The Chemistry of Indoles．CIII．1）Simple Syntheses of Serotonin，N－Methylserotonin， Bufotenine，5－Methoxy－N－methyltryptamine， Bufobutanoic Acid， N －（Indol－3－yl）methyl－5－methoxy－N－methyltryptami ne，and Lespedamine Based on 1－Hydroxyindole Chemistry

メタデータ	言語：eng
	出版者：
	公開日：2017－10－04
	キーワード（Ja）：
	キーワード（En）：
	作成者：
	メールアドレス：
	所属：
URL	http：／／hdl．handle．net／2297／43978

The Chemistry of Indoles. CIII. ${ }^{1)}$ Simple Syntheses of Serotonin, N-Methylserotonin, Bufotenine, 5-Methoxy- N-methyltryptamine, Bufobutanoic Acid, N -(Indol-3-yl)methyl-5-methoxy- N -methyltryptamine, and Lespedamine Based on 1-Hydroxyindole Chemistry

Masanori Somet,* Fumio Yamada, Takashi Kurauchi, Yoshiyuki Nagahama, Masakazu Hasegawa, Koji Yamada, Sakiko Teranishi, Haruhiko Sato, and Chikara Kaneko
Faculty of Pharmaceutical Sciences, Kanazawa University, 13-1 Takara-machi, Kanazawa 920-0934, Japan. Received August 9, 2000; accepted October 2, 2000

Abstract

Application of regioselective nucleophilic substitution reactions of 1-hydroxytryptamines to novel and simple syntheses of serotonin (1a), N-methylserotonin (1b), bufotenine (1c), 5-methoxy- N-methyltryptamine (2a), bufobutanoic acid (3a), N-(indol-3-yl)methyl-5-methoxy- N-methyltryptamine (4), and lespedamine (5) are described. Effective syntheses of 5-benzyloxytryptamine and 1-methoxy-2-oxindoles are also reported.

Key words 1-hydroxytryptamine; nucleophilic substitution reaction; serotonin; bufotenine; N-(indol-3-yl)methyl-5-methoxy- N methyltryptamine; lespedamine

Tryptamine alkaloids such as serotonin ${ }^{2)}(\mathbf{1 a}$, Chart 1$), N-$ methylserotonin ${ }^{3)}$ (1b), bufotenine ${ }^{4 a, b)}$ (1c), 5-methoxy- N methyltryptamine ${ }^{5)}$ (2a), and melatonin ${ }^{6}$ (2b) have marked physiological effects in spite of their simple chemical structures. Members of the alkaloid family are still increasing, thus bufobutanoic acid 7 (3a) and N-(indol-3-yl)methyl-5-methoxy- N-methyltryptamine ${ }^{8)}$ (4, Chart 2) have recently been isolated from Ch'an $S u$ and the roots of Antirhea lucida (Sw.) Ноок (Rubiaceae), respectively. Lespedamine ${ }^{9)}$ (5, Chart 4) is an alkaloid isolated from Lespedeza bicolor var. japonica Nakai.

From the viewpoint of developing novel biologically active substances, the tryptamine alkaloids seem to be attractive target compounds. Although synthetic methods for $\mathbf{1 a}-\mathbf{c}^{2-4)}$ and $\mathbf{2 a}, \mathbf{b}^{6}{ }^{6}$ have already been established, they require many steps starting from expensive indoles having an oxygen functional group at the 5 -position. In the case of 5 , the unique 1 methoxyindole structure required chemists to devise an ingenious synthesis. ${ }^{10)}$ Generally speaking, the above syntheses are complex compared to the simple structures of the target compounds. How to prepare a simple target in a simple way is the most challenging ongoing subject in our group.

We have proposed 1-hydroxyindole hypotheses, ${ }^{11)}$ which could unify the biogenesis of many indole alkaloids by assuming 1-hydroxytryptamines (or 1-hydroxytryptophans) as common intermediates. In order to verify these hypotheses, we have created synthetic methods for the previously unknown 1-hydroxytryptamines. ${ }^{12)}$ We have also realized unprecedented nucleophilic substitution reactions in indole chemistry, ${ }^{13)}$ which had been predicted in the hypotheses. ${ }^{11)}$ These findings were successfully applied to two simple synthetic routes to melatonin ${ }^{1)}(\mathbf{2 b})$, starting from $\mathbf{6 b}$ and $\mathbf{6 d}$ through $\mathbf{8 b}$ and $\mathbf{8 d}$, respectively. The present paper is a full report of the previous communications ${ }^{14)}$ and describes further applications of the above findings to novel and simple syntheses of 1a-c, 2a, 3a, 4, and 5 from tryptamine ($6 \mathbf{c}$). An alternative synthesis of 5 through 1-methoxy-2-oxindole derivatives is also reported.

Syntheses of 1a, 1b, and 1c Syntheses of 1a-c were achieved as follows. First, N-methoxycarbonyltryptamine
($\mathbf{6 d}$), readily and quantitatively available from $\mathbf{6 c}$ by a conventional method, was converted to $7 \mathbf{d}$ by reduction with triethylsilane ${ }^{15)}\left(\mathrm{Et}_{3} \mathrm{SiH}\right)$ in $\mathrm{CF}_{3} \mathrm{COOH}$ (TFA) in 97% yield. ${ }^{1)}$ Next, our 1-hydroxyindole synthetic method, ${ }^{12)}$ employing 30% hydrogen peroxide $\left(\mathrm{H}_{2} \mathrm{O}_{2}\right)$ in the presence of sodium tungstate dihydrate $\left(\mathrm{Na}_{2} \mathrm{WO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}\right)$ as a catalyst, was applied to $\mathbf{7 d}$ to produce a 67% yield of 1-hydroxy- N-methoxycarbonyltryptamine ${ }^{1)}(\mathbf{8 d})$, a potent inhibitor of blood platelet aggregation. ${ }^{16)}$ However, an attempt to obtain 8a from 7a by the 1-hydroxyindole synthetic method was unsuccessful because of the unstable nature of 8a.

The desired regioselective nucleophilic hydroxylation at the 5 -position was realized by reacting $\mathbf{8 d}$ with 85% formic acid (HCOOH) at room temperature for 14 h to afford 9 a and 9b in 54 and 8% yields, respectively. In the same reaction, when the reaction time was shortened to $20 \mathrm{~min}, \mathbf{9 b}$ and the corresponding 5 -formyloxy compound ($9 \mathbf{c}$) were obtained in 24 and 40% yields, respectively. These observations suggest that formate is the initially introduced nucleophile into the 5position. Subsequent treatment with $8 \% \mathrm{HCl}$ in MeOH converted 9 c into 9 b in 60% yield.

Selective formation of $9 \mathbf{a}$ in 69% yield was achieved upon treatment with $85 \% \mathrm{HCOOH}$ at $80^{\circ} \mathrm{C}$ when 1 -methoxy derivative ${ }^{17)}$ (10) was employed as a substrate, prepared by methylation of $8 \mathbf{d}$ with diazomethane $\left(\mathrm{CH}_{2} \mathrm{~N}_{2}\right)$. As in the case of $\mathbf{8 d}, \mathbf{1 0}$ afforded $\mathbf{9 b}$ and $\mathbf{9 c}$ in 25 and 38% yields, respectively, upon reaction with $85 \% \mathrm{HCOOH}$ at room temperature with a short reaction time (15 min). Interconversions between 9a and 9b were readily carried out. Thus, treatment of $9 \mathbf{b}$ with $85 \% \mathrm{HCOOH}$ at room temperature for 48 h afforded 9 a in 69% yield, while alkaline hydrolysis of $\mathbf{9 a}$ with $8 \% \mathrm{NaOH}$ in MeOH gave 9 b in 76% yield. Subsequent hydrolysis of $\mathbf{9 b}$ to $\mathbf{1 a}$ proceeded in 73% yield by treatment with $10 \% \mathrm{NaOH}$ in refluxing $\mathrm{MeOH},{ }^{12 c)}$ while reduction of 9b with lithium aluminium hydride $\left(\mathrm{LiAlH}_{4}\right)$ in refluxing $\mathrm{Et}_{2} \mathrm{O}-\mathrm{THF}$ afforded 1b in 65% yield. Consequently, 1a and 1b are now available in five steps from 6c in 26 and 23% overall yields, respectively. Since both the 1-hydroxyindole synthesis and nucleophilic substitution steps are our original reactions, the originality rates ${ }^{18)}$ of $\mathbf{1 a}$ and $\mathbf{1 b}$ are the same
(50\%).
As long as $85 \% \mathrm{HCOOH}$ was used, attempts to obtain 1c were unsuccessful under various reaction conditions, starting from 1-hydroxy- N, N-dimethyltryptamine (8e) which was prepared from $6 \mathbf{c}$ through $6 \mathbf{e}^{17)}$ and $7 \mathbf{e}^{17)}$ in 51% overall yield. However, more acidic condition such as 5% aqueous $\mathrm{H}_{2} \mathrm{SO}_{4}$ at reflux was found to convert $8 \mathbf{e}$ into $\mathbf{1 c}^{4 c)}$ in 47% yield together with 16% yield of dehydroxylated product (6e). If the solvent was changed to MeOH under similar conditions, $\mathbf{8 e}$ afforded $\mathbf{2 e}, \mathbf{1 c}$, and $\mathbf{6 e}$ in 57, 7 , and 11% yields, respectively. Comparing the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of $\mathbf{2 e}$ with those of the corresponding 1-acetyl (11a) and 1-formyl derivative (11b), an anisotropy effect of the 1-acyl group on the C-7 proton was observed by about 1 ppm . This clearly proved their structures. Subsequent cleavage of the methoxy group of $\mathbf{2 e}$ with boron tribromide $\left(\mathrm{BBr}_{3}\right)$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-toluene resulted in an alternative route to $\mathbf{1 c}$ in 63% yield. As a result, $\mathbf{1 c}$ is available from $\mathbf{6 c}$ in four steps in 24% overall yield with 60% originality rate. ${ }^{18)}$

Synthesis of 3a Total synthesis of 3a was achieved by three different routes by applying above results. The first route employed $9 \mathbf{a}$ as an intermediate. The reaction of $9 \mathbf{a}$ with benzyl bromide in the presence of $\mathrm{K}_{2} \mathrm{CO}_{3}$ in N, N-dimethylformamide (DMF) afforded 12a in 94% yield. Alkaline hydrolysis of 12a with $10 \% \mathrm{NaOH}$ in refluxing MeOH provided a 96% yield of 5-benzyloxytryptamine (12b). ${ }^{19)}$ With 12b, a useful building block for preparing various serotonin derivatives in hand, we converted it to $\mathbf{3 b}$ in 96% yield by reaction with succinic anhydride in THF. Confirmation of the carboxyl group in 3b was shown by conversion to ester compound (3d) in 97% yield by methylation with $\mathrm{CH}_{2} \mathrm{~N}_{2}$ at $0^{\circ} \mathrm{C}$. However, when the same methylation was carried out at room temperature, the yield of 3d decreased to 57% and formation of the corresponding succinimide (13a) was observed in 30% yield. Finally, catalytic hydrogenation of $\mathbf{3 b}$ over 10% Pd / C afforded 3a in 99% yield. The spectroscopic data were identical with those reported in the literature. ${ }^{8)}$ Consequently, the first synthesis of $\mathbf{3 a}$ was achieved in eight steps from $\mathbf{6 c}$ in 25% overall yield with a 33% originality rate.

