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ABSTRACT 

 

    Retinoid X receptor α (RXRα) forms a heterodimer with numerous nuclear receptors to 

regulate drug- or lipid-metabolizing enzymes. In this study, we investigated whether human 

RXRα is regulated by microRNAs. Two potential recognition elements of miR-34a were 

identified in the RXRα mRNA: one in the coding region and the other in the 3’-untranslated 

region (3’-UTR). Luciferase assays revealed that miR-34a recognizes the element in the 

coding region. The overexpression of miR-34a in HepG2 cells significantly decreased the 

endogenous RXRα protein and mRNA levels. The stability of RXRα mRNA was decreased 

by the overexpression of miR-34a, indicating that miR-34a negatively regulates RXRα 

expression by facilitating mRNA degradation. We found that the miR-34a-dependent 

down-regulation of RXRα decreases the induction of CYP26 and the transactivity of 

CYP3A4. miR-34a has been reported to be up-regulated by p53, which has an ability to 

promote liver fibrosis. The p53 activation resulted in an increase of the miR-34a level and a 

decrease of the RXRα protein level. In addition, the miR-34a levels in eight fibrotic livers 

were higher than those in six normal livers, and the reverse trend was found for the RXRα 

protein levels. An inverse correlation was observed between the miR-34a and the RXRα 

protein levels in the 14 samples. Taken together, the data show that miR-34a negatively 

regulates RXRα expression in human liver, and affects the expression of its downstream 

genes. This miR-34a-dependent regulation might be the underlying mechanism responsible 

for the decreased expression of the RXRα protein in fibrotic livers.  
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1. Introduction 

 

     Human retinoid X receptor α (RXRα: NR2B1), a member of the nuclear receptor (NR) 

superfamily, is widely expressed in many tissues and is most abundant in the liver. RXRα 

plays a crucial role in the ligand-dependent transactivation of various genes involved in drug 

and lipid metabolism by forming a heterodimeric complex with numerous members of the NR 

superfamily, including retinoic acid receptor (RAR), vitamin D receptor (VDR), thyroid 

hormone receptor, pregnane X receptor (PXR), constitutive androstane receptor, peroxisome 

proliferator-activated receptor (PPAR), farnesoid X receptor, and liver X receptor. It has been 

demonstrated that more than 300 genes in humans can be transactivated by RXRα [1]. 

Although the gene regulation by RXRα is well known, the mechanisms responsible for the 

regulation of the expression of human RXRα remain to be clarified. 

     MicroRNAs (miRNAs), an evolutionarily conserved class of endogenous ~22-nucleotide 

noncoding RNAs, bind to target mRNAs to cause translational repression or mRNA 

degradation [2]. In animals, the miRNA target sites are located mainly in the 3’-untranslated 

region (3’-UTR) of target mRNAs [3] and sometimes in the coding region [4]. To date, more 

than 2,500 miRNAs have been identified in humans. One miRNA has the potential to target a 

large number of genes (an average of approximately 500 genes), and it has been estimated 

that more than 60% of human mRNAs can be targets of miRNAs [5, 6]. We recently reported 

that miRNAs are involved in the regulation of some human NRs, such as PXR [7], VDR [8], 

hepatocyte nuclear factor 4 α [9], and PPARα [10].  

      Employing an on-line search, we found that potential recognition elements of miR-34a 

were identified in human RXRα mRNA. miR-34a commonly functions as a tumor suppressor 

and is down-regulated in many human cancers [11]. Previous studies have revealed that 

miR-34a is regulated by p53, a tumor suppressor gene [12, 13]. It was recently reported that 

p53 induces the expression of connective tissue growth factor (CTGF), a hepatic fibrogenic 

master switch, and promotes liver fibrosis [14]. From these finding, we hypothesized that 

miR-34a might also lead to liver fibrosis. Interestingly, Wang et al. [15] reported that the 
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RXRα protein level is decreased in a CCl4-induced fibrosis model rat and that the 

overexpression of RXRα results in the down-regulation of collagen type I expression and the 

inhibition of liver fibrosis.  

     In this study, we investigated whether human RXRα is regulated by miR-34a. We also 

evaluated the relationship between miR-34a and RXRα expression in fibrotic human livers to 

provide information for uncovering the pathogenic mechanisms and developing new 

therapeutic strategies for the treatment of liver fibrosis. 

