Formal [4+2] Cycloaddition of di-*tert*-Butyl 2-Ethoxycyclobutane-1,1-dicarboxylate with Ketones or Aldehydes and Tandem Lactonization

Ryohei Okado, Aya Nowaki, Jun-ichi Matsuo,* and Hiroyuki Ishibashi

School of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University; Kakuma-machi, Kanazawa 920–1192, Japan.

Received October 14, 2011; accepted October 29, 2011; published online November 4, 2011

A catalytic amount of tin(IV) chloride catalyzed formal [4+2] cycloaddition reaction of di-*tert*-butyl 2-ethoxycyclobutane-1,1-carboxylate with ketones or aldehydes to give diethyl 6-ethoxydihydro-2*H*-pyran-3,3(4*H*)-dicarboxylates, whereas two equivalents of trimethylsilyl triflate promoted tandem [4+2] cycloaddition and lactonization to afford 3-oxo-2,6dioxabicyclo[2.2.2]octane-4-carboxylate esters.

Key words donor-acceptor cyclobutane; [4+2] cycloaddition; tandem lactonization

Donor-acceptor (DA) cyclobutanes have been studied extensively¹⁾ in recent years as well as DA cyclopropanes.²⁻⁴⁾ DA cyclobutanes reacted with aldehydes,⁵⁻⁷⁾ imines,⁸⁾ or nitrones⁹⁾ to form [4+2] or [4+3] cycloadducts. As donor substituents of DA cyclobutane, aryl⁶⁾ and cobalt-alkyne complex⁵⁾ were studied before we started this study. We found that 3-ethoxycyclobutanones were activated by Lewis acid to form a 1,4-zwitter ionic intermediate which reacted with various aldehydes and ketones.¹⁰⁾ It was then expected that 2-ethoxycyclobutane-1,1-dicarboxylate ester 1 bearing an ethoxy group as a donor substituent would be a useful DA cyclobutane for formal [4+2] cycloaddition reaction. That is, it was thought that zwitter ionic intermediate 2 would be formed from 1 by treatment with Lewis acid, and 2 would react with carbonyl compounds (Chart 1). Pagenkopf recently reported a similar [4+2] cycloaddition of 1 only with aldehydes.⁷⁾ We report here a more widely applicable [4+2] cycloaddition reaction of DA cyclobutane 1 with ketones and also tandem lactonization reaction.

DA cyclobutane **5** was readily prepared in 85% yield by the reaction between di-*t*-butyl methylenemalonate 4^{11} and ethyl vinyl ether in the presence of zinc bromide (Eq. 1).

Reaction conditions were screened by the reaction between DA cyclobutane 5 and cyclohexanone. Pagenkopf reported that Yb(OTf)₃ catalyzed [4+2] cycloaddition reaction of diethyl 2-ethoxycyclobutane-1,1-dicarboxylate with aldehydes.⁷⁾ However, the use of a catalytic amount (15 mol%) of Yb(OTf)₃ did not catalyze the reaction of 5 with cyclohexanone (Table 1, entry 1). The use of catalytic amounts of BF₃·OEt₂, Me₃SiOTf, and TiCl₄ was found to catalyze this reaction to afford the desired product 6 in 64%, 35%, and 4% yields, respectively (entries 2-4). A catalytic amount (0.2 eq) of SnCl₄ catalyzed the reaction most efficiently to afford the cycloadduct 6 in 90% yield (entry 5). Interestingly, it was found that lactone 7 was isolated in low yields when BF₂-OEt₂ or Me₂SiOTf was employed. After optimization of reaction conditions, lactone 7 was directly obtained from 5 in 62% yield by using two equivalents of Me₃SiOTf (entry 6).

A plausible reaction mechanism for formation of lactone 7 is shown in Chart 2. The initially formed tetrahydropyrane 6 was activated with Me_3SiOTf to give oxocarbenium ion 8 *in situ*. Intramolecular attack of the *t*-butyl ester group to the part of oxocarbenium ion afforded lactone 7.