For the second route, a six-step synthesis of $\mathbf{3 a}$ from $\mathbf{6 c}$ in 13% overall yield with 43% originality rate was developed as follows. Compound $6 \mathbf{c}$ was initially reacted with succinic anhydride in THF, followed by methylation with $\mathrm{CH}_{2} \mathrm{~N}_{2}$ in a one pot procedure, to give methyl N-[2-(indol-3-yl)ethyl]succinamate (14) and N-[2-(indol-3-yl)ethyl]succinimide (13b) in 89 and 3% yields, respectively. Reduction of $\mathbf{1 4}$ with $\mathrm{Et}_{3} \mathrm{SiH}$ in TFA provided the corresponding 2,3-dihydroindole (15) in 99% yield. Application of our 1-hydroxyindole synthetic method with $\mathrm{Na}_{2} \mathrm{WO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}-30 \% \mathrm{H}_{2} \mathrm{O}_{2}$ to $\mathbf{1 5}$ produced the desired 1-hydroxytryptamine (16) in 56% yield. Introduction of hydroxy group into the 5-position of 16 was achieved by treatment with $85 \% \mathrm{HCOOH}$ to afford serotonin derivative ($\mathbf{3 c}$) in 38% yield together with a 21% yield of the corresponding 1 -formyl compound ($\mathbf{3 e}$). Finally, the ester part of $3 \mathbf{c}$ was hydrolyzed with $7 \% \mathrm{~K}_{2} \mathrm{CO}_{3}$ in MeOH at $50^{\circ} \mathrm{C}$ to provide $3 \mathbf{a}$ in 70% yield, though when the reaction was carried out at room temperature, $\mathbf{1 3} \mathbf{c}$ was formed as a major product.

For the third route, 1a was used as an intermediate. Although 1a is known to react with acylating reagents at both side chain nitrogen and phenolic oxygen atoms, ${ }^{20,21)}$ we ex-
amined reaction conditions of 1a with methyl chloroformate thoroughly and found that DMF is the solvent of choice to realize selective N-acylation to provide $\mathbf{9 b}^{20)}$ in 94% yield. Based on this finding, 1a was allowed to react with succinic anhydride in DMF at room temperature to afford 3a in 84% yield without formation of the product derived from reaction at the phenolic oxygen atom. Thus, another six-step synthesis of $\mathbf{3 a}$ from $\mathbf{6 c}$ in 17% overall yield with 57% originality rate was developed.

Synthesis of 4 and 2a Total synthesis of 4 was achieved by the following two routes (Chart 2). Our alkylation method for gramine ${ }^{22)}$ (17) with nucleophiles using tri- n-butylphosphine $\left(\mathrm{Bu}_{3} \mathrm{P}\right)$ as a catalyst was successfully applied to $\mathbf{6 a}$ in refluxing acetonitrile (MeCN) resulting in the formation of 18 in 73% yield. Next, preparation of 19a was achieved in 71% yield when reduction of $\mathbf{1 8}$ was carried out with sodium cyanoborohydride ${ }^{23)}$ in AcOH-TFA (3:1, v/v). Interestingly, the use of AcOH alone as a solvent was not effective and led to the formation of $\mathbf{1 9 a}, \mathbf{1 9 b}$, and unreacted $\mathbf{1 8}$ in 28,11 , and 60% yields, respectively. The structure of 19 a was readily confirmed by its ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum in which the methylene protons, connected to both the nitrogen atom and indole nucleus, were observed as a sharp AB quartet with a coupling constant of 13.4 Hz .

Selective reduction of the indole ring having a 2 aminoethyl side chain can be explained as shown in Chart 3. Generally, reduction of indole requires protonation at the 3position and the resultant iminium carbon atom at the 2-position is attacked by hydride. In the case of $\mathbf{1 8}$, rapid protonation initially occurs on the side chain basic nitrogen atom leading to an ammonium salt (18A). The slow second protonation can occur either at the 3- or 3 '-positions, generating 18B or 18C, respectively. Formation of 18B would be however energetically more favorable than $\mathbf{1 8 C}$, because the 3 position is further from the positively charged nitrogen atom than the 3^{\prime} position. Consequently the second proton approaching to the 3 position experiences less electrostatic repulsion.

Application of the 1-hydroxyindole synthetic method with $\mathrm{Na}_{2} \mathrm{WO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}-30 \% \mathrm{H}_{2} \mathrm{O}_{2}$ to 19a gave the corresponding 1hydroxyindole derivative (20) in 51% yield. Subsequent regioselective methoxylation of 20 by treatment with 10% $\mathrm{H}_{2} \mathrm{SO}_{4}$ in MeOH proceeded in 19% yield resulting in the first six-step total synthesis of $\mathbf{4}^{24)}$ from $\mathbf{6 c}$ in 5% overall yield with 57% originality rate.

An alternative eight-step synthesis of $\mathbf{4}$ from $\mathbf{6 c}$ in 24% overall yield with 44% originality rate is the following. Reduction of $\mathbf{6 f}$ with $\mathrm{Et}_{3} \mathrm{SiH}-\mathrm{TFA}$ afforded $\mathbf{7 f}$ in 95% yield. Oxidation of $7 \mathbf{f}$ with $\mathrm{Na}_{2} \mathrm{WO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}-30 \% \mathrm{H}_{2} \mathrm{O}_{2}$ produced 1-hy-droxy- N-methoxycarbonyl- N-methyltryptamine ($\mathbf{8 f}$) in 76% yield. Then, treatment of $\mathbf{8 f}$ with $5 \% \mathrm{H}_{2} \mathrm{SO}_{4}$ in refluxing MeOH gave 2 f in 48% yield. Hydrolysis of $\mathbf{2 f}$ with 40% NaOH in refluxing MeOH afforded a 93% yield of 2a, which is known as an alkaloid isolated from reed canary grass (Phalaris arundinacea L.). ${ }^{5)}$ Finally, our $\mathrm{Bu}_{3} \mathrm{P}$ catalyzed reaction of $\mathbf{1 7}$ with $\mathbf{2 a}$ in refluxing MeCN provided $\mathbf{4}$ in 78% yield.

Synthesis of 5 The first total synthesis of $\mathbf{5}$ by Acheson and co-workers ${ }^{10}$ was carried out in thirteen steps from 2-nitroaniline (21) via such intermediates as 22 and 23 in 2.6% overall yield. We needed a simpler synthesis of $\mathbf{5}$ in order to

a: $A^{1}=H, R^{2}=M e ; \quad$ b: $R^{1}=A c, R^{2}=H ; \quad$ c: $A^{1}=R^{2}=H ; \quad$: $: R^{1}=C O O M e, R^{2}=H ; \quad$ e: $R^{1}=R^{2}=M e ;$ f: $\mathrm{A}^{1}=\mathrm{COOMe}, \mathrm{A}^{2}=\mathrm{Me}$.

Chart 1

Chart 2

Chart 3

begin a study of its derivatives and their biological activity.
We have developed two synthetic routes to $\mathbf{5}$. The first one is the simplest among the thus far reported syntheses. ${ }^{10,25)}$ Methylation of $8 \mathbf{e}$, obtained from $\mathbf{6 c}$ in three steps, as described above, with $\mathrm{CH}_{2} \mathrm{~N}_{2}$ resulted in 5 in 57% yield. Thus, 5 is now available in four steps from $\mathbf{6 c}$ in 29% overall yield with 40% originality rate.

Interestingly, when the oxidation of 7 e with $\mathrm{Na}_{2} \mathrm{WO}_{4}$. $2 \mathrm{H}_{2} \mathrm{O}-30 \% \mathrm{H}_{2} \mathrm{O}_{2}$ and subsequent treatment with $\mathrm{CH}_{2} \mathrm{~N}_{2}$ were performed in a one pot procedure, lespedamine N -oxide (24a) was obtained in 31% yield together with a 26% yield of 5. Isolation of $24 a$ suggested the presence of the corresponding 1-hydroxy compound (24b) in the reaction mixture of the oxidation step. All attempts to isolate 24b immediately after oxidation of 7 e failed due to its unstable nature.

To confirm the structure of $\mathbf{5}$ by an alternative synthesis, we established a second route starting from methyl 2 -nitrophenylacetate (25). ${ }^{14 a)}$ Thus, treatment of $\mathbf{2 5}$ with zinc (Zn , $20 \mathrm{eq})$ and ammonium chloride $\left(\mathrm{NH}_{4} \mathrm{Cl}\right)$ in MeOH for 3 h afforded 26 in 48% yield. When an excess amount of Zn was used or when a longer reaction time was employed, the yield
of $\mathbf{2 6}$ decreased and a significant amount of $\mathbf{2 6}$ was consumed to form a Zn -complex (27). Based on its mass spectral data, the ratio of oxindole moiety to zinc in the complex was found to be 2 to 1 . In addition, treatment of 27 with either $\mathrm{Ac}_{2} \mathrm{O}$-pyridine or $\mathrm{CH}_{2} \mathrm{~N}_{2}$ afforded a good yield of 1-ace-toxy- (28) or 1-methoxy-2-oxindole ${ }^{25}$ (29), respectively, proving the structure of $\mathbf{2 7}$. Applying these observations, direct preparation methods for $\mathbf{2 8}$ and $\mathbf{2 9}$ in 70 and 77% yields, respectively, were established by treating the reaction products (a mixture of 26 and 27), obtained after reduction of $\mathbf{2 5}$ with $\mathrm{Zn}-\mathrm{NH}_{4} \mathrm{Cl}$, with either $\mathrm{Ac}_{2} \mathrm{O}$-pyridine or $\mathrm{CH}_{2} \mathrm{~N}_{2}$. Hydrolysis of $\mathbf{2 8}$ with aq. $\mathrm{Na}_{2} \mathrm{CO}_{3}$ gave 26 in 94% yield.

With 29 in hand, it was allowed to react with ethylene dibromide in the presence of sodium hydride to afford a spiro compound (30) in 90% yield. Nucleophilic attack on the cyclopropane ring in $\mathbf{3 0}$ with aqueous dimethyl amine and its hydrochloride in DMF led to 1-methoxy-3-(2- N, N-dimethy-laminoethyl)-2-oxindole (31) in 54% yield together with a 10% yield of the indole ring cleavage product (32). Subsequent reduction of $\mathbf{3 1}$ with LiAlH_{4} in ether produced 2,3-di-hydro-2-hydroxy-1-methoxyindole (33) in 62% yield as a
mixture of diastereoisomers, which was found to be quite sensitive to acids. Thus, upon treatment with aq. $\mathrm{HCl}, \mathbf{3 3}$ instantaneously collapsed to $\mathbf{5}$ in 95% yield. Based on this result, work-up of the reduction step was improved as follows. After reduction of $\mathbf{3 1}$ with LiAlH_{4}, the reaction mixture was treated briefly with aq. HCl . By this modification, 5 was prepared in 64% yield directly from 31. As a result, the total synthesis of 5 was achieved in five steps with 24% overall yield from 25.

In conclusion, we have reported that nucleophilic substitution reaction ${ }^{13)}$ of 1-hydroxytryptamines ${ }^{12)}$ can be utilized as a common and simple methodology for the preparations of serotonin congeners. Investigations of the scope and limitations of applicable nucleophiles for the substitution reaction are in progress.

