxylate oxime (11)11 (Scheme 4). Silylation of ethyl 
glyoxylate oxime 11 afforded ethyl glyoxylate O-TBS 
oxime 12 in 86% yield.12  
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Scheme 4 

The intermolecular cycloadditions of the starting O-TBS 
oxime 12 with various alkenes 7 were carried out in the 
presence of 2.2 eq. of BF3•OEt2 in (CH2Cl)2 under argon 
at 60 °C. (Scheme 5, Table 1). In contrast to the reaction 
of benzaldehyde oxime 6, reaction of oxime 12 with 
styrene (7a) smoothly proceeded to give the 
corresponding cycloadduct 14a in 71% yield, probably 
via nitrone 13 as active intermediate (entry 1).13 
Reaction of aliphatic terminal alkene 7b and 7c also 
afforded the cycloadduct 14b and 14c in 78% and 61% 
yields as 77:1 (14b) and 7:1 (14c) mixture of 
diastereomer respectively (entries 2 and 3). As expected, 
1,1-disubstituted alkenes 7d reacted with nitrone 13, 
giving rise to 5,5-disubstituted isoxazolidine 14d in low 
yield (entry 4). This low yield may be due to 
porimerization of alkene 7d during the reaction. 
Reactions of 1-methyl cyclopentene (7e) afforded 
bicyclic products 14e in 79% yields as 3.4:1 mixture of 
diastereomer (entry 5).  
The N-boranonitrone 13 was found to react with 2-
substituted acrylate (Scheme 6). When oxime 12 was 
treated with ethyl acrylate (7g) in the presence of 
BF3•OEt2 in (CH2Cl)2 at 60 °C for 15 h, cycloadduct 14g 
was obtained in 53% yield as a 7:1 mixture of 
diastereomers. This reaction would be applicable for 
syntheses of naturally occurring 4-hydroxy-4-substituted 
glutamic acids.14

 
Scheme 6 

In conclusion, we have developed a novel intermolecular 
cycloaddition of O-TBS oxime 12 with various alkenes 7 
via N-boranonitrone 13 as active intermediate, giving the 
Scheme 5 

Table 1. Intermolecular Cycloaddition of O-TBS oxime 12 with 
Alkenes 7a-e in the presence of BF3•OEt2

a

a All reactions were carried out with 2.2 equiv of BF3•OEt2 in 
(CH2Cl)2 at 60 °C. 
 
corresponding isoxazolidines 14. To the best of our 
knowledge, the present reaction is the first example of 
intermolecular cycloaddition of oxime derivatives that 
can react with various alkenes. Further work will be 
devoted to the extension of the procedure to the other 
functionalized oximes and alkenes, as well as to the 
application of the procedure in natural product synthesis.  
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