  

2. Materials and Methods 

 

2.1. Chemicals and reagents. 

     All-trans-retinoic acid (atRA), 9-cis-retinoic acid (9-cis-RA), rifampicin, and etoposide 

were obtained from Wako Pure Chemicals (Osaka, Japan). α-amanitin was purchased from 

Calbiochem (San Diego, CA). RNasin Ribonuclease Inhibitor, the pGL3-promoter (pGL3p) 

vector, pGL4.74-TK, the pRL-SV40 plasmid, the TransFast Transfection Reagent, and the 

Dual-Luciferase Reporter Assay System were purchased from Promega (Madison, WI). The 

Pre-miR miRNA Precursor Molecules for miR-34a and Negative Control #1 (Control) were 

obtained from Ambion (Austin, TX). Lipofectamine RNAiMAX was purchased from 

Invitrogen (Carlsbad, CA). RNAiso, random hexamer, SYBR Premix Ex Taq, and ROX were 

from Takara (Shiga, Japan). ReverTra Ace was obtained from Toyobo (Osaka, Japan). The 

Ribonucleotide Solution Mix was purchased from New England Biolabs (Ipswich, MA). All 

of the primers were commercially synthesized at Hokkaido System Sciences (Sapporo, Japan). 

The rabbit anti-human RXRα polyclonal antibodies (D-20) and rabbit anti-human β-actin 

polyclonal antibodies were obtained from Santa Cruz Biotechnology (Santa Cruz, CA) and 

BioVision (Mountain View, CA), respectively. IRDye 680LT goat anti-rabbit IgG was 

purchased from LI-COR Biosciences (Lincoln, NE). All of the other chemicals and solvents 

were of the highest grade commercially available. 
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2.2. Cell culture  

     A human embryonic kidney-derived cell line HEK293 was obtained from American Type 

Culture Collection (Manassas, VA). The human hepatocellular carcinoma-derived cell lines 

HepG2 and HuH-7 were obtained from Riken Gene Bank (Tsukuba, Japan). The HEK293 

cells were cultured in Dulbecco’s modified Eagle’s medium (DMEM) (Nissui Pharmaceutical, 

Tokyo, Japan) supplemented with 4.5 g/l glucose, 10 mM HEPES, and 10% fetal bovine 

serum (FBS) (Invitrogen). The HepG2 cells were cultured in DMEM supplemented with 0.1 

mM non-essential amino acids (Invitrogen) and 10% FBS. The HuH-7 cells were cultured in 

DMEM supplemented with 10% FBS. All of the cells were maintained at 37°C under an 

atmosphere of 5% CO2-95% air.  

 

2.3. Construction of plasmids 

     The fragments containing the MRE1 (+3449 to +3591) or MRE2 (+659 to +778) of the 

human RXRα (accession number NM_002957) cDNA were amplified by PCR and subcloned 

into the pGL3p vector at the Xba I site downstream of the luciferase gene. These plasmids 

were termed pGL3/MRE1 and pGL3/MRE2, respectively. A fragment containing the 

perfectly matching sequence with the mature miR-34a, 5’- CTA GAA CAA CCA GCT AAG 

ACA CTG CCA T -3’ (the complementary sequence of miR-34a is italicized), was also cloned 

(pGL3/c-miR-34). DNA sequencing analyses using a Long-Read Tower DNA sequencer (GE 

Healthcare Bio-Sciences, Piscataway, NJ, USA) confirmed the nucleotide sequences of these 

plasmids.  

 

2.4. Luciferase assay  

     Various pGL3 luciferase reporter plasmids were transiently transfected with the 

pGL4.74-TK plasmid into HEK293 cells. Briefly, the day before transfection, the cells were 

seeded into 24-well plates. After 24 h, 190 ng of the pGL3p plasmid, 10 ng of the 

pGL4.74-TK plasmid, and the precursor for miR-34a or control (50 nM) were transfected into 

HEK293 cells using LipofectAMINE 2000. After incubation for 48 h, the cells were 
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resuspended in passive lysis buffer, and the luciferase activity was then measured with a 

luminometer (Wallac, Turku, Finland) using the Dual-Luciferase Reporter Assay System. 

 

2.5. Transfection of pre-miRNAs and preparation of cell homogenates and total RNA 

     The HepG2 cells were seeded into six-well plates and transfected with the precursor for 

miR-34a or control (50 nM) using Lipofectamine RNAiMAX. After 72 h, the cells were 

harvested, suspended in a small amount of TGE buffer [10 mM Tris-HCl, 20% glycerol, and 

1 mM EDTA (pH 7.4)], disrupted through three freeze-thaw cycles, and homogenized. The 

protein concentration was determined using the Bradford protein assay reagent (Bio-Rad, 

Hercules, CA) with !-globulin as the standard. The total RNA was prepared using RNAiso 

according to the manufacturer’s protocols.  

