Study of 1,3,5-Triazine-Based Catalytic Amide-Forming Reactions: Effect of Solvents and Basicity of Reactants

Munetaka Kunishima,^{*,a,b} Masanori Kitamura,^a Hiroyuki Tanaka,^a Ichiro Nakakura,^c Takahiro Moriya,^c and Kazuhito Hioki^{b,c}

^a Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical, and Health Sciences, Kanazawa University; Kakuma-machi, Kanazawa 920–1192, Japan: ^b Cooperative Research Center of Life Sciences, Kobe Gakuin University; and ^c Faculty of Pharmaceutical Sciences, Kobe Gakuin University; 1–1–3 Minatojima, Chuo-ku, Kobe 655–8586, Japan. Roanived May 13, 2013: eccentred May 21, 2013.

Received May 13, 2013; accepted May 31, 2013

Effect of the basic property of reactants (tertiary amine catalysts, a substrate amine, and acid neutralizers) on catalytic dehydrocondensation between a carboxylic acid and an amine by using 2-chloro-4,6dimethoxy-1,3,5-triazine (CDMT) was studied. The reaction yield was affected by the acid-base equilibrium among reactants. In dichloromethane, a representative aprotic solvent, a strongly basic catalyst gave amides in higher yields than weakly basic catalysts, regardless of the basicity of the acid neutralizer, which is called the proton capture agent (PCA). In contrast, in protic solvents, such as methanol or aqueous methanol, weakly basic catalysts gave amides in somewhat better yields than the strongly basic catalysts. In general, PCAs with weakly basic properties are favorable, because those with strongly basic properties tend to give byproducts arising from the reaction between CDMT and the substrate amine.

Key words amide; dehydrocondensation; 1,3,5-triazine; catalytic reaction; solvent effect

Dehydrocondensation to form amides and esters is an essential tool for organic and medicinal chemists, and various dehydrocondensing reagents have been developed for the past several decades.^{1,2)} Among them, 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium chloride (DMT-MM, Fig. 1), has proven to be useful because of its stability, reactivities, and low synthetic cost.^{3–5)} In particular, it selectively produces amides from carboxylic acids and amines even in alcoholic or aqueous media.^{6–8)} Related triazine-based compounds, *N*-(4,6-dimethoxy-1,3,5-triazin-2-yl)-*N*,*N*,*N*-trialkylammonium chloride (DMT-Ams), which consist of tertiary amines (*tert*-amine) instead of *N*-methylmorpholine (NMM), have a similar reactivity for dehydrocondensation.^{9–12)}

We found catalytic dehydrocondensation involving the *in* situ generation of DMT-Am from a stoichiometric amount of 2-chloro-4,6-dimethoxy-1,3,5-triazine (CDMT) and a catalytic amount of a *tert*-amine, as summarized in Chart 1.¹³ In this system, the addition of a base, proton capture agent (PCA),¹⁴ which is inert toward CDMT, is essential for the regeneration of the *tert*-amine from its hydrochloride.

From this understanding, we have developed catalytic dehydrocondensing reactions using a *tert*-amine with a specific functional property, such as molecular recognition.^{13,15–19} As functionalized catalysts, we employed an *N*,*N*-dimethylglycine ester as a catalytic *tert*-amine part because of its facile introduction into functional molecules *via* the ester group and also because of its potent catalytic activity in a protic solvent. However, the details of the choice of catalytic *tert*-amine parts depending on the reaction conditions have not been described.

Very recently, we have studied the structure–reactivity relationship of *tert*-amines reacting with CDMT for the generation of DMT-Am, and proposed the *gauche* β -alkyl group effect.¹²⁾ This effect indicates that a steric environment around the nitrogen atom rather than the basicity of the *tert*-amines is predominantly correlated with their reactivity. However, we

have not investigated the effect of the basicity of *tert*-amines in a similar steric environment. In addition, because all the reactants (carboxylates, amines, and *tert*-amines) can exist in an acid–base equilibrium with each other, the reaction can be affected by solvent properties. Here, we report the effects of the basicity of *tert*-amines and PCAs on the catalytic dehydrocondensations for the preparation of amides in protic and aprotic solvents.