Next, scope and limitations of the present [4+2] cycloaddition of 5 and tandem lactonization were investigated by using various ketones and aldehydes (Table 2). Two methods were employed for obtaining tetrahydropyran 9 or lactone 10: tetrahydropyran 9 was obtained by using a catalytic amount (0.2 eq) of $SnCl_4$ at $-78^{\circ}C$ for 10 min (Method A), whereas lactone 10 was obtained as the major product by using two equivalents of Me₃SiOTf at -78°C for 10min (Method B). Various ketones and aldehydes reacted with 5 to form tetrahydropyran 9 in good to high yields (entries 1, 3, 5, 7, 9, 11). Lactones 10a-c were formed directly from ketones in 35-42% yields (entries 2, 4, 6), while aldehydes reacted with 5 to afford lactones 10d—f in 56—66% yields with moderate trans-selectivity (entries 8, 10, 12). The structure of 10 was unambiguously determined by X-ray crystallography of trans-10d.¹²⁾

In summary, di-*tert*-butyl 2-ethoxycylobutane-1,1-dicarboxylate **5** reacted with ketones and aldehydes to give formal [4+2] cycloadducts, tetrahydropyran derivatives, by the catalytic use of $SnCl_4$. Also, treatment of **5** with two equivalents of Me₃SiOTf directly gave 3-oxo-2,6-dioxabicyclo[2.2.2]octane-4-carboxylate ester by tandem lactonization reaction.

Acknowledgements The authors thank Prof. Shuhei Fujinami (Kanazawa University) for X-ray crystallographic analysis. This study was supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

Chart 1. Formal [4+2] Cycloaddition between DA Cyclobutane 1 and Ketones or Aldehyde

Chart 2. Mechanism for Tandem Formation of Bicyclic Lactone 7 from

5

Table 1. Effect of Lewis Acid on Selective Formation of 6 or 7

	CO ₂ <i>t</i> -Bu CO ₂ <i>t</i> -Bu OEt 5	$ \begin{array}{c} O \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ CH_2Cl_2 \end{array} \begin{array}{c} CO_2t \\ \hline \\ CO_2t \\ \hline CO_2t \\ \hline \\ CO_2t \\ \hline \\ CO_2t \\ \hline CO_2t \\ \hline \\ CO_2t \\ \hline CO_2t \\ \hline \\ CO_2t \\ \hline CO_2t \\ \hline CO_2t \\ CO_2t \\ \hline CO_2t \\ \hline CO_2t \\ \hline CO_2t \\ \hline CO_2t \\ CO_2t \\ $	$ \begin{array}{c} Bu \\ 2^{t} Bu \\ + \\ 7 \end{array} $	
Entry	Lewis acid (eq)	Conditions	6 ^{b)}	$7^{b)}$
1	Yb(OTf) ₃ (0.15)	0°C, 15 min	Trace	0
2	$BF_3 \cdot OEt_2 (0.5)$	−78°C, 27 h	64	8
3	$Me_3SiOTf(0.1)$	-78°C, 10 min	35	10
4	TiCl ₄ (0.5)	-78 to -45°C, 4h	4	0
5	$SnCl_4$ (0.2)	-78°C, 10 min	96	Trace
6	$Me_3SiOTf(2)$	-78°C, 10 min	14	62

a) Cyclobutane 5 (1.5 eq) and cyclohexanone (1.0 eq) were used. b) Isolated yield (%).