 

2.6. Western blot analyses 

     The cell homogenates from the HepG2 and HuH-7 cells (30 "g) or human liver samples 

(20 "g) were separated on a 10% SDS-polyacrylamide gel and transferred to an Immobilon-P 

transfer membrane (Millipore, Bedford, MA) at 5 V for 1 hr. The protein levels were decided 

based on the linear range of band intensity. The membranes were probed with primary 

antibody rabbit anti-human RXRα (diluted 1:200) or rabbit anti-human β-actin (diluted 

1:100) and secondary antibody IRDye 680LT goat anti-rabbit IgG (diluted 1:10000). The 

band densities were quantified with the Odyssey Infrared Imaging system (LI-COR 

Biosciences). The RXRα protein level was normalized to the β-actin protein level.  

 

2.7. Real-time RT-PCR 

     The cDNAs were synthesized from the total RNA using ReverTra Ace. The sequences of 

the primers used are shown in Table 1. A 1-"l aliquot of the reverse-transcribed mixture was 

added to a PCR mixture containing 10 pmol of each primer, 10 "l of the SYBR Premix Ex 

Taq solution, and 0.25 "l of ROX in a final volume of 20 "l. The PCR conditions for RXRα 

were the following: after an initial denaturation at 95°C for 1 min, the amplification was 
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performed through 40 cycles of denaturation at 94°C for 15 s, annealing at 62°C for 30 s, and 

extension at 72°C for 30 s. For the other genes, after an initial denaturation at 95°C for 30 s, 

the amplification was performed through 40 cycles of denaturation at 94°C for 20 s and 

annealing/extension at 65°C (p21) or 64°C (β-actin) for 20 s. The real-time RT-PCR was 

performed using Mx3000P (Stratagene, La Jolla, CA) with the MxPro QPCR software. The 

RXRα and p21 mRNA levels were normalized to the β-actin mRNA level.  

 

2.8. Stability of RXRα mRNA 

     The HepG2 cells transfected with the precursor for miR-34a or control (50 nM) were 

simultaneously treated with 10 µg/ml α-amanitin. The total RNA was prepared 3, 6, 9, and 12 

h after treatment. The RXRα mRNA levels were determined by real-time RT-PCR as 

described above. 

 

2.9. Nuclear run-on assay 

     The nuclei from the HepG2 cells (30 mg) transfected with the precursor for miR-34a or 

control (50 nM) and cultured for 48 h were prepared using the NE-PER Nuclear and 

Cytoplasmic Extraction Reagents (Pierce, Rockford, IL). The nuclear pellet was suspended in 

600 µl of transcription buffer [50 mM Tris-HCl, 150 mM KCl, 5 mM MgCl2, 0.5 mM MnCl2, 

1 mM dithiothreitol, 10% glycerol, and 0.1 mM EDTA (pH 8.0)] supplemented with 2 µl of 

50 µg/ml RNase A Solution (Qiagen, Tokyo, Japan) and incubated at 37°C for 20 min. After 

the addition of 5 µl of RNasin Ribonuclease Inhibitor and incubation at 37°C for 5 min, half 

of the nuclei suspension was added to 1 ml of RNAiso, and the remaining half was used for 

the nuclear run-on assay. The in vitro transcription reaction was conducted through the 

addition of 1 µl of Ribonucleotide Solution Mix at 25°C for 30 min. The reaction was 

terminated by the addition of 1 ml of RNAiso. The total RNA was isolated, and RXRα 

mRNA level was quantified by real-time PCR as described above.  

 

2.10. Evaluation of CYP26 mRNA induction and CYP3A4 promoter transactivation 



 

 9 

     The HepG2 cells were seeded into 12-well plates and transfected with the precursor for 

miR-34a or control (50 nM) using Lipofectamine RNAiMAX. After 72 h, the cells were 

treated with 1 nM atRA or 2 nM 9-cis-RA (or 0.1% DMSO) for 24 h, and the total RNA was 

prepared. The sequences of the primers used for CYP26 are shown in Table 1. The real-time 

RT-PCR for CYP26 was performed as follows: after an initial denaturation at 95°C for 30 s, 

the amplification was performed through 40 cycles of denaturation at 94°C for 10 s and 

annealing/extension at 68°C for 30 s.  