Results and Discussion

Effect of tert-Amine Catalysts and PCAs on the Catalytic Amide-Forming Reaction in Dichloromethane To examine the effect of catalysts and PCAs on the catalytic amide-forming reaction, we chose 2-phenylpropionic acid (1a) and 2-phenethylamine (2a) as model reactants, both of which possess a primary aliphatic substituent and allow their detection by UV absorption of the phenyl group. Since we were concerned with the side reaction between 2a and CDMT (Chart 1), we determined yields of the resulting amine-substituted product (4a) in addition to the desired amide (3a). On the basis of the reactivity of tert-amines toward CDMT caused by the gauche β -alkyl group,¹²⁾ we employed NMM, N,Ndimethylglycine ethyl ester (DMGE), and N,N-dimethylbutylamine (Me₂NBu) as catalysts, and triethylamine (Et₂N), N.Ndiisopropylethylamine (i-Pr2NEt), N-cyclohexylmorpholine (NCHM), N,N-diethylaniline (PhNEt₂), and sodium bicarbonate (NaHCO₃) as PCAs. DMGE and Me₂NBu would be suitable catalysts for investigation of the effect of their basicity, because they have different basicities and have similar steric

The authors declare no conflict of interest.

Fig. 1. Structure of DMT-MM and DMT-Am

Chart 1. Catalytic Amide-Forming Reaction Involving DMT-Am

environments around the nitrogen atom.²⁰⁾ We confirmed that the *tert*-amines moiety of PCAs cannot serve as a catalyst because of two or more unavoidable β -gauche alkyl groups (see, Supplemental Table S2).

Table 1 shows the influence of the basicity of the catalysts and PCAs^{20–23)} on the distribution of the products (**3a**, **4a**) in dichloromethane (CH₂Cl₂), which was chosen as a representative aprotic solvent because it produced the highest yield of **3a** among aprotic solvents under stoichiometric conditions (Supplemental Table S1). Me₂NBu gave the highest yield of **3a** and the lowest yield of **4a** in the presence of every PCA except PhNEt₂. On the other hand, in the case of the NMM or DMGE catalyst, the yield of **4a** increased with increasing the basicity of PCAs, whereas the yield of **3a** remained moderate regardless of the basicity of the PCAs.

Because the precipitation of DMT-Am, which is insoluble in CH_2Cl_2 , was not observed during the reactions, the rate of generation of DMT-Am would be slower than that of its consumption.²⁴⁾ Therefore, we believe that the key step in the catalytic amide-forming reaction is the *S*_NAr substitution of CDMT by *tert*-amine producing DMT-Am. Me₂NBu having a large pK_a value would have a higher nucleophilicity than **2a**, as we empirically know that *tert*-amines generally react with CDMT faster than primary or secondary amines.²⁵⁾ Thus, CDMT is quickly converted into the acyloxytriazine by Me₂NBu catalyst regardless of the basicity of the PCAs (Chart 2a).

In the case of NMM and DMGE having lower basicities than Me_2NBu , the direct reaction of **2a** toward CDMT to give

4a competes with the production of DMT-Am because of the lower nucleophilicities of these catalysts. Hydrogen chloride arising from the reaction of CDMT with either **2a** or *tert*-amines followed by **1a** should be captured by unreacted **2a** or PCA rather than DMGE and NMM. The use of NaHCO₃, PhNEt₂, or NCHM, whose basicities are sufficiently lower than that of **2a**,²⁶ primarily results in the protonation of **2a**. The resulting ammonium salt is unreactive with CDMT; therefore, a lesser amount of **4a** is produced (Chart 2b). When using Et₃N and *i*-Pr₂NEt with the basicities comparable with that of **2a**, the amount of the reactive non-protonated form of **2a** should increase, causing an increased yield of **4a**.

Therefore, Me₂NBu with stronger basicity was found to be superior to weakly basic *tert*-amine catalysts such as NMM and DMGE for the catalytic amide-forming reaction in aprotic solvents. Consequently, the catalytic amide-forming reaction using a combination of Me₂NBu and NCHM proceeds in good yields in common aprotic solvents (Table 2). The yields were comparable to those obtained under stoichiometric conditions, as shown in Supplemental Table S1.