Experimental

Melting points were determined on a Yanagimoto micro melting point apparatus and are uncorrected. IR spectra were determined with a Shimadzu IR-420 spectrophotometer, and ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra with a JEOL JNM PMX60, JEOL JNM FX100S, or JEOL GSX-500 spectrometer with tetramethylsilane as an internal standard. MS spectra were recorded on a JEOL SX-102A spectrometer. Column chromatography was performed on silica gel $\left(\mathrm{SiO}_{2}\right.$, 100-200 mesh, from Kanto Chemical Co. Inc.) or activated alumina $\left(\mathrm{Al}_{2} \mathrm{O}_{3}, 300\right.$ mesh, from Wako Pure Chemical Industries, Ltd.). Preparative thin layer chromatography (p -TLC) was performed on Merck Kieselgel $\mathrm{GF}_{254}($ type 60$)\left(\mathrm{SiO}_{2}\right)$.
\boldsymbol{N}-Methyltryptamine (6a) from \boldsymbol{N}-Methoxycarbonyltryptamine (6d) $\mathrm{LiAlH}_{4}(678.0 \mathrm{mg}, 17.9 \mathrm{mmol})$ was added to a solution of $\mathbf{6 d}(1.241 \mathrm{~g}$, $5.69 \mathrm{mmol})$ in anhydrous THF $(20.0 \mathrm{ml})$ and the mixture was refluxed for 4 h with stirring. After cooling, MeOH was added to the reaction mixture to destroy excess LiAlH_{4} and then 10% aq. Rochelle salt was added. The whole was extracted with EtOAc and the extract was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated under reduced pressure to leave an oil, which was column-chromatographed on SiO_{2} with $\mathrm{CHCl}_{3}-\mathrm{MeOH}-28 \%$ aq. NH_{3} (46: $5: 0.5, \mathrm{v} / \mathrm{v}$) to give $\mathbf{6 a}\left(932.1 \mathrm{mg}, 94 \%\right.$). 6a: $\mathrm{mp} 90-91^{\circ} \mathrm{C}$ (colorless prisms, recrystallized from EtOAc-hexane). IR (KBr): 3300, 3130, 1618, $1450 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$-NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 1.60(1 \mathrm{H}$, br s, disappeared on addition of $\left.\mathrm{D}_{2} \mathrm{O}\right), 2.44(3 \mathrm{H}, \mathrm{s}), 2.92(2 \mathrm{H}, \mathrm{t}, J=6.6 \mathrm{~Hz}), 2.98(2 \mathrm{H}, \mathrm{t}, J=6.6 \mathrm{~Hz}), 7.03(1 \mathrm{H}$, d, $J=2 \mathrm{~Hz}$, collapsed to s on addition of $\left.\mathrm{D}_{2} \mathrm{O}\right), 7.12(1 \mathrm{H}, \mathrm{brt}, J=8.1 \mathrm{~Hz})$, $7.19(1 \mathrm{H}$, brt, $J=8.1 \mathrm{~Hz}), 7.36(1 \mathrm{H}, \mathrm{dt}, J=8.1,1 \mathrm{~Hz}), 7.63(1 \mathrm{H}$, br d, $J=8.1 \mathrm{~Hz}), 8.19\left(1 \mathrm{H}\right.$, br s, disappeared on addition of $\left.\mathrm{D}_{2} \mathrm{O}\right)$. MS m/z: 174 $\left(\mathrm{M}^{+}\right)$. Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{~N}_{2}$: C, $75.82 ; \mathrm{H}, 8.10 ; \mathrm{N}, 16.08$. Found: C, 75.58; H, 8.24; N, 16.02.
\boldsymbol{N}-Methoxycarbonyl- \boldsymbol{N}-methyltryptamine (6f) from 6a A solution of $\mathrm{ClCOOMe}(320.3 \mathrm{mg}, 3.4 \mathrm{mmol})$ in $\mathrm{CHCl}_{3}(1.0 \mathrm{ml})$ was added to a solution of $\mathbf{6 a}(188.5 \mathrm{mg}, 1.1 \mathrm{mmol})$ in $\mathrm{CHCl}_{3}(2.0 \mathrm{ml})$. To the resultant solution was added $\mathrm{Et}_{3} \mathrm{~N}(0.4 \mathrm{ml})$ at $0^{\circ} \mathrm{C}$ with stirring. After additional stirring at room temperature for 23 h , sat. aq. NaHCO_{3} was added to the reaction mixture and the whole was extracted with CHCl_{3}. The extract was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated under reduced pressure to leave an oil, which was column-chromatographed on SiO_{2} with EtOAc -hexane (1:1, $\mathrm{v} / \mathrm{v})$ to give $\mathbf{6 f}(250.6 \mathrm{mg}, 99 \%)$. 6f: $\mathrm{mp} 88-89^{\circ} \mathrm{C}$ (colorless prisms, recrystallized from MeOH). IR (KBr): 3270, $1672 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}$ (DMSO- d_{6}, $\left.60^{\circ} \mathrm{C}\right) \delta: 2.82(3 \mathrm{H}, \mathrm{s}), 2.89(2 \mathrm{H}, \mathrm{dt}, J=0.7,7.6 \mathrm{~Hz}), 3.47(2 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz})$, $3.55(3 \mathrm{H}, \mathrm{brs}), 6.98(1 \mathrm{H}, \mathrm{ddd}, J=7.8,7,1 \mathrm{~Hz}), 7.06(1 \mathrm{H}, \mathrm{ddd}, J=8.1,7$, $1 \mathrm{~Hz}), 7.10(1 \mathrm{H}, \mathrm{d}, J=2.2 \mathrm{~Hz}), 7.33(1 \mathrm{H}, \mathrm{dt}, J=8.1,1 \mathrm{~Hz}), 7.53(1 \mathrm{H}, \mathrm{d}, J=$ $7.8 \mathrm{~Hz}), 10.66\left(1 \mathrm{H}, \mathrm{brs}\right.$, disappeared on addition of $\left.\mathrm{D}_{2} \mathrm{O}\right)$. MS $\mathrm{m} / \mathrm{z}: 232$ $\left(\mathrm{M}^{+}\right)$. Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2}: \mathrm{C}, 67.22 ; \mathrm{H}, 6.94 ; \mathrm{N}, 12.06$. Found: C, 67.30; H, 6.94; N, 12.07.

2,3-Dihydro- N, N-dimethyltryptamine (7e) from N, N-Dimethyltryptamine (6e) $\mathrm{Et}_{3} \mathrm{SiH}(0.51 \mathrm{ml}, 3.19 \mathrm{mmol})$ was added to a solution of $\mathbf{6 e}$ $(201.4 \mathrm{mg}, 1.07 \mathrm{mmol})$ in TFA $(20.0 \mathrm{ml})$ and the mixture was stirred at $55^{\circ} \mathrm{C}$ for 2 h . After evaporation of the solvent under reduced pressure, the residual oil was made basic (pH 11) by adding $8 \% \mathrm{NaOH}$ and the whole was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}(95: 5, \mathrm{v} / \mathrm{v})$. The extract was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated under reduced pressure to leave an oil, which was column-chromatographed on SiO_{2} with $\mathrm{CHCl}_{3}-\mathrm{MeOH}-28 \%$ aq. $\mathrm{NH}_{3}(46: 5: 0.5, \mathrm{v} / \mathrm{v})$ to give $7 \mathrm{e}(189.4 \mathrm{mg}, 93 \%) .7 \mathrm{e}$: Colorless viscous oil. IR (film): 1610, $1488,1465,747 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta: 1.68-1.75$ $(1 \mathrm{H}, \mathrm{m}), 1.98-2.04(1 \mathrm{H}, \mathrm{m}), 2.25(6 \mathrm{H}, \mathrm{s}), 2.30-2.43(2 \mathrm{H}, \mathrm{m}), 3.21(1 \mathrm{H}$,
dd, $J=8.6,7.5 \mathrm{~Hz}), 3.28-3.34(1 \mathrm{H}, \mathrm{m}), 3.69(1 \mathrm{H}, \mathrm{t}, J=8.6 \mathrm{~Hz}), 3.72(1 \mathrm{H}$, brs, disappeared on addition of $\left.\mathrm{D}_{2} \mathrm{O}\right), 6.64(1 \mathrm{H}, \mathrm{d}, J=7.7 \mathrm{~Hz}), 6.72(1 \mathrm{H}, \mathrm{dt}$, $J=0.9,7.7 \mathrm{~Hz}), 7.03(1 \mathrm{H}$, brt, $J=7.7 \mathrm{~Hz}), 7.10(1 \mathrm{H}, \mathrm{d}, J=7.7 \mathrm{~Hz})$. HR-MS m / z : Calcd for $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{~N}_{2}$: 190.1469. Found: 190.1478.

2,3-Dihydro- \boldsymbol{N}-methoxycarbonyl- \boldsymbol{N}-methyltryptamine (7f) from $\mathbf{6 f}$ $\mathrm{Et}_{3} \mathrm{SiH}(1.40 \mathrm{ml}, 8.8 \mathrm{mmol})$ was added to a solution of $\mathbf{6 f}(681.8 \mathrm{mg}$, $2.94 \mathrm{mmol})$ in TFA $(10.0 \mathrm{ml})$ and the mixture was stirred at $70^{\circ} \mathrm{C}$ for 4 h . After evaporation of the solvent under reduced pressure, the residual oil was made basic (pH 10) by adding 30% aq. NaOH and the whole was extracted with EtOAc. The extract was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated under reduced pressure to leave an oil, which was column-chromatographed on SiO_{2} with $\mathrm{EtOAc}-$ hexane ($1: 1, \mathrm{v} / \mathrm{v}$) to give 7 f (652.2 mg , 95%). 7f: Colorless viscous oil. IR (film): 3350,1686 (br) $\mathrm{cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}$ (DMSO- $\left.d_{6}, 90^{\circ} \mathrm{C}\right) \delta: 1.61-1.69(1 \mathrm{H}, \mathrm{m}), 1.89-1.97(1 \mathrm{H}, \mathrm{m}), 2.83(3 \mathrm{H}, \mathrm{s})$, $3.08-3.16(2 \mathrm{H}, \mathrm{m}), 3.25(1 \mathrm{H}$, ddd, $J=13.9,8.6,5.4 \mathrm{~Hz}), 3.33(1 \mathrm{H}$, ddd, $J=13.9,8.8,6.4 \mathrm{~Hz}), 3.52-3.60(1 \mathrm{H}, \mathrm{m}), 3.59(3 \mathrm{H}, \mathrm{s}), 5.14(1 \mathrm{H}, \mathrm{br}$ s, disappeared on addition of $\left.\mathrm{D}_{2} \mathrm{O}\right), 6.48(1 \mathrm{H}, \mathrm{brd}, J=7.6 \mathrm{~Hz}), 6.53(1 \mathrm{H}, \mathrm{dt}, J=1$, $7.3 \mathrm{~Hz}), 6.89(1 \mathrm{H}$, dddd, $J=7.6,7.3,1,0.5 \mathrm{~Hz}), 7.02(1 \mathrm{H}, \mathrm{brd}, J=7.3 \mathrm{~Hz})$. HR-MS m / z : Calcd for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2}: 234.1368$. Found: 234.1365.