     The CYP3A4 promoter transactivation was evaluated using the reporter plasmid 

pCYP3A4-362-7.7K [7]. HepG2 cells were seeded into 24-well plates. After 24 h, 290 ng of 

the pCYP3A4-362-7.7K plasmid, 10 ng of the pRL-SV40 plasmid, and the precursor for 

miR-34a or control (50 nM) were transfected using the TransFast Transfection Reagent. After 

48 h, the cells were treated with 10 µM rifampicin for 24 h, and the luciferase activity was 

measured as described above. 

 

2.11. Etoposide treatment   

     The HepG2 and HuH-7 cells were seeded into six-well plates. After 48 h, the cells were 

treated with 1 µM etoposide for 48 h. The total cell homogenates and total RNA were 

prepared as described above.  

 

2.12. Real-time RT-PCR for mature miR-34a 

     The expression levels of mature miR-34a were determined using the TaqMan microRNA 

assay (Applied Biosystems, Foster City, CA). The cDNA templates were prepared using the 

TaqMan microRNA Reverse Transcription kit, which utilizes the stem-loop reverse primers, 

according to the manufacturer’s protocols. After the reverse transcription reaction, the product 

was mixed with the TaqMan Universal PCR Master Mix, the TaqMan MicroRNA assay mix 

containing the forward and reverse primers, and the TaqMan probe for miR-34a. The PCR 

conditions were the following: after an initial denaturation at 95°C for 10 min, the 

amplification was performed through 40 cycles of denaturation at 95°C for 15 s and 



 

 10 

annealing/extension at 60°C for 60 s. The expression levels of U6 small nuclear RNA (U6 

snRNA) were also determined using the TaqMan microRNA assay and were used to 

normalize the miR-34a levels. 

 

2.13. Human livers and preparation of cell homogenates and total RNA 

     Fibrotic (n = 8) and normal human liver samples (n = 6) were obtained from autopsy 

materials that were discarded after pathological investigation at Iwate Medical University 

(Morioka, Japan) and University of Toyama (Toyama, Japan) (Table 2). The use of the human 

livers was approved by the Ethics Committees of Kanazawa University (Kanazawa, Japan), 

Iwate Medical University (Morioka, Japan), and University of Toyama (Toyama, Japan). The 

total cell homogenates were prepared by homogenization with three volumes of 0.1 M 

Tris-HCl buffer (pH 7.4) containing 1 mM EDTA and 0.1 M KCl. The total RNA was 

prepared as described above. 

 

2.14. Statistical analysis 

     The statistical significance was determined by analysis of variance followed by Tukey’s 

test. The comparisons of two groups were performed using unpaired, two-tailed Student’s t 

test or Mann-Whitney’s U-test. The correlation analyses were performed by Spearman’s rank 

method. A value of P < 0.05 was considered statistically significant. 

 

3. Results 

 

3.1. Identification of functional MRE in RXRα mRNA 

     Based on a computational prediction using TargetScan (http://www.targetscan.org/), a 

number of miRNAs were predicted to bind to the 3’-UTR of human RXRα mRNA. Among 

these, we focused on miR-34a because it is substantially expressed in the human liver [16] 

and shares the highest complementarity with the sequence of RXRα (the energy: -37.8 

kcal/mol, whereas those of the other miRNAs are over -23 kcal/mol, by RNAhybrid, 
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http://bibiserv.techfak.uni-bielefeld.de/rnahybrid/submission.html). We also searched the 

potential MREs for miR-34a in the coding region using RNA22 

(http://cbcsrv.watson.ibm.com/rna22.html). The results revealed two potential sites, namely 

MRE1 and MRE2, in the 3’-UTR (+3506 to +3539) and coding region (+714 to +735, the 

energy is -27.9 kcal/mol), respectively (Fig. 1A).  

     To investigate whether these MREs are functional, a luciferase assay using reporter 

plasmids containing a fragment with one of the MREs was performed with HEK293 cells (Fig. 

1B). The co-transfection of the pGL3/c-miR-34a plasmid containing the miR-34a 

complementary sequence downstream of the luciferase gene with the precursor for miR-34a 

significantly decreased the luciferase activity (P < 0.001), suggesting that the overexpressed 

miR-34a is functional. Interestingly, the overexpression of miR-34a significantly (P < 0.01) 

decreased the luciferase activity of the pGL3/MRE2 plasmid but not that of the pGL3/MRE1 

plasmid, indicating that MRE2 in the coding region is functional. 