Catalytic Amide-Forming Reaction in Protic Solvents We examined the catalytic amide-forming reaction in neutral protic solvents, such as methanol or a 50% aqueous methanol solution (Table 3). In general, the absolute methanol produced higher yields of **3a** and lower yields of **4a**, than the 50% aqueous methanol solution. In contrast to the reaction in dichloromethane, in an aqueous solvent, weakly basic *tert*-amine catalysts such as DMGE and NMM produced higher yields of the amide (**3a**) to some extent compared with Me₂NBu with strong

Table 1. Effect of *tert*-Amine Catalysts and PCAs on the Reaction between 1a and 2a in CH₂Cl₂^a

^и соон + H ₂ N рь	CDMT (1.1 eq) catalyst (0.2 eq) PCA (1.0 eq)
1a (1.0 eq) 2a (1.1 eq)	CH ₂ Cl ₂ rt, overnight
$Ph \longrightarrow H MeO H MeO H$	DMe N N H Ha

DCA	DMGE p	$X_{a} = 7.2^{b}$ NMM		$K_{a} = 7.4^{b}$	$Me_2NBu pK_a = 10.0^{b}$	
PCA	3a (%)	4a (%)	3a (%)	4a (%)	3a (%)	4a (%)
NaHCO ₃ $pK_a = 6.4^{b}$	69	9	76	13	76	3
PhNEt ₂ $pK_a = 6.6^{b}$	63	8	56	21	56	2
NCHM $pK_a = 8.3^{b}$	76	14	68	26	91	5
$Et_{3}N pK_{a} = 10.7^{b}$	57	23	53	32	79	5
<i>i</i> -Pr ₂ NEt p $K_{a} = 11.4^{b}$	63	28	63	27	82	4

a) Yields were determined by ¹H-NMR of the mixture of **3a** and **4a** after PTLC. b) The pK_a indicates the values of their conjugated acids (refs. 20–23).

Chart 2. Mechanistic Consideration for the Effect of Acid-Base Equilibrium of Reactants on the Products Distribution in CH₂Cl₂

Table 2.	Catalytic Amide-I	Formation Using	Me ₂ NBu and N	CHM in Ap	protic Solvents ^{a)}
	2	<i>U</i>	/		

12 + 22	CDMT (1.1 eq) Me ₂ NBu (0.2 eq) NCHM (1.0 eq)	3a + 4a	
1.0 eq) (1.1 eq)	solvent rt, 22 h	ou · 4u	

Solvent	CH ₂ Cl ₂ ^{b)}	AcOEt	THF	DMSO	CH ₃ CN
3a 4a	91% 5%	89% 2%	84% 8%	87% 8%	80% 6%

a) Yields were determined by ¹H-NMR of the mixture of **3a** and **4a** after PTLC. b) The data was cited from Table 1.

Table 3. Effect of tert-Amine Catalysts and PCAs on the Reaction between 1a and 2a in Aqueous and Non-aqueous Methanolic Solvents^a)

			1a + 2a CDM cataly PCA (1.0 eq) (1.1 eq) solve rt, 22	T(1.1 eq) /st(0.2 eq) (1.0 eq) → 3a + 4a •nt h			
C - lt	DCA	DM	IGE	NM	ИМ	Me ₂	NBu
Solvent	PCA –	3a (%)	4a (%)	3a (%)	4a (%)	3a (%)	4a (%)
МеОН	NaHCO ₃	81	2	77	4	79	3
MeOH	NCHM	74	13	59	9	52	8
МеОН	Et ₃ N	55	19	59	22	55	15
50% aq MeOH	NaHCO ₃	61	5	72	13	50	8
50% aq MeOH	NCHM	60	14	54	15	47	22
50% aq MeOH	Et ₃ N	38	28	35	28	26	31

a) Yields were determined by ¹H-NMR of the crude product after PTLC.

basicity. Again, the basicity of the PCA affected the product yield; in particular, a lower yield of 3a and a significantly higher yield of 4a were obtained when using Et₃N.

In protic solvents, particularly in aqueous solvents, the substrates (1a, 2a) should be present as salts such as the ammonium carboxylate because of the stabilization of the ionized structures by solvation (Chart 3a). The resultant ammonium salt of 2a will be in an acid-base dissociation equilibrium with the catalysts and PCAs, and therefore, affects the product distribution. When Et_3N , which has strong basicity, was used as the PCA, the ammonium of 2a can be significantly deprotonated to form the amine, which is reactive toward CDMT.

Therefore, the amine-substituted product 4a was produced in a significantly high yield (Chart 3b). In contrast, when weakly basic PCAs, such as NCHM and NaHCO₃, were used, 2a having the strongest basicity among the species in the reaction media should be presents in an ionized state (as the ammonium salt), which causes a decrease in the yield of 4a (Chart 3c).