2,3-Dihydro- N-methyltryptamine (7a) from $\mathbf{6 a} \mathrm{Et}_{3} \mathrm{SiH}(0.12 \mathrm{ml}$, 0.75 mmol) was added to a solution of $\mathbf{6 a}(43.2 \mathrm{mg}, 0.25 \mathrm{mmol})$ in TFA $(2.0 \mathrm{ml})$ and the mixture was stirred at $60^{\circ} \mathrm{C}$ for 4 h . After evaporation of the solvent under reduced pressure, the residual oil was made basic (pH 10) by adding 8% aq. NaOH and the whole was extracted with EtOAc. The extract was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated under reduced pressure to leave an oil, which was column-chromatographed on SiO_{2} with $\mathrm{CHCl}_{3}-\mathrm{MeOH}-28 \%$ aq. $\mathrm{NH}_{3}(46: 5: 0.5$, v/v) to give $7 \mathrm{a}(38.2 \mathrm{mg}, 87 \%)$. 7a: Colorless oil. IR (film): 3300 (br), $1607 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta$: $1.55-1.95\left(2 \mathrm{H}, \mathrm{m}\right.$, disappeared on addition of $\left.\mathrm{D}_{2} \mathrm{O}\right), 1.70-1.79(1 \mathrm{H}, \mathrm{m})$, $1.99-2.08(1 \mathrm{H}, \mathrm{m}), 2.46(3 \mathrm{H}, \mathrm{s}), 2.63-2.73(2 \mathrm{H}, \mathrm{m}), 3.23(1 \mathrm{H}, \mathrm{dd}, J=8.8$, $7.3 \mathrm{~Hz}), 3.30-3.38(1 \mathrm{H}, \mathrm{m}), 3.69(1 \mathrm{H}, \mathrm{t}, J=8.8 \mathrm{~Hz}), 6.65(1 \mathrm{H}, \mathrm{d}, J=$ $7.3 \mathrm{~Hz}), 6.73(1 \mathrm{H}, \mathrm{dt}, J=1,7.3 \mathrm{~Hz}), 7.03(1 \mathrm{H}, \mathrm{brt}, J=7.3 \mathrm{~Hz}), 7.09(1 \mathrm{H}, \mathrm{d}$, $J=7.3 \mathrm{~Hz}$). HR-MS m / z : Calcd for $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{~N}_{2}: 176.1313$. Found: 176.1313.

1-Hydroxy- N, N-dimethyltryptamine (8e) from 7 e A solution of $\mathrm{Na}_{2} \mathrm{WO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}(132.5 \mathrm{mg}, 0.40 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}(4.0 \mathrm{ml})$ was added to a solution of $7 \mathrm{e}(378.9 \mathrm{mg}, 1.98 \mathrm{mmol})$ in $\mathrm{MeOH}(40.0 \mathrm{ml})$. To the resultant solution was added $30 \% \mathrm{H}_{2} \mathrm{O}_{2}(2.0 \mathrm{ml}, 19.6 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$ with stirring. After stirring at room temperature for $20 \mathrm{~min}, \mathrm{H}_{2} \mathrm{O}$ was added to the reaction mixture and the whole was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}(95: 5, \mathrm{v} / \mathrm{v})$. The extract was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated under reduced pressure to leave an oil, which was column-chromatographed on SiO_{2} with $\mathrm{CHCl}_{3}-\mathrm{MeOH}-28 \%$ aq. $\mathrm{NH}_{3}(46: 5: 0.5, \mathrm{v} / \mathrm{v})$ to give unreacted $7 \mathbf{e}$ $(19.1 \mathrm{mg}, 5 \%)$ and $8 \mathrm{e}(223.5 \mathrm{mg}, 55 \%)$ in the order of elution. 8e: mp $179.5-180.0^{\circ} \mathrm{C}$ (colorless needles, recrystallized from $\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}$). IR (KBr): 1470, 1320, 840, $737 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}\right) \delta: 2.35(6 \mathrm{H}, \mathrm{s})$, $2.64-2.68(2 \mathrm{H}, \mathrm{m}), 2.89-2.93(2 \mathrm{H}, \mathrm{m}), 6.99(1 \mathrm{H}, \mathrm{ddd}, J=8.1,7.5$, $0.9 \mathrm{~Hz}), 7.09(1 \mathrm{H}, \mathrm{s}), 7.13(1 \mathrm{H}, \mathrm{ddd}, J=8.1,7.5,0.9 \mathrm{~Hz}), 7.34(1 \mathrm{H}, \mathrm{dt}$, $J=8.1,0.9 \mathrm{~Hz}), 7.50(1 \mathrm{H}, \mathrm{dt}, J=8.1,0.9 \mathrm{~Hz}) . \mathrm{MS} m / z: 204\left(\mathrm{M}^{+}\right)$. Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}$: C, 70.56; H, 7.90; N, 13.71. Found: C, 70.35; H, 8.04; N, 13.66.

1-Hydroxy- N-methoxycarbonyl- N -methyltryptamine (8f) from 7f A solution of $\mathrm{Na}_{2} \mathrm{WO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}(20.6 \mathrm{mg}, 0.06 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}(0.5 \mathrm{ml})$ was added to a solution of $\mathbf{7 f}(55.9 \mathrm{mg}, 0.24 \mathrm{mmol})$ in $\mathrm{MeOH}(5.0 \mathrm{ml})$. To the resultant solution was added $30 \% \mathrm{H}_{2} \mathrm{O}_{2}(0.25 \mathrm{ml}, 2.5 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$ with stirring. After stirring at room temperature for $40 \mathrm{~min}, \mathrm{H}_{2} \mathrm{O}$ was added to the reaction mixture and the whole was extracted with CHCl_{3}. The extract was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated under reduced pressure to leave an oil, which was column-chromatographed on SiO_{2} with EtOAc hexane ($1: 1, \mathrm{v} / \mathrm{v}$) to give $\mathbf{8 f}\left(45.0 \mathrm{mg}, 76 \%\right.$). 8f: mp $107-108^{\circ} \mathrm{C}$ (colorless prisms, recrystallized from $\mathrm{Et}_{2} \mathrm{O}$-hexane). IR (KBr): 3160, 1662, $1492 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}$ (DMSO- $\left.d_{6}, 90^{\circ} \mathrm{C}\right) \delta: 2.82(3 \mathrm{H}, \mathrm{s}), 2.88(2 \mathrm{H}, \mathrm{dt}$, $J=0.7,7.6 \mathrm{~Hz}), 3.47(2 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}), 3.56(3 \mathrm{H}, \mathrm{s}), 6.98(1 \mathrm{H}, \mathrm{ddd}, J=8.1$, $7.1,1 \mathrm{~Hz}), 7.12(1 \mathrm{H}$, ddd, $J=8.1,7.1,1 \mathrm{~Hz}), 7.16(1 \mathrm{H}, \mathrm{s}), 7.32(1 \mathrm{H}, \mathrm{d}$, $J=8.1 \mathrm{~Hz}), 7.52(1 \mathrm{H}, \mathrm{d}, J=8.1 \mathrm{~Hz}), 10.76(1 \mathrm{H}, \mathrm{s}$, disappeared on addition of $\left.\mathrm{D}_{2} \mathrm{O}\right)$. MS m/z: $248\left(\mathrm{M}^{+}\right)$. Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{3}$: C, 62.89; H, 6.50; N, 11.28. Found: C, 62.98; H, 6.54; N, 11.22.

5-Hydroxy- (9b) and 1-Formyl-5-hydroxy- N-methoxycarbonyltryptamine (9a) from 1-Hydroxy- N -methoxycarbonyltryptamine (8d) A solution of $\mathbf{8 d}(49.5 \mathrm{mg}, 0.21 \mathrm{mmol})$ in $85 \% \mathrm{HCOOH}(5.0 \mathrm{ml})$ was stirred at room temperature for 14 h . After evaporation of the solvent under reduced pressure, $\mathrm{H}_{2} \mathrm{O}$ was added to the residue under ice cooling. The whole was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}(95: 5, \mathrm{v} / \mathrm{v})$. The extract was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated under reduced pressure to leave an oil, which was column-chromatographed on SiO_{2} with $\mathrm{CHCl}_{3}-\mathrm{MeOH}-28 \%$
aq. $\mathrm{NH}_{3}(200: 10: 1, \mathrm{v} / \mathrm{v})$ to give $\mathbf{9 a}(29.7 \mathrm{mg}, 54 \%)$ and $\mathbf{9 b}(4.1 \mathrm{mg}, 8 \%)$ in the order of elution. $9 \mathrm{a}: \mathrm{mp} 151-153^{\circ} \mathrm{C}$ (colorless needles, recrystallized from $\mathrm{MeOH}-\mathrm{EtOAc}$). IR (KBr): 3290, 1682 (br), $1558,1473 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-$ NMR (DMSO- $\left.d_{6}, 90^{\circ} \mathrm{C}\right) \delta: 2.76(2 \mathrm{H}, \mathrm{t}, J=7.1 \mathrm{~Hz}), 3.30(2 \mathrm{H}, \mathrm{q}, J=7.1 \mathrm{~Hz})$, $3.54(3 \mathrm{H}, \mathrm{s}), 6.80(1 \mathrm{H}, \mathrm{dd}, J=2.3,8.8 \mathrm{~Hz}), 6.80(1 \mathrm{H}, \mathrm{brs}), 6.93(1 \mathrm{H}, \mathrm{d}$, $J=2.3 \mathrm{~Hz}), 7.48(1 \mathrm{H}, \mathrm{brs}), 7.93(1 \mathrm{H}, \mathrm{brs}), 8.99(1 \mathrm{H}, \mathrm{brs}), 9.18(1 \mathrm{H}, \mathrm{brs})$. Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{4}$: C, 59.53; H, 5.38; N, 10.68. Found: C, 59.60; H, 5.33; N, 10.76. 9b: Colorless viscous oil. IR (film): 1686, 1525, 1262, $796 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{DMSO}-d_{6}\right) \delta: 2.72(2 \mathrm{H}, \mathrm{t}, J=7.7 \mathrm{~Hz}), 3.21(2 \mathrm{H}, \mathrm{dt}$, $J=7.7,5.6 \mathrm{~Hz}), 3.53(3 \mathrm{H}, \mathrm{s}), 6.58(1 \mathrm{H}, \mathrm{dd}, J=8.6,2.4 \mathrm{~Hz}), 6.81(1 \mathrm{H}, \mathrm{d}, J=$ $2.0 \mathrm{~Hz}), 7.02(1 \mathrm{H}, \mathrm{d}, J=2.4 \mathrm{~Hz}), 7.12(1 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}), 7.18(1 \mathrm{H}, \mathrm{brt}$, $J=5.6 \mathrm{~Hz}), 8.60(1 \mathrm{H}, \mathrm{s}), 10.46(1 \mathrm{H}$, brs). HR-MS m / z : Calcd for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{3}: 234.1004$. Found: 234.1019 .

Compound 9a from 10 A solution of $\mathbf{1 0}(50.5 \mathrm{mg}, 0.20 \mathrm{mmol})$ in 85% HCOOH $(5.0 \mathrm{ml})$ was stirred at $80^{\circ} \mathrm{C}$ for 20 min . Evaporation of the solvent under reduced pressure afforded an oil, which was column-chromatographed on SiO_{2} with $\mathrm{CHCl}_{3}-\mathrm{MeOH}-28 \%$ aq. $\mathrm{NH}_{3}(100: 1: 0.1$, v/v) to give $9 \mathbf{a}$ ($36.8 \mathrm{mg}, 69 \%$).