 

3.2. RXRα expression is decreased by overexpression of miR-34a  

    We investigated whether miR-34a modulates RXRα expression. The transfection of the 

precursor for miR-34a into HepG2 cells resulted in the overexpression of miR-34a and 

significantly decreased the endogenous RXRα protein level (P < 0.001, 49% of control) (Fig. 

2A). To investigate whether the decrease in the RXRα protein levels can be attributed to a 

decrease in the mRNA levels, the RXRα mRNA levels were determined (Fig. 2B). In the 

control cells, the RXRα mRNA level was increased during the first 12-48 h of incubation and 

then slightly decreased at 96 h. In the miR-34-overexpressing cells, the increase in RXRα 

mRNA was significantly (P < 0.001) suppressed at 24-72 h, indicating that miR-34a 

negatively regulates the expression of human RXRα through mRNA degradation. To 

determine whether the suppression of RXRα mRNA induced by miR-34a is due to 

accelerated mRNA degradation, we examined the effects of miR-34a on the stability of the 

RXRα mRNA. In the presence of α-amanitin, the RXRα mRNA was rapidly degraded in 

cells overexpressing miR-34a (Fig. 2C). We then performed a nuclear run-on assay to 
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examine whether miR-34a may affect the transcription efficiency of RXRα. The results 

demonstrated that the transcription efficiency was not affected by the overexpression of 

miR-34a (Fig. 2D). These results suggest that miR-34a down-regulates RXRα expression 

through the acceleration of mRNA degradation. 

 

3.3. miR-34a-dependent down-regulation of RXRα suppresses the induction of CYP26 and 

the transactivation of CYP3A4  

     We investigated whether the miR-34a-dependent down-regulation of RXRα may affect the 

induction of downstream genes of RXRα. The treatment of HepG2 cells with atRA, a ligand 

of RAR, significantly increased the CYP26 mRNA level (3.2-fold) (Fig. 3A). A similar 

induction was obtained by the treatment of HepG2 cells with 9-cis-RA, a ligand of RXRα. 

Interestingly, the induction of CYP26 mRNA was completely abrogated by the 

overexpression of miR-34a. These results suggest that the miR-34a-dependent 

down-regulation of RXRα affects the induction of downstream genes of RXRα by ligands of 

whether RAR or RXRα. 

     To further investigate whether the miR-34a affects the induction of other targets of RXRα, 

we focused on CYP3A4, a downstream gene of RXRα with a heterodimer partner (PXR). 

Because the CYP3A4 mRNA levels in HepG2 cells were too low to determine the induction, 

we evaluated the transactivity of CYP3A4 through a luciferase assay using a reporter plasmid 

containing the PXR response elements. The treatment of HepG2 cells with rifampicin, a 

ligand of PXR, significantly increased the transactivity of CYP3A4 (4.1-fold) (Fig. 3B). The 

transactivation was markedly decreased by the overexpression of miR-34a. These results 

suggest that miR-34a also affects the induction of downstream genes of RXRα with a 

heterodimer partner whether RAR or PXR. 

 

3.4. miR-34a-dependent down-regulation of RXRα is associated with liver fibrosis 

As described in the introduction, miR-34a is up-regulated by p53, which induces the 

expression of CTGF and promotes liver fibrosis. On the other hand, the overexpression of 
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RXRα results in the suppression of collagen synthesis and the inhibition of liver fibrosis. 

These findings led to our hypothesis that the miR-34a-dependent regulation of RXRα may be 

an underlying mechanism of the p53-induced liver fibrosis (Fig. 4A). We investigated the 

association of the miR-34a-dependent regulation of RXRα with liver fibrosis. 

   We examined whether the activation of p53 alters the expression of miR-34a and 

RXRα protein. The treatment of HepG2 cells (with wild-type endogenous p53) with 

etoposide, which is known to activate p53, significantly increased the mRNA level of p21, a 

well-known target of p53 (9.9-fold) (Fig. 4B). Under these conditions, the mature miR-34a 

level was significantly increased (1.5-fold), and the RXRα protein level was significantly 

decreased (83% of control) (Figs. 4C and 4D). To investigate whether the increase in 

miR-34a and the decrease in RXRα protein were due to the activation of p53, we performed a 

knocked down assay using siRNA for p53 (data not shown), but unfortunately the p53 protein 

level could not be suppressed (data not shown). Alternatively, we examined the effects of p53 

activation on the expression of miR-34a and RXRα protein in HuH-7 cells (with mutated 

endogenous p53). Unlike in the case of HepG2 cells, no changes in the p21 mRNA, mature 

miR-34a, and RXRα protein levels were observed in HuH-7 cells (Figs. 4E-4G).These results 

support that the induction of miR-34a through p53 activation affects the expression of RXRα.  