With respect to the *tert*-amine catalysts, NMM and DMGE should be present in a reactive non-protonated form, which results in the smooth formation of DMT-Am whereas Me_2NBu should be present significantly in the protonated form within the reaction mixture (Charts 3d, e). Owing to a smaller population of the reactive non-protonated species of Me_2NBu , a

884

Chart 3. Mechanistic Consideration for the Effect of Acid-Base Equilibrium of Reactants on the Products Distribution in Aqueous Solvents

retarded formation of DMT-Am may cause a lower yield of the amide. Thus, a combination of weakly basic catalysts and PCAs was found to be desirable in aqueous methanol. The observed better results in absolute methanol, which were not affected by the basicity of *tert*-amine catalyst, may be due to the somewhat intermediate polarity of methanol between aprotic and aqueous solvents.

Conclusion

In the catalytic amide-forming reaction using a combination of CDMT and a tert-amine catalyst, we have found that the polarity of solvents and the basicity of the catalysts and PCAs affect the distribution of the products (3a, 4a). A strongly basic catalyst such as Me₂NBu was found to be the superior catalyst in aprotic solvents as compared with weakly basic catalysts such as NMM and DMGE. NMM and DMGE were found to be slightly better than Me₂NBu in protic solvents. Weakly basic PCAs such as NCHM or NaHCO₃ are found to be favorable, regardless of the solvents, because they help to avoid the side reaction between CDMT and substrate amine, which produces undesirable 4a. In addition, controlling the ionization state of the substrates and catalyst was essential in an aqueous solution. In this regard, the advantages of N,Ndimethylglycine esters that we have utilized for tert-amine catalyst in variety of catalytic amide-forming reactions in aqueous solvents have now been well interpreted. Based on these findings, we are now searching for a more effective tertamine catalysts that can be used in aqueous solvents.

Experimental

General Experimental Procedures ¹H-NMR spectra were recorded on BRUKER DPX400 spectrometer referenced with tetramethysilane (δ 0.00 ppm) as an internal standard. IR spectra were recorded on Nicolet FT-IR AVATAR360. Lowand high resolution mass spectra were recorded on a JEOL Ltd. the Mstation JMS-700 mass spectrometer and Micromass Zq2000 spectrometer. Melting points were determined with a Yanagimoto melting point apparatus and are uncorrected. pK_a values were determined with Metrohm 794 Basic Titrino. Reactions were monitored by thin-layer chromatography carried out on 0.25 mm Merck silica gel plates (60F-254). Column chromatography was performed with Kanto Chemical silica gel 60N (63-210mm, spherical, neutral). Preparative thin layer chromatography (PTLC) was performed on silica gel 60F₂₅₄ (Merck). Reagents and solvents were purchased from TCI, Nacalai Tesque, Aldrich, and Wako Pure Chemical Industries. Ltd. and were used without further purification.

General Procedure for Catalytic Amidation To a solution (2.37 mL) of phenylpropionic acid (1a, 35.6 mg, 0.237 mmol), phenethylamine (2a, 31.6 mg, 0.261 mmol), *tert*-amine catalyst (0.047 mmol) and base (0.237 mmol) were added CDMT (45.8 mg, 0.261 mmol) at ambient temperature. After stirring overnight, the reaction mixture was poured into a mixture of water and diethyl ether. The organic layer was washed with saturated sodium bicarbonate, 1 M HC1, and brine, dried over anhydrous MgSO₄, filtered, and concentrated *in vacuo*. The residue was purified by PTLC (CHCl₃/MeOH= 95/5) to obtain **3a** and **4a** mixture. The yields were determined by ¹H-NMR.

N-Phenethyl-3-phenylpropanamide $(3a)^{31}$ Colorless crystals (CH₂Cl₂-hexane). mp 94.5–95.5 °C. IR (KBr) cm⁻¹: 3299, 1635, 1544. ¹H-NMR (CDCl₃) δ : 2.41 (2H, t, *J*=7.7Hz), 2.73 (2H, t, *J*=6.9Hz), 2.94 (2H, t, *J*=7.7Hz), 3.47 (2H, td, *J*=6.9, 6.0Hz), 5.37 (1H, brs), 7.15–7.30 (10H, m). MS *m/z*: 253 (M⁺).

2,4-Dimethoxy-6-(*N*-phenethylamino)-1,3,5-triazine (4a)¹² Colorless crystals mp 113.5–114 °C. IR (KBr) cm⁻¹: 3264, 3146, 3020, 2940, 2861, 1643, 1621, 1478, 1462, 1364, 1107, 815. ¹H-NMR (CDCl₃) δ : 2.90 (2H, t, *J*=6.9Hz), 3.72 (2H, q, *J*=6.9Hz), 3.91 (3H, s), 3.98 (3H, s), 5.49 (1H, br s), 7.18–7.33 (5H, m). HR-MS *m/z*: Calcd for C₁₃H₁₆N₄O₂; 260.1273 (M⁺), Found; 260.1269 (M⁺).