Compound 9b and 5-Formyloxy- N-methoxycarbonyltryptamine (9c) from 8d A solution of $\mathbf{8 d}(49.4 \mathrm{mg}, 0.21 \mathrm{mmol})$ in $85 \% \mathrm{HCOOH}(5.0 \mathrm{ml})$ was stirred at room temperature for 20 min . Evaporation of the solvent under reduced pressure afforded an oil, which was column-chromatographed on SiO_{2} with $\mathrm{CHCl}_{3}-\mathrm{MeOH}-28 \%$ aq. $\mathrm{NH}_{3}(100: 1: 0.1, \mathrm{v} / \mathrm{v})$ to give unreacted $\mathbf{8 d}(3.5 \mathrm{mg}, 7 \%), 9 \mathbf{c}(22.1 \mathrm{mg}, 40 \%)$, and $9 \mathbf{~ b}(11.7 \mathrm{mg}, 24 \%)$ in the order of elution. 9c: Colorless viscous oil. IR (film): 3400, 1703 (br), 1525, 1170, $780 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$-NMR (DMSO- $\left.d_{6}\right) \delta: 2.80(2 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}), 3.24(2 \mathrm{H}, \mathrm{q}$, $J=7.5 \mathrm{~Hz}), 3.52(3 \mathrm{H}, \mathrm{s}), 6.89(1 \mathrm{H}, \mathrm{dd}, J=8.8,2.5 \mathrm{~Hz}), 7.18(1 \mathrm{H}$, br t, $J=8.8 \mathrm{~Hz}), 7.23(1 \mathrm{H}, \operatorname{brd}, J=2.5 \mathrm{~Hz}), 7.31(1 \mathrm{H}, \operatorname{brd}, J=2.5 \mathrm{~Hz}), 7.37(1 \mathrm{H}$, d, $J=8.8 \mathrm{~Hz}), 8.54(1 \mathrm{H}, \mathrm{s}), 10,96(1 \mathrm{H}, \mathrm{brs})$. HR-MS m / z : Calcd for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{4}: 262.0954$. Found: 262.0945.

Compound 9b and 9c from 10 A solution of $\mathbf{1 0}(49.5 \mathrm{mg}, 0.20 \mathrm{mmol})$ in $85 \% \mathrm{HCOOH}(5.0 \mathrm{ml})$ was stirred at room temperature for 15 min . Evaporation of the solvent under reduced pressure afforded an oil, which was col-umn-chromatographed on SiO_{2} with $\mathrm{CHCl}_{3}-\mathrm{MeOH}-28 \%$ aq. $\mathrm{NH}_{3}(100: 1$: $0.1, \mathrm{v} / \mathrm{v})$ to give $\mathbf{9 c}(19.8 \mathrm{mg}, 38 \%)$ and $9 \mathbf{b}(11.5 \mathrm{mg}, 25 \%)$ in the order of elution.

Compound 9b from $9 \mathbf{c} \quad 6 \% \mathrm{HCl}(0.1 \mathrm{ml})$ was added to a solution of $9 \mathbf{c}$ $(19.1 \mathrm{mg}, 0.07 \mathrm{mmol})$ in $\mathrm{MeOH}(3.0 \mathrm{ml})$ at $0^{\circ} \mathrm{C}$ and the mixture was stirred at room temperature for 20 min . To the reaction mixture was added $\mathrm{H}_{2} \mathrm{O}$ under ice cooling and the whole was extracted with $\mathrm{CHCl}_{3}-\mathrm{MeOH}(95: 5$, v / v). The extract was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated under reduced pressure to leave an oil, which was column-chromatographed on SiO_{2} with $\mathrm{CHCl}_{3}-\mathrm{MeOH}-28 \%$ aq. $\mathrm{NH}_{3}(100: 1: 0.1$, v/v) to give $9 \mathbf{~ b}$ ($10.2 \mathrm{mg}, 60 \%$).

Compound 9a from 9b A solution of $9 \mathbf{b}(71.8 \mathrm{mg}, 0.37 \mathrm{mmol})$ in 85% $\mathrm{HCOOH}(7.0 \mathrm{ml})$ was stirred at room temperature for 48 h . After evaporation of the solvent under reduced pressure, brine was added to the residue. The whole was extracted with $\mathrm{CHCl}_{3}-\mathrm{MeOH}(95: 5, \mathrm{v} / \mathrm{v})$. The extract was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated under reduced pressure to leave an oil, which was column-chromatographed on SiO_{2} with $\mathrm{CHCl}_{3}-\mathrm{MeOH}-28 \%$ aq. $\mathrm{NH}_{3}(200: 10: 1$, v/v) to give $9 \mathrm{a}(55.5 \mathrm{mg}, 69 \%)$ and unreacted $9 \mathbf{~ b}(7.2 \mathrm{mg}, 10 \%)$ in the order of elution.

Compound 9b from 9a $8 \% \mathrm{NaOH}(0.4 \mathrm{ml})$ was added to a solution of 9a ($41.2 \mathrm{mg}, 0.15 \mathrm{mmol}$) in $\mathrm{MeOH}(3.6 \mathrm{ml})$ and the mixture was heated at $60^{\circ} \mathrm{C}$ for 10 min . After cooling, the reaction mixture was made acidic (pH 3) by adding $6 \% \mathrm{HCl}$. The whole was extracted with $\mathrm{CHCl}_{3}-\mathrm{MeOH}$ (95:5, v / v). The extract was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated under reduced pressure to leave an oil, which was column-chromatographed on SiO_{2} with $\mathrm{CHCl}_{3}-\mathrm{MeOH}-28 \%$ aq. $\mathrm{NH}_{3}(200: 10: 1$, v/v) to give unreacted $9 \mathbf{a}(3.3 \mathrm{mg}, 8 \%)$ and $9 \mathbf{b}(28.0 \mathrm{mg}, 76 \%)$ in the order of elution.

Serotonin (1a) from 9b 40% aq. $\mathrm{NaOH}(1.0 \mathrm{ml})$ was added to a solution of $9 \mathbf{b}(51.5 \mathrm{mg}, 0.22 \mathrm{mmol})$ in $\mathrm{MeOH}(3.0 \mathrm{ml})$ and the mixture was heated at reflux for 4 h with stirring. After cooling, the reaction mixture was made neutral (pH 7.0) by adding $6 \% \mathrm{HCl}$ under ice cooling. The solvent was evaporated under reduced pressure to leave a brown oil, which was columnchromatographed on SiO_{2} with $\mathrm{CHCl}_{3}-\mathrm{MeOH}-28 \%$ aq. $\mathrm{NH}_{3}(100: 10: 1$, $\mathrm{v} / \mathrm{v})$ to give unreacted $\mathbf{9 b}(8.9 \mathrm{mg}, 17 \%)$ and $\mathbf{1 a}(28.2 \mathrm{mg}, 73 \%)$. Synthetic product $(\mathbf{1 a})$ and its hydrochloride $(\mathbf{1 a} \cdot \mathrm{HCl})$ were identical with the commercially available samples, respectively.

Compound 9b from 1a Methyl chloroformate $(0.13 \mathrm{ml}, 1.70 \mathrm{mmol})$ was added to a solution of serotonin hydrochloride $(\mathbf{1 a} \cdot \mathrm{HCl}, 300.7 \mathrm{mg}$, $1.41 \mathrm{mmol})$ in DMF $(15.0 \mathrm{ml})$ and pyridine $(1.5 \mathrm{ml})$ at $0^{\circ} \mathrm{C}$ with stirring. Stirring was continued at room temperature for an additional 1.5 h and $\mathrm{H}_{2} \mathrm{O}$ was added. The whole was extracted with CHCl_{3} and the extract was washed
with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated under reduced pressure to leave an oil, which was column-chromatographed on SiO_{2} with $\mathrm{CHCl}_{3}-$ $\mathrm{MeOH}(97: 3, \mathrm{v} / \mathrm{v})$ to give $\mathbf{9 b}(310 \mathrm{mg}, 94 \%)$.

1-Methoxy- \mathbf{N}-methoxycarbonyltryptamine (10) from 8d An excess amount of ethereal $\mathrm{CH}_{2} \mathrm{~N}_{2}$ was added to a solution of $\mathbf{8 d}(39.1 \mathrm{mg}$, $0.17 \mathrm{mmol})$ in $\mathrm{MeOH}(2.0 \mathrm{ml})$ and the mixture was stirred at room temperature for 1 h . After evaporation of the solvent, the residue was column-chromatographed on SiO_{2} with $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}(99: 1, \mathrm{v} / \mathrm{v})$ to give $\mathbf{1 0}(34.3 \mathrm{mg}$, 83\%). 10: Colorless viscous oil. IR (film): 1705 (br), $1525 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}\right) \delta: 2.93(2 \mathrm{H}, \mathrm{t}, J=6.6 \mathrm{~Hz}), 3.49(2 \mathrm{H}, \mathrm{q}, J=6.6 \mathrm{~Hz}), 3.66(3 \mathrm{H}, \mathrm{s})$, $4.06(3 \mathrm{H}, \mathrm{s}), 4.76(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 7.10(1 \mathrm{H}, \mathrm{s}), 7.12(1 \mathrm{H}, \mathrm{t}, J=8.0 \mathrm{~Hz}), 7.25(1 \mathrm{H}$, $\mathrm{t}, J=8.0 \mathrm{~Hz}), 7.42(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}), 7.57(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz})$. HR-MS m / z : Calcd for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{3}: 248.1160$. Found: 248.1163 .

5-Methoxy- N, N-dimethyltryptamine (2e), 1 c , and 6 e from $8 \mathrm{e} c$ $\mathrm{H}_{2} \mathrm{SO}_{4}(5.0 \mathrm{ml})$ was added to a solution of $\mathbf{8 e}(421.2 \mathrm{mg}, 2.06 \mathrm{mmol})$ in $\mathrm{MeOH}(45.0 \mathrm{ml})$ and the mixture was refluxed for 29 h with stirring. After cooling, the reaction mixture was made basic (pH 10) by adding $30 \% \mathrm{NaOH}$ and the whole was extracted with $\mathrm{CHCl}_{3}-\mathrm{MeOH}(95: 5, \mathrm{v} / \mathrm{v})$. The extract was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated under reduced pressure to leave an oil, which was column-chromatographed on SiO_{2} repeatedly with $\mathrm{CHCl}_{3}-$ $\mathrm{MeOH}-28 \%$ aq. $\mathrm{NH}_{3}(46: 5: 0.5, \mathrm{v} / \mathrm{v})$ and acetone-hexane- 28% aq. NH_{3} $(20: 10: 0.3, \mathrm{v} / \mathrm{v})$ to give $6 \mathbf{e}(44.2 \mathrm{mg}, 11 \%), 2 \mathrm{e}(256.4 \mathrm{mg}, 57 \%)$, and $\mathbf{1 c}$ $(27.3 \mathrm{mg}, 7 \%)$ in the order of elution. $2 \mathrm{e}: \mathrm{mp} 68-70^{\circ} \mathrm{C}$ (colorless prisms, recrystallized from $\mathrm{Et}_{2} \mathrm{O}$-hexane). IR (KBr): $1625,1589,1477,1463,1438$, $1216 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta: 2.35(6 \mathrm{H}, \mathrm{s}), 2.61-2.66(2 \mathrm{H}, \mathrm{m}), 2.88-$ $2.94(2 \mathrm{H}, \mathrm{m}), 3.86(3 \mathrm{H}, \mathrm{s}), 6.85(1 \mathrm{H}, \mathrm{dd}, J=8.8,2.4 \mathrm{~Hz}), 6.99(1 \mathrm{H}, \mathrm{d}$, $J=2.2 \mathrm{~Hz}$, collapsed to s on addition of $\left.\mathrm{D}_{2} \mathrm{O}\right), 7.05(1 \mathrm{H}, \mathrm{d}, J=2.4 \mathrm{~Hz}), 7.23$ $(1 \mathrm{H}, \mathrm{dd}, J=8.8,0.5 \mathrm{~Hz}), 7.97(1 \mathrm{H}, \mathrm{brs})$. MS m/z: $218\left(\mathrm{M}^{+}\right)$. Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}: \mathrm{C}, 71.52 ; \mathrm{H}, 8.31 ; \mathrm{N}, 12.83$. Found: C, $71.49 ; \mathrm{H}, 8.55 ; \mathrm{N}, 12.76$.