Table 2. Formal [4+2] Cyclization between DA Cyclobutane 5 and Ketones or Aldehydes to Give Tetrahydropyran 9 or Lactone 10^a)

	$ \begin{array}{c} CO_2 t-Bu \\ CO_2 t-Bu \\ OEt \\ 5 \end{array} $	SnCl ₄ (0.2 equiv, method A) or Me ₃ SiOTf (2 equiv, method R ₂ CH ₂ Cl ₂ -78 °C, 10 min	B) $E_{tO} = \frac{CO_2 t - Bu}{CO_2 t - Bu}$ $E_{tO} = \frac{CO_2 t - Bu}{R^3}$ g $cis - 9: R^3 = R^1, R^4 = R^2$ $trans - 9: R^3 = R^2, R^4 = R^1$	+ O CO_2t -Bu R^3 10 cis -10: $R^3 = R^1$, $R^4 = R^2$ $trans$ -10: $R^3 = R^2$, $R^4 = R^1$	
Entry	\mathbb{R}^1	\mathbb{R}^2	Method ^{b)}	9 (% yield) ^{c)}	10 (% yield) ^{c)}
1	(CH ₂) ₃		А	9a (93)	10a (nd ^{<i>d</i>})
2			В	9a (12)	10a (40)
3	$(CH_{2})_{4}$		А	9b (72)	10b (2)
4			В	9b (trace)	10b (42)
5	Me	Me	$\mathbf{A}^{e)}$	9c (70)	10c (trace)
6			$\mathbf{B}^{(r)}$	9c (nd)	10c (35)
7	Ph	Н	А	9d (93), 43:57	10d (nd)
8			В	9d (14), 29:71	10d (62), 11:89
9	$n-C_7H_{15}$	Н	А	9e (93), 33:67	10e (nd)
10			В	9e (11), 31:69	10e (51), 9:91
11	<i>i</i> -Pr	Н	А	9f (79), 24:76	10f (nd)
12			В	9f (nd)	10f (66), 17:83

a) Cyclobutane 5 (1.5 eq) and ketone or aldehyde (1.0 eq) were used. b) Method A: SnCl₄ (0.2 eq). Method B: Me₃SiOTf (2 eq). c) Isolated yield and cis/trans ratio.

d) Not detected. e) Cyclobutane 5 (1.0 eq), acetone (1.3 eq), and $SnCl_4$ (0.13 eq) were used. f) Cyclobutane 5 (1.0 eq), acetone (1.3 eq), and Me_3SiOTf (1.3 eq) were used.

References and Notes

- Seiser T., Saget T., Tran D. N., Cramer N., Angew. Chem. Int. Ed., 50, 7740-7752 (2011).
- 2) Lebold T. P., Kerr M. A., Pure Appl. Chem., 82, 1797-1812 (2010).
- 3) Yu M., Pagenkopf B. L., Tetrahedron, 61, 321-347 (2005).
- 4) Reissig H.-U., Zimmer R., Chem. Rev., 103, 1151-1196 (2003).
- 5) Allart E. A., Christie S. D. R., Pritchard G. J., Elsegood M. R. J., *Chem. Commun.* (Camb.), 7339–7341 (2009).
- Parsons A. T., Johnson J. S., J. Am. Chem. Soc., 131, 14202—14203 (2009).
- 7) Moustafa M. M. A., Stevens A. C., Machin B. P., Pagenkopf B. L.,

Org. Lett., 12, 4736-4738 (2010).

- Moustafa M. M. A., Pagenkopf B. L., Org. Lett., 12, 4732–4735 (2010).
- Stevens A. C., Palmer C., Pagenkopf B. L., Org. Lett., 13, 1528– 1531 (2011).
- Matsuo J., Sasaki S., Tanaka H., Ishibashi H., J. Am. Chem. Soc., 130, 11600—11601 (2008).
- Ballesteros P., Roberts B. W., Wong J., J. Org. Chem., 48, 3603– 3605 (1983).
- 12) Cell length a: 12.818(3), b: 6.381(2), c: 19.484(5), cell angle α: 90,
 β: 106.356(7), γ: 90, cell volume: 1529.2(7), space group: P2₁/c, Z value: 4, R-factor: 0.0653.