Acknowledgment This work was supported partially by a Grant-in-Aid for Science Research (No. 20390007) from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

References and Notes

- 1) Valeur E., Bradley M., Chem. Soc. Rev., 38, 606-631 (2009).
- Montalbetti C. A. G. N., Falque V., *Tetrahedron*, **61**, 10827–10852 (2005).
- Kunishima M., Kawachi C., Morita J., Terao K., Iwasaki F., Tani S., Tetrahedron, 55, 13159–13170 (1999).
- Kunishima M., Kawachi C., Iwasaki F., Terao K., Tani S., *Tetrahe*dron Lett., 40, 5327–5330 (1999).
- Falchi A., Giacomelli G., Porcheddu A., Taddei M., Synlett, 275– 277 (2000).
- Kunishima M., Kawachi C., Hioki K., Terao K., Tani S., *Tetrahe*dron, 57, 1551–1558 (2001).
- Watanabe Y., Fuji T., Hioki K., Tani S., Kunishima M., Chem. Pharm. Bull., 52, 1223–1226 (2004).
- Mizuhara T., Hioki K., Yamada M., Sasaki H., Morisaki D., Kunishima M., Chem. Lett., 37, 1190–1191 (2008).
- Chesniuk A. A., Mikhailichenko S. N., Zavodnov V. S., Zaplishny V. N., Chem. Heterocycl. Compd., 38, 177–182 (2002).
- 10) Kamiński Z. J., Kolesińska B., Kolesińska J., Sabatino G., Chelli

M., Rovero P., Błaszczyk M., Główka M. L., Papini A. M., J. Am. Chem. Soc., 127, 16912-16920 (2005).

- Jastrzabek K., Kolesinska B., Sabatino G., Rizzolo F., Papini A. M., Kaminski Z. J., *Int. J. Pept. Res. Ther.*, 13, 229–236 (2007).
- 12) Kunishima M., Ujigawa T., Nagaoka Y., Kawachi C., Hioki K., Shiro M., Chem. Eur. J., 18, 15856–15867 (2012).
- 13) Kunishima M., Yoshimura K., Morigaki H., Kawamata R., Terao K., Tani S., J. Am. Chem. Soc., 123, 10760–10761 (2001).
- 14) We named compounds utilized for proton capture as PCAs to distinguish them from other basic compounds. Although such compounds should be called bases, we use PCA throughout the text to avoid any confusion, because other compounds such as tertiary amine catalysts, substrate amines, and carboxylate anions also act as a base during the course of the reaction involving the acid–base equilibrium.
- Kunishima M., Hioki K., Moriya T., Morita J., Ikuta T., Tani S., Angew. Chem. Int. Ed., 45, 1252–1255 (2006).
- 16) Kunishima M., Imada H., Kikuchi K., Hioki K., Nishida J., Tani S., Angew. Chem. Int. Ed., 44, 7254–7257 (2005).
- 17) Kunishima M., Tokaji M., Matsuoka K., Nishida J., Kanamori M., Hioki K., Tani S., J. Am. Chem. Soc., 128, 14452–14453 (2006).
- 18) Kunishima M., Kikuchi K., Kawai Y., Hioki K., Angew. Chem. Int. Ed., 51, 2080–2083 (2012).
- Kunishima M., Nakanishi S., Nishida J., Tanaka H., Morisaki D., Hioki K., Nomoto H., *Chem. Commun.* (Camb.), 5597–5599 (2009).
- 20) The pK_a values of the conjugated acids of DMGE and NCHM were determined by potentiometric pH titration by the method described in the Supplemental information. The pK_a values of other compounds (the catalysts and PCAs) are found in the literature (refs. 21–23).
- 21) Hall H. K. Jr., J. Am. Chem. Soc., 79, 5441-5444 (1957).
- 22) Kaliszan R., Wiczling P., Markuszewski M. J., J. Chromatogr. A, 1060, 165–175 (2004).
- Fujii T., Nishida H., Abiru Y., Yamamoto M., Kise M., Chem. Pharm. Bull., 43, 1872–1877 (1995).
- 24) Our recent NMR study also supports this fact, see: ref. 12.
- 25) It has not been solved why *tert*-amines without the gauche β-alkyl group preferentially react with CDMT over primary amines.
- 26) The pK_a of the hydrochloride of **2a** is 9.83 (ref. 21).