5-Methoxy- N -methoxycarbonyl- N -methyltryptamine (2f) from 8f A solution of $\mathbf{8 f}(125.0 \mathrm{mg}, 0.50 \mathrm{mmol})$ in $5 \% \mathrm{H}_{2} \mathrm{SO}_{4}$ in $\mathrm{MeOH}(50 \mathrm{ml})$ was refluxed for 24 h with stirring. After cooling, the reaction mixture was made slightly alkaline ($\mathrm{pH} 7-8$) by adding 30% aq. NaOH and the whole was extracted with CHCl_{3}. The extract was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated under reduced pressure to leave an oil, which was columnchromatographed on SiO_{2} with CHCl_{3} to give $\mathbf{6 f}(11.3 \mathrm{mg}, 11 \%), 2 \mathbf{f}$ ($63.3 \mathrm{mg}, 48 \%$), and unreacted $\mathbf{8 f}(19.4 \mathrm{mg}, 16 \%)$ in the order of elution. 2f: $\mathrm{mp} 112-113{ }^{\circ} \mathrm{C}$ (colorless prisms, recrystallized from MeOH). IR (KBr): 3300, 1668, 1485, $1446 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-$ NMR (DMSO- $\left.d_{6}, 90^{\circ} \mathrm{C}\right) \delta: 2.82(3 \mathrm{H}, \mathrm{s})$, $2.86\left(2 \mathrm{H}, \mathrm{m}, \mathrm{A}_{2}\right.$ part of $\left.\mathrm{A}_{2} \mathrm{~B}_{2}\right), 3.47\left(2 \mathrm{H}, \mathrm{m}, \mathrm{B}_{2}\right.$ part of $\left.\mathrm{A}_{2} \mathrm{~B}_{2}\right), 3.56(3 \mathrm{H}, \mathrm{s})$, $3.77(3 \mathrm{H}, \mathrm{s}), 6.72(1 \mathrm{H}, \mathrm{dd}, J=8.8,2.4 \mathrm{~Hz}), 7.01(1 \mathrm{H}, \mathrm{d}, J=2.4 \mathrm{~Hz}), 7.04(1 \mathrm{H}$, d, $J=2.4 \mathrm{~Hz}), 7.21(1 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}), 10.36(1 \mathrm{H}, \mathrm{br} \mathrm{s}$, disappeared on addition of $\left.\mathrm{D}_{2} \mathrm{O}\right)$. MS m/z: $262\left(\mathrm{M}^{+}\right)$. Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{3}: \mathrm{C}, 64.10 ; \mathrm{H}$, 6.92 ; N, 10.68. Found: C, 64.02; H, 6.89; N, 10.63.

5-Methoxy- N -methyltryptamine (2a) from $2 \mathrm{f} \quad 40 \%$ aq. $\mathrm{NaOH}(3.6 \mathrm{ml})$ was added to a solution of $\mathbf{2 f}(40.1 \mathrm{mg}, 0.15 \mathrm{mmol})$ in $\mathrm{MeOH}(6.0 \mathrm{ml})$ and the mixture was refluxed for 16 h with stirring. After cooling, $\mathrm{H}_{2} \mathrm{O}$ was added to the reaction mixture and the whole was extracted with CHCl_{3}. The extract was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated under reduced pressure to leave an oil, which was column-chromatographed on SiO_{2} with $\mathrm{CHCl}_{3}-\mathrm{MeOH}-28 \%$ aq. $\mathrm{NH}_{3}(46: 5: 0.5$, v/v) to give 2a $(29.0 \mathrm{mg}$, 93\%). 2a: mp $108-109^{\circ} \mathrm{C}$ (colorless prisms, recrystallized from EtOAc, lit., ${ }^{5} \mathrm{mp}$ not reported). IR (KBr): $3320,1584,1465,1435,1211 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 1.69\left(1 \mathrm{H}, \mathrm{br} \mathrm{s}\right.$, disappeared on addition of $\left.\mathrm{D}_{2} \mathrm{O}\right), 2.45(3 \mathrm{H}$, s), $2.89-2.97\left(4 \mathrm{H}, \mathrm{m}, \mathrm{A}_{2} \mathrm{~B}_{2}\right), 3.87(3 \mathrm{H}, \mathrm{s}), 6.86(1 \mathrm{H}, \mathrm{dd}, J=8.8,2.4 \mathrm{~Hz})$, $7.02\left(1 \mathrm{H}, \mathrm{d}, J=2.1 \mathrm{~Hz}\right.$, collapsed to s on addition of $\left.\mathrm{D}_{2} \mathrm{O}\right), 7.06(1 \mathrm{H}, \mathrm{d}$, $J=2.4 \mathrm{~Hz}), 7.25(1 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}), 7.98(1 \mathrm{H}, \mathrm{br} \mathrm{s}$, disappeared on addition of $\left.\mathrm{D}_{2} \mathrm{O}\right)$. MS m/z: $204\left(\mathrm{M}^{+}\right)$. Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}: \mathrm{C}, 70.56 ; \mathrm{H}, 7.90$; N, 13.72. Found: C, 70.57; H, 7.89; N, 13.73.

1-Acetyl-5-methoxy- N, N-dimethyltryptamine (11a) from 2e A solution of $2 \mathbf{e}(50.0 \mathrm{mg}, 0.23 \mathrm{mmol})$ in DMF $(2.0 \mathrm{ml})$ was added to $60 \% \mathrm{NaH}$ ($26.4 \mathrm{mg}, 0.66 \mathrm{mmol}$, washed with dry benzene) at $0^{\circ} \mathrm{C}$ with stirring. After additional stirring for 15 min at room temperature, a solution of AcCl $(68.8 \mathrm{mg}, 0.88 \mathrm{mmol})$ in DMF $(1.0 \mathrm{ml})$ was added to the resultant solution and the mixture was stirred at room temperature for 4 h . After the reaction mixture was made basic ($\mathrm{pH} 9-10$) by adding 8% aq. NaOH , the whole was extracted with $\mathrm{CHCl}_{3}-\mathrm{MeOH}(95: 5, \mathrm{v} / \mathrm{v})$. The extract was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated under reduced pressure to leave an oil, which was column-chromatographed on SiO_{2} with $\mathrm{CHCl}_{3}-\mathrm{MeOH}-28 \%$ aq. $\mathrm{NH}_{3}(46: 5: 0.5, \mathrm{v} / \mathrm{v})$ to give $11 \mathrm{a}(30.0 \mathrm{mg}, 50 \%)$ and unreacted 2 e $(13.5 \mathrm{mg}, 27 \%)$ in the order of elution. 11a: Colorless viscous oil. IR (film): 1690, 1598, $1476 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{DMSO}-d_{6}\right) \delta: 2.23(6 \mathrm{H}, \mathrm{s}), 2.56(2 \mathrm{H}, \mathrm{t}$, $J=7.6 \mathrm{~Hz}), 2.57(3 \mathrm{H}, \mathrm{s}), 2.78(2 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}), 3.81(3 \mathrm{H}, \mathrm{s}), 6.91(1 \mathrm{H}, \mathrm{dd}$, $J=9,2.4 \mathrm{~Hz}), 7.08(1 \mathrm{H}, \mathrm{d}, J=2.4 \mathrm{~Hz}), 7.60(1 \mathrm{H}, \mathrm{s}), 8.18(1 \mathrm{H}, \mathrm{d}, J=9 \mathrm{~Hz})$.

HR-MS m / z : Calcd for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{2}: 260.1525$. Found: 260.1518.

1-Formyl-5-methoxy- N, N-dimethyltryptamine (11b) from 2e A solution of 2e $(40.4 \mathrm{mg}, 0.18 \mathrm{mmol})$ in $85 \% \mathrm{HCOOH}(4.0 \mathrm{ml})$ was heated at $80^{\circ} \mathrm{C}$ for 86 h with stirring. After evaporation of the solvent under reduced pressure, the residue was subjected to $\mathrm{p}-\mathrm{TLC}$ on SiO_{2} with $\mathrm{CHCl}_{3}-\mathrm{MeOH}-$ 28% aq. $\mathrm{NH}_{3}(46: 5: 0.5, \mathrm{v} / \mathrm{v})$. Under UV light, two bands were detected. Extraction from the upper band with $\mathrm{CHCl}_{3}-\mathrm{MeOH}-28 \%$ aq. $\mathrm{NH}_{3}(46: 5$: $0.5, \mathrm{v} / \mathrm{v}$) afforded 11b ($22.5 \mathrm{mg}, 50 \%$). Extraction from the lower band with the same solvent as above afforded unreacted $\mathbf{2 e}(13.0 \mathrm{mg}, 32 \%)$. 11b: Colorless viscous oil. IR (film): 1708, $1602 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}$ (DMSO- $d_{6}, 60^{\circ} \mathrm{C}$) $\delta: 2.37(6 \mathrm{H}, \mathrm{s}), 2.76(2 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}), 2.86(2 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}), 3.83(3 \mathrm{H}, \mathrm{s})$, $6.96(1 \mathrm{H}, \mathrm{dd}, J=8,2.7 \mathrm{~Hz}), 7.15(1 \mathrm{H}, \mathrm{d}, J=2.7 \mathrm{~Hz}), 7.60(1 \mathrm{H}, \mathrm{s}), 8.06(1 \mathrm{H}$, brs), $9.20(1 \mathrm{H}, \mathrm{brs})$. HR-MS m / z : Calcd for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2}: 246.1367$. Found: 246.1368.
N-Methylserotonin (1b) from 9b $\mathrm{LiAlH}_{4}(59.9 \mathrm{mg}, 1.58 \mathrm{mmol})$ was added to a solution of $\mathbf{9 b}(31.2 \mathrm{mg}, 0.13 \mathrm{mmol})$ in anhydrous $\mathrm{Et}_{2} \mathrm{O}-\mathrm{THF}$ $(1: 1, \mathrm{v} / \mathrm{v}, 4.0 \mathrm{ml})$ and the mixture was refluxed for 26 h with stirring. After cooling, MeOH was added to the reaction mixture to destroy excess LiAlH_{4}. After evaporation of the solvent under reduced pressure, the residual oil was column-chromatographed on SiO_{2} with $\mathrm{CHCl}_{3}-\mathrm{MeOH}-28 \%$ aq. NH_{3} (5:1: 1, v/v) to give 1b ($16.4 \mathrm{mg}, 65 \%$). 1b: Colorless viscous oil. ${ }^{3)}$ IR (film): 3380, 3280, 1618, 1578, $1460 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}\right) \delta: 2.38(3 \mathrm{H}, \mathrm{s})$, $2.82-2.90\left(4 \mathrm{H}, \mathrm{m}, \mathrm{A}_{2} \mathrm{~B}_{2}\right), 6.66(1 \mathrm{H}, \mathrm{dd}, J=8.5,2.4 \mathrm{~Hz}), 6.92(1 \mathrm{H}$, dd, $J=2.4,0.5 \mathrm{~Hz}), 7.00(1 \mathrm{H}, \mathrm{s}), 7.15(1 \mathrm{H}, \mathrm{dd}, J=8.5,0.5 \mathrm{~Hz}) . \mathrm{HR}-\mathrm{MS} m / z$: Calcd for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}: 190.1106$. Found: 190.1106 .