In addition, we examined the relationship between the expression levels of mature 

miR-34a and RXRα protein in fibrotic and normal human livers. The mature miR-34a levels 

in eight fibrotic livers were higher than those found in six normal livers (Fig. 5A). In contrast, 

the RXRα protein levels in the fibrotic livers were significantly (P < 0.05) lower than those 

observed in the normal livers (Fig. 5B). Interestingly, in the 14 samples, the miR-34a levels 

were inversely correlated with the RXRα protein levels (Rs = -0.79, P < 0.001, Fig. 5C). 

These results suggest that the high expression of miR-34a in fibrotic livers may be one of the 

causes of the low expression of the RXRα protein. 

 

4. Discussion 
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RXRα plays a crucial role in many intracellular signaling pathways and the 

ligand-dependent transactivation of various genes by forming a heterodimeric complex with 

numerous members of the NR superfamily. Previous studies [17, 18] have reported that 

systemic RXRα-null mice are embryonic lethal because of cardiac failure, indicating the 

essential role of RXRα in embryonic development. Despite the indispensability of RXRα in 

mammals, the mechanisms through which RXRα expression is regulated are largely unknown. 

In this study, we investigated the possibility that human RXRα may be regulated by miRNA. 

The present study found that the human RXRα protein and mRNA levels are decreased by 

the overexpression of miR-34a (Fig.2A, B). Because miR-34a decreases the stability but not 

the transcription of RXRα mRNA (Fig. 2C, D), the results suggest that miR-34a negatively 

regulates RXRα expression by facilitating mRNA degradation. In general, in vertebrates, 

miRNAs are believed to recognize elements in the 3’-UTR to repress the translation or to 

degrade mRNA. We found that the functional MRE for miR-34a is located in the coding 

region of the RXRα mRNA (Fig. 1). The cases in which miRNAs regulate the expression of 

their target gene expression through an MRE in the coding region that have been previously 

reported are the following: miR-148 regulating DNA methyltransferase 3b [19], miR-24 

regulating HNF4α [9], and miR-29 regulating Elastin [20]. In all of these cases, the regulation 

mechanism is the acceleration of mRNA degradation. Thus, if the miRNAs recognize an 

MRE in the coding region, the acceleration of mRNA degradation rather than translational 

repression may be the dominant mechanism responsible for the down-regulation. It should be 

noted that the miR-34a-dependent down-regulation of RXRα affects the induction of the 

downstream genes (Fig. 3). Since CYP3A4 catalyzes the metabolism of over 50% of current 

prescription drugs, miR-34a may modulate drug metabolism. In addition, miR-34a may also 

modulate lipid metabolism because RXRα plays key roles in fatty acid and cholesterol 

metabolism [21]. 

We found that the p53 activation increased the miR-34a level decreased the RXRα protein 

level in HepG2 cells (wild-type p53) (Fig. 4B-D). These phenomena were not observed in 

HuH-7 cells (mutated p53) (Fig. 4E-G), supporting that the induction of miR-34a through p53 
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activation affects the expression of RXRα. Because p53 is also activated by DNA damage, 

reactive oxygen species, and hypoxia, RXRα expression may be under the control of these 

genotoxic stresses. To the best of our knowledge, this study provides the first demonstration 

that the RXRα protein level is decreased in the human fibrotic liver (Fig. 5). Thus, the low 

expression of RXRα protein in the human fibrotic liver likely results from the increased 

expression of miR-34a. The pathological examination revealed that three samples had mild 

fibrosis and five samples had severe fibrosis (Table 2). No association was observed between 

the severity and the miR-34a or RXRα protein level (data not shown). miR-34a may play a 

role in the incidence or progression of liver fibrosis. Although the inhibitory mechanism of 

RXRα toward liver fibrosis remains to be identified, Konta et al. [22] reported that atRA 

(RXRα agonist) suppresses the activator protein 1 (AP1) pathway involved in collagen 

synthesis and that an RXRα antagonist abrogates the suppression of the AP1 pathway. Thus, 

it would be worth examining whether the miR-34a-dependent down-regulation of RXRα can 

actually suppress collagen synthesis in the liver. 