5-Hydroxy- N, N-dimethyltryptamine (1c, Bufotenine) from 8e c $\mathrm{H}_{2} \mathrm{SO}_{4}(1.0 \mathrm{ml})$ was added to a solution of $8 \mathbf{e}(31.2 \mathrm{mg}, 0.15 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}$ $(19.0 \mathrm{ml})$ and the mixture was refluxed for 6 h with stirring. After cooling, the reaction mixture was made neutral by adding sat. aq. NaHCO_{3} and the whole was extracted with $\mathrm{CHCl}_{3}-\mathrm{MeOH}(95: 5, \mathrm{v} / \mathrm{v})$. The extract was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated under reduced pressure to leave an oil, which was column-chromatographed on SiO_{2} with $\mathrm{CHCl}_{3}-\mathrm{MeOH}-28 \%$ aq. NH_{3} $(46: 5: 0.5, \mathrm{v} / \mathrm{v})$ to give $\mathbf{6 e}(4.5 \mathrm{mg}, 16 \%)$ and $\mathbf{1 c}(14.7 \mathrm{mg}, 47 \%)$ in the order of elution. 1c: mp $146-147^{\circ} \mathrm{C}$ (colorless prisms, recrystallized from EtOAc, lit., ${ }^{3)} \mathrm{mp} 146-147^{\circ} \mathrm{C}$). IR spectrum was identical with that of the reported chart. ${ }^{3}{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}\right) \delta: 2.41(6 \mathrm{H}, \mathrm{s}), 2.73(2 \mathrm{H}, \mathrm{t}, J=8.1 \mathrm{~Hz})$, $2.90(2 \mathrm{H}, \mathrm{t}, J=8.1 \mathrm{~Hz}), 6.66(1 \mathrm{H}, \mathrm{dd}, J=8.6,2.4 \mathrm{~Hz}), 6.90(1 \mathrm{H}, \mathrm{dd}, J=2.4$, $0.5 \mathrm{~Hz}), 7.00(1 \mathrm{H}, \mathrm{s}), 7.15(1 \mathrm{H}, \mathrm{dd}, J=8.6,0.5 \mathrm{~Hz})$. MS m/z: $204\left(\mathrm{M}^{+}\right)$. Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}$: C, $70.56 ; \mathrm{H}, 7.90$; N, 13.72. Found: C, 70.48; H, 8.17; $\mathrm{N}, 13.58$. Iodomethylate: $\mathrm{mp} 218-219^{\circ} \mathrm{C}$ (colorless prisms, recrystallized from MeOH , lit.,${ }^{3)} \mathrm{mp} 214-215^{\circ} \mathrm{C}$). IR (KBr): $1620,1584,1475 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-$ NMR ($\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta: 3.19-3.26(2 \mathrm{H}, \mathrm{m}), 3.24(9 \mathrm{H}, \mathrm{s}), 3.57-3.62(2 \mathrm{H}, \mathrm{m})$, $6.71(1 \mathrm{H}, \mathrm{dd}, J=8.5,2.4 \mathrm{~Hz}), 6.94(1 \mathrm{H}, \mathrm{dd}, J=2.4,0.5 \mathrm{~Hz}), 7.15(1 \mathrm{H}, \mathrm{s})$, $7.19(1 \mathrm{H}, \mathrm{dd}, J=8.5,0.5 \mathrm{~Hz})$. Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{OI}: \mathrm{C}, 45.10 ; \mathrm{H}$, 5.53; N, 8.09. Found: C, 44.98; H, 5.66; N, 7.80. Monopicrate: mp $185-$ $186^{\circ} \mathrm{C}$ (orange prisms, recrystallized from MeOH , lit., ${ }^{3)} \mathrm{mp} 179-180^{\circ} \mathrm{C}$). IR (KBr): 1626, 1609, $1561,1333 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}$ (DMSO- $\left.d_{6}\right) \delta: 2.85(6 \mathrm{H}$, s), $2.98(2 \mathrm{H}, \mathrm{t}, J=8.1 \mathrm{~Hz}), 3.29(2 \mathrm{H}, \mathrm{t}, J=8.1 \mathrm{~Hz}), 6.64(1 \mathrm{H}, \mathrm{dd}, J=8.5$, $2.4 \mathrm{~Hz}), 6.87(1 \mathrm{H}, \mathrm{d}, J=2.4 \mathrm{~Hz}), 7.13(1 \mathrm{H}, \mathrm{d}, J=2.4 \mathrm{~Hz}$, collapsed to s on addition of $\left.\mathrm{D}_{2} \mathrm{O}\right), 7.16(1 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}), 8.59(2 \mathrm{H}, \mathrm{s}), 8.64(1 \mathrm{H}, \mathrm{s}$, disappeared on addition of $\left.\mathrm{D}_{2} \mathrm{O}\right), 9.15\left(1 \mathrm{H}, \mathrm{brs}\right.$, disappeared on addition of $\left.\mathrm{D}_{2} \mathrm{O}\right)$, $10.63\left(1 \mathrm{H}\right.$, brs, disappeared on addition of $\left.\mathrm{D}_{2} \mathrm{O}\right)$. Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O} \cdot \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{~N}_{3} \mathrm{O}_{7}:$ C, 49.88; H, 4.42; N, 16.16. Found: C, 49.84; H, 4.38; N, 15.90 .

Compound 1c from 2e 1 m solution of BBr_{3} in toluene $(5.7 \mathrm{ml}$, $5.7 \mathrm{mmol})$ was added to a solution of $\mathbf{2 e}(245.4 \mathrm{mg}, 1.13 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(12.0 \mathrm{ml})$ at $-15^{\circ} \mathrm{C}$ and the mixture was stirred at $-15^{\circ} \mathrm{C}$ for an additional 4 h . After addition of ice and $\mathrm{H}_{2} \mathrm{O}$, the mixture was made basic ($\mathrm{pH} 8-9$) by adding 30% aq. NaOH . The whole was extracted with $\mathrm{CHCl}_{3}-\mathrm{MeOH}(9: 1$, $\mathrm{v} / \mathrm{v})$. The extract was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated under reduced pressure to leave an oil, which was column-chromatographed on SiO_{2} with $\mathrm{CHCl}_{3}-\mathrm{MeOH}-28 \%$ aq. $\mathrm{NH}_{3}(46: 5: 0.5$, v/v) to give unreacted $2 \mathbf{e}(58.5 \mathrm{mg}, 24 \%)$ and $\mathbf{1 c}(145.4 \mathrm{mg}, 63 \%)$ in the order of elution.

5-Benzyloxy-1-formyl- N -methoxycarbonyltryptamine (12a) from 9a A solution of benzyl bromide ($217.7 \mathrm{mg}, 1.27 \mathrm{mmol}$) in anhydrous DMF $(1.0 \mathrm{ml})$ was added to a mixture of $\mathrm{K}_{2} \mathrm{CO}_{3}(165.3 \mathrm{mg}, 1.20 \mathrm{mmol})$ and 9 a ($104.3 \mathrm{mg}, 0.39 \mathrm{mmol}$) in anhydrous DMF $(2.0 \mathrm{ml})$, and the whole was stirred at room temperature for 2.5 h . After addition of $\mathrm{H}_{2} \mathrm{O}$, the whole was extracted with $\mathrm{CHCl}_{3}-\mathrm{MeOH}(95: 5, \mathrm{v} / \mathrm{v})$. The extract was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated under reduced pressure to leave an oil, which was column-chromatographed on SiO_{2} with EtOAc-hexane ($1: 4$, v / v) to give 12a ($132.1 \mathrm{mg}, 94 \%$). 12a: pale yellow oil. IR (film): 3300, 1700, 1600, $1478 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}$ (DMSO- $\left.d_{6}, 90^{\circ} \mathrm{C}\right) \delta: 2.81(2 \mathrm{H}, \mathrm{t}$, $J=7.2 \mathrm{~Hz}), 3.32(2 \mathrm{H}, \mathrm{q}, J=7.2 \mathrm{~Hz}), 3.54(3 \mathrm{H}, \mathrm{s}), 5.16(2 \mathrm{H}, \mathrm{s}), 6.84(1 \mathrm{H}$,
brs), $7.03(1 \mathrm{H}, \mathrm{dd}, J=2.4,8.8 \mathrm{~Hz}), 7.24(1 \mathrm{H}, \mathrm{d}, J=2.4 \mathrm{~Hz}), 7.31(1 \mathrm{H}, \mathrm{t}$, $J=7.7 \mathrm{~Hz}), 7.38(2 \mathrm{H}, \mathrm{t}, J=7.7 \mathrm{~Hz}), 7.47(2 \mathrm{H}, \mathrm{d}, J=7.7 \mathrm{~Hz}), 7.55(1 \mathrm{H}, \mathrm{s})$, $8.04(1 \mathrm{H}$, brd, $J=8.8 \mathrm{~Hz}), 9.24(1 \mathrm{H}, \mathrm{brs})$. HR-MS m/z: Calcd for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{4}: 352.1423$. Found: 352.1421 .