miR-34a is considered a therapeutic target of cancer because it promotes cell cycle arrest 

and apoptosis and inhibits proliferation by targeting many genes, such as Bcl2 (B-cell 

lymphoma 2), CDK (cyclin-dependent kinases), and cyclines [23]. In fact, a phase I clinical 

trial using a miR-34a mimic for the treatment of liver cancer is ongoing. Because we found 

that miR-34a down-regulates RXRα to exert protective effects on collagen synthesis, the 

overexpression of miR-34a may lead to liver fibrosis. In addition, our previous study [9] 

found that miR-34a down-regulates HNF4α and thereby affects the expression of its 

downstream genes involved in bile acid synthesis. The disruption of bile acid homeostasis 

causes various disorders, such as arteriosclerosis and gallstone disease [24]. Therefore, the 

careful monitoring of liver function would be required during miR-34a-modulation therapy.  

miR-27b and miR-148, which are liver-enriched miRNAs, were also predicted as other 

candidate regulators for human RXRα by the computational search. However, the transfection 

of the precursors for these miRNAs into the HepG2 cells did not affect RXRα expression 

(data not shown). Although it has been reported that rat RXRα in hepatic stellate cells is 
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regulated by miR-27a/b [25], the regulation unlikely applies to human RXRα in hepatocytes, 

even though the sequence of the MRE is conserved between rat and human. It is possible that 

miR-27b was not found to be functional for the regulation of human RXRα because the other 

genes regulated by miR-27b may be more abundantly expressed in human hepatocytes than in 

rat hepatic stellate cells.  

 In conclusion, we found that miR-34a negatively regulates the expression of human 

RXRα, affects the expression of its downstream genes, and plays a role in the incidence of 

liver fibrosis. This study could provide useful information for uncovering the pathogenic 

mechanisms and developing new therapeutic strategies for the treatment of liver fibrosis.  
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Figure legends 

 

Figure 1. Luciferase assay using the plasmids containing MRE in the 3’-UTR and MRE in the 

coding region of human RXRα mRNA. (A) Schematic representation of the human RXRα 

mRNA and the predicted target sequences of miR-34a. The numbering refers to the 5’ end of 

mRNA as 1, and the coding region is 163 to 1551. The MRE sequences are located from +714 

to +735 in the coding region and from +3506 to +3539 in the 3’-UTR. The bold letters 

indicate the seed sequence. (B) Luciferase assays using the reporter plasmids containing 

various fragments downstream of the firefly luciferase gene. The reporter plasmids (190 ng) 

were transiently transfected with the pGL4.74-TK plasmid (10 ng) and 50 nM precursors for 

miR-34a or control into HEK293 cells. The firefly luciferase activity of each construct was 

normalized to the Renilla luciferase activities. The values are expressed as percentages of the 

relative luciferase activity of the pGL3p plasmid. Each column represents the mean ± SD of 

three independent experiments. **P < 0.01 and ***P < 0.001. 

 

Figure 2. Effects of overexpression of miR-34a on RXRα protein and mRNA levels. HepG2 

cells were transfected with 50 nM precursors for miR-34a or control. (A) After 72 h, the 

RXRα protein levels were determined by Western blot analysis and normalized to the β-actin 

protein levels. The values are expressed as percentages relative to no-transfection (NT). (B) 

After the indicated times, the RXRα mRNA levels were determined by real-time RT-PCR 

and normalized to the β-actin mRNA levels. The values are expressed as percentages relative 

to the NT at 6 h. (C) The cells were simultaneously treated with 10 µg/mL α-amanitin. After 

the indicated times, the RXRα mRNA levels were determined by real-time RT-PCR and 

normalized to the β-actin mRNA levels. The values are expressed as percentages relative to 

the value at 3 h. (D) After 48 h, the cells were harvested, and the nuclei were used for the 

Nuclear run-on assay. The de novo expression levels of RXRα mRNA were determined by 

real-time RT-PCR. The values are expressed as percentages relative to the NT before the run 

on assay. Data are the means ± SD of three independent experiments. *P < 0.05, **P < 0.01, 



 

 21 

and ***P < 0.001 compared with the precursor for control.  

 

Figure 3. Effects of overexpression of miR-34a on induction of CYP26 and transactivity of 

CYP3A4 in HepG2 cells. (A) The precursor for miR-34a or control (50 nM) was transfected 

into HepG2 cells. After 72 h, the cells were exposed to 1 nM atRA, 2 nM 9-cis-RA, or 0.1% 

DMSO for 24 h, and the total RNA was then prepared. The CYP26 mRNA levels were 

determined by real-time RT-PCR and normalized to the β-actin mRNA levels. (B) The 

reporter plasmid pCYP3A4-362-7.7K (290 ng) was transiently transfected with the 

pRL-SV40 plasmid (10 ng) and the precursors for miR-34a or control into HepG2 cells. After 

48 h, the cells were treated with 10 µM rifampicin for 24 h, and the luciferase activity was 

measured. The values are expressed as percentages relative to that of the precursor for control 

(-). Data are the means ± SD of three independent experiments. **P < 0.01 and ***P < 0.001, 

compared with vehicle treatment (-); †P < 0.05 and †††P < 0.001 compared with the precursor 

for control.  

 

Figure 4. Effects of induction of miR-34a through p53 activation on expression of 

endogenous RXRα protein in HepG2 and HuH-7 cells. (A) Schema showing previous 

findings and new insights on the progression of liver fibrosis through p53 activation. (B-E) 

HepG2 and HuH-7 cells were treated with 1 µM etoposide or 0.1% DMSO for 48 h, and the 

total RNA and total cell homogenates were isolated. (B and E) The p21 mRNA levels were 

determined by real-time RT-PCR and normalized to the β-actin mRNA levels. (C and F) The 

mature miR-34a levels were determined by real-time RT-PCR and normalized to the U6 

snRNA levels. (D and G) The RXRα protein levels were determined by Western blot analysis 

and normalized to the β-actin protein levels. The values are expressed as percentages relative 

to that of HepG2 cells treated with DMSO. Data are the means ± SD of three independent 

experiments. *P < 0.05 and ***P < 0.001 compared with the DMSO treatment.  

 

Figure 5. Expression levels of mature miR-34a and RXRα protein in fibrotic and normal 
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human livers and their relationship. (A) The mature miR-34a levels were determined by 

real-time RT-PCR and normalized to the U6 snRNA levels. The bars represent the means. (B) 

The RXRα protein levels were determined by Western blot analysis and normalized to the 

β-actin protein levels. The bars indicate the means of each group. (C) Relationship between 

the mature miR-34a and RXRα protein levels. The values are expressed as percentages 

relative to the lowest value. Each point represents the mean of two independent experiments.



 

 23 

 
Table 1. Sequence of primers used for real-time RT-PCR analysis. 
Primer     Sequence     
RXRα forward 5'-TGC GCA AGG ACC TGA CCT ACA C-3' 
RXRα reverse 5'-GAC TCC ACC TCA TTC TCG TTC CG-3' 
β-actin forwarda 5'-TCA CCC TGA AGT ACC CCA TC-3' 
β-actin reversea 5'-GAT AGC ACA GCC TGG ATA GC-3' 
CYP26 forward 5'-CCG CTG CTG CTC TTC CTG GCT GCG A-3' 
CYP26 reverse 5'-GAC CGA CAC CAG CCG GTC GTC TCC GA-3' 
p21 forwardb 5'-CTG TCA CTG TCT TGT ACC CTT GTG C-3' 
p21 reverseb 5'-GGA GAA GAT CAG CCG GCG TTT G-3' 
aOda et al. [26]; bTakagi et al. [9].   
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Table 2. Characteristics of 14 donors used in the present study. 
  No Age 

(yr) 
Sex Fibrosis      Diagnosis 

1 82 F None Mild fatty degeneration around central vein 
Nuclear glycogen deposition 
Lung cancer without liver metastasis 

2 68 F None Death from cold 
3 72 F None Asphyxia 
4 72 M None Bile duct cancer 
5 83 M None Acute myocardial infarction 

Normal 
liver 

6 64 F None Colorectal cancer with liver metastasis 
7 78 F Mild Mild hepatic congestion 

Multiple myeloma without liver metastasis 
8 49 F Severe Primary biliary cirrhosis 
9 70 F Mild Moderate hepatic congestion 

Mild fatty liver  
Acute myocardial infarction 

10 78 M Severe Hepatocellular carcinoma with cirrhosis  
(hepatitis C virus-positive) 

11 75 M Severe Hepatocellular carcinoma with cirrhosis 
12 55 M Mild Mild alcoholic liver fibrosis 
13 62 M Severe Alcoholic cirrhosis 

Fibrotic 
liver 

14 61 F Severe Primary biliary cirrhosis 
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