5-Benzyloxytryptamine (12b) from 12a 40% aq. $\mathrm{NaOH}(2.0 \mathrm{ml})$ was added to a solution of $\mathbf{1 2 a}(174.9 \mathrm{mg}, 0.50 \mathrm{mmol})$ in $\mathrm{MeOH}(6.0 \mathrm{ml})$ and the mixture was refluxed for 4 h with stirring. After addition of $\mathrm{H}_{2} \mathrm{O}$, the whole was extracted with $\mathrm{CHCl}_{3}-\mathrm{MeOH}(95: 5, \mathrm{v} / \mathrm{v})$. The extract was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated under reduced pressure to leave an oil, which was column-chromatographed on SiO_{2} with $\mathrm{CHCl}_{3}-\mathrm{MeOH}-28 \%$ aq. $\mathrm{NH}_{3}(46: 2: 0.2$, v/v) to give 12b $(126.5 \mathrm{mg}, 96 \%)$. 12b: mp $97.5-$ $99.5^{\circ} \mathrm{C}$ (colorless powder, recrystallized from CHCl_{3}-hexane). IR (KBr): $1585,1490,1465,1205,1010 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta: 1.51(2 \mathrm{H}, \mathrm{brs}$, disappeared on addition of $\left.\mathrm{D}_{2} \mathrm{O}\right), 2.86(2 \mathrm{H}, \mathrm{t}, J=6.6 \mathrm{~Hz}), 3.01(2 \mathrm{H}, \mathrm{t}, J=$ $6.6 \mathrm{~Hz}), 5.11(2 \mathrm{H}, \mathrm{s}), 6.94(1 \mathrm{H}, \mathrm{dd}, J=2.5,8.8 \mathrm{~Hz}), 7.02(1 \mathrm{H}, \mathrm{d}, J=2.5 \mathrm{~Hz})$, $7.14(1 \mathrm{H}, \mathrm{d}, J=2.5 \mathrm{~Hz}), 7.25(1 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}), 7.31(1 \mathrm{H}, \mathrm{brt}, J=7.7 \mathrm{~Hz})$, $7.38(2 \mathrm{H}, \mathrm{brt}, J=7.7 \mathrm{~Hz}), 7.48(2 \mathrm{H}, \mathrm{brd}, J=7.7 \mathrm{~Hz}), 7.94(1 \mathrm{H}, \mathrm{br}$ s, disappeared on addition of $\left.\mathrm{D}_{2} \mathrm{O}\right)$. MS m/z: $266\left(\mathrm{M}^{+}\right)$. Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O} \cdot 1 / 8 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 76.02 ; \mathrm{H}, 6.85$; $\mathrm{N}, 10.43$. Found: C, $76.10 ; \mathrm{H}, 6.81$; N, 10.49.
N-[2-(5-Benzyloxyindol-3-yl)ethyl]succinamic Acid (3b) from 12b Succinic anhydride ($22.6 \mathrm{mg}, 0.22 \mathrm{mmol}$) was added to a solution of $\mathbf{1 2 b}$ $(49.0 \mathrm{mg}, 0.18 \mathrm{mmol})$ in anhydrous THF $(4.0 \mathrm{ml})$ and the mixture was stirred at room temperature for 20 min . The solvent was evaporated under reduced pressure to leave an oil, which was column-chromatographed on SiO_{2} with $\mathrm{CHCl}_{3}-\mathrm{MeOH}-\mathrm{AcOH}(46: 5: 0.5, \mathrm{v} / \mathrm{v}$) to give 3b ($64.6 \mathrm{mg}, 96 \%$). 3b: mp $145-147^{\circ} \mathrm{C}$ (colorless plates, recrystallized from $\mathrm{MeOH}-\mathrm{CHCl}_{3}$). IR (KBr): 3400, 1710, 1610, 1545, $1195 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta: 2.41-$ $2.44(2 \mathrm{H}, \mathrm{m}), 2.63-2.66(2 \mathrm{H}, \mathrm{m}), 2.95(2 \mathrm{H}, \mathrm{t}, J=6.6 \mathrm{~Hz}), 3.61(2 \mathrm{H}, \mathrm{q}$, $J=6.6 \mathrm{~Hz}), 5.11(2 \mathrm{H}, \mathrm{s}), 5.75(1 \mathrm{H}, \mathrm{brt}, J=6.6 \mathrm{~Hz}), 6.96(1 \mathrm{H}, \mathrm{dd}, J=8.8$, $2.2 \mathrm{~Hz}), 7.02(1 \mathrm{H}, \mathrm{d}, J=2.2 \mathrm{~Hz}), 7.11(1 \mathrm{H}, \mathrm{d}, J=2.2 \mathrm{~Hz}), 7.28(1 \mathrm{H}, \mathrm{t}$, $J=8.8 \mathrm{~Hz}), 7.32(1 \mathrm{H}, \mathrm{t}, J=7.7 \mathrm{~Hz}), 7.39(2 \mathrm{H}, \mathrm{brt}, J=7.7 \mathrm{~Hz}), 7.48(2 \mathrm{H}, \mathrm{d}$, $J=7.7 \mathrm{~Hz}), 8.02\left(1 \mathrm{H}\right.$, br s, disappeared on addition of $\left.\mathrm{D}_{2} \mathrm{O}\right)$. Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{4}: \mathrm{C}, 68.83$; H, 6.05; N, 7.65. Found: C, 68.73; H, 6.02; N, 7.57.

Methyl N-[2-(5-Benzyloxyindol-3-yl)ethyl]succinamate (3d) and N-[2-(5-Benzyloxyindol-3-yl)ethyl]succinimide (13a) from 3b An excess amount of ethereal $\mathrm{CH}_{2} \mathrm{~N}_{2}$ was added to a solution of $\mathbf{3 b}(166.0 \mathrm{mg}$, $0.45 \mathrm{mmol})$ in $\mathrm{MeOH}(5.0 \mathrm{ml})$ at room temperature and stirring was continued for 10 min . After evaporation of the solvent under reduced pressure, the residual oil was column-chromatographed with $\mathrm{CHCl}_{3}-\mathrm{MeOH}(99: 1, \mathrm{v} / \mathrm{v})$ to give $\mathbf{1 3 a}(47.5 \mathrm{mg}, 30 \%)$ and $\mathbf{3 d}(98.7 \mathrm{mg}, 57 \%)$ in the order of elution. 3d: $\mathrm{mp} 108-110^{\circ} \mathrm{C}$ (colorless needles, recrystallized from CHCl_{3}-hexane). IR (KBr): 3390, $1725,1658 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta: 2.40(2 \mathrm{H}, \mathrm{t}$, $J=6.8 \mathrm{~Hz}), 2.65(2 \mathrm{H}, \mathrm{t}, J=6.8 \mathrm{~Hz}), 2.92(2 \mathrm{H}, \mathrm{t}, J=6.6 \mathrm{~Hz}), 3.58(2 \mathrm{H}, \mathrm{q}$, $J=6.6 \mathrm{~Hz}), 3.65(3 \mathrm{H}, \mathrm{s}), 5.11(2 \mathrm{H}, \mathrm{s}), 5.67(1 \mathrm{H}, \mathrm{brt}, J=6.6 \mathrm{~Hz}), 6.95(1 \mathrm{H}$, dd, $J=8.6,2.4 \mathrm{~Hz}), 7.04(1 \mathrm{H}, \mathrm{d}, J=2.2 \mathrm{~Hz}), 7.13(1 \mathrm{H}, \mathrm{d}, J=2.4 \mathrm{~Hz}), 7.27$ $(1 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}), 7.32(1 \mathrm{H}, \mathrm{t}, J=7.4 \mathrm{~Hz}), 7.39(2 \mathrm{H}, \mathrm{t}, J=7.4 \mathrm{~Hz}), 7.48(2 \mathrm{H}$, d, $J=7.4 \mathrm{~Hz}), 7.98\left(1 \mathrm{H}\right.$, br s). Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{4}: \mathrm{C}, 69.45 ; \mathrm{H}$, 6.36; N, 7.36. Found: C, 69.43; H, 6.34; N, 7.31. 13a: mp 172-174 ${ }^{\circ} \mathrm{C}$ (colorless powder, recrystallized from $\mathrm{CHCl}_{3}-$ hexane $)$. IR (KBr): 3380, 1767, $1690 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta: 2.62(4 \mathrm{H}, \mathrm{s}), 3.01(2 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}), 3.81$ $(2 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}), 5.12(2 \mathrm{H}, \mathrm{s}), 6.93(1 \mathrm{H}, \mathrm{dd}, J=8.8,2.4 \mathrm{~Hz}), 7.06(1 \mathrm{H}, \mathrm{d}$, $J=2.4 \mathrm{~Hz}), 7.23(1 \mathrm{H}, \mathrm{s}), 7.24(1 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}), 7.31(1 \mathrm{H}, \mathrm{brt}, J=7.6 \mathrm{~Hz})$, $7.38(2 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}), 7.51(2 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz}), 7.90(1 \mathrm{H}, \mathrm{br} \mathrm{s})$. Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{3}$: C, $72.39 ; \mathrm{H}, 5.79 ; \mathrm{N}, 8.04$. Found: C, $72.15 ; \mathrm{H}, 5.72 ; \mathrm{N}$, 7.98 .

Compound 3d from 3b An excess amount of ethereal $\mathrm{CH}_{2} \mathrm{~N}_{2}$ was added to a solution of $\mathbf{3 b}(99.6 \mathrm{mg}, 0.27 \mathrm{mmol})$ in $\mathrm{MeOH}(3.0 \mathrm{ml})$ at $0^{\circ} \mathrm{C}$ and stirring was continued for 10 min at $0^{\circ} \mathrm{C}$. After evaporation of the solvent under reduced pressure, the residual oil was column-chromatographed with $\mathrm{CHCl}_{3}-\mathrm{MeOH}(99: 1, \mathrm{v} / \mathrm{v})$ to give 3d (101.0 mg, 97%).

Bufobutanoic Acid (3a) from 3b A solution of 3b $(54.2 \mathrm{mg}$, $0.15 \mathrm{mmol})$ in $\mathrm{MeOH}(3.0 \mathrm{ml})$ was hydrogenated in the presence of 10% $\mathrm{Pd} / \mathrm{C}(53.4 \mathrm{mg})$ at room temperature and 1 atm for 1 h . Catalyst was filtered off and the filtrate was evaporated under reduced pressure to leave an oil, which was column-chromatographed on SiO_{2} with $\mathrm{CHCl}_{3}-\mathrm{MeOH}-\mathrm{AcOH}$ ($46: 5: 0.5, \mathrm{v} / \mathrm{v}$) to give 3a ($40.4 \mathrm{mg}, 99 \%$). 3a: Pale brown oil. IR (film): $3390,1710,1620,1580,1540,1485,1460,1365,1185,938,800 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-$ NMR (DMSO- $\left.d_{6}\right) \delta: 2.32(2 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}), 2.43(2 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}), 2.70$ $(2 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}), 3.28(2 \mathrm{H}, \mathrm{q}, J=7.6 \mathrm{~Hz}), 6.58(1 \mathrm{H}, \mathrm{dd}, J=8.6,2.2 \mathrm{~Hz})$, $6.81(1 \mathrm{H}, \mathrm{d}, J=2.2 \mathrm{~Hz}), 7.02(1 \mathrm{H}, \mathrm{d}, J=2.2 \mathrm{~Hz}), 7.11(1 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz})$, $7.94(1 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}), 8.60\left(1 \mathrm{H}, \mathrm{brs}\right.$, disappeared on addition of $\left.\mathrm{D}_{2} \mathrm{O}\right)$, $10.45(1 \mathrm{H}, \mathrm{s})$. HR-MS m / z : Calcd for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{4}$: 276.1110. Found: 276.1109. Spectral data are identical with the reported values. ${ }^{8)}$
N-[2-(Indol-3-yl)ethyl]succinimide (13b) and Methyl N-[2-(Indol-3yl)ethyl]succinamate (14) from 6c Succinic anhydride (750.8 mg , $7.50 \mathrm{mmol})$ was added to a solution of $\mathbf{6 c}(1.00 \mathrm{~g}, 6.25 \mathrm{mmol})$ in anhydrous THF $(50.0 \mathrm{ml})$ and the mixture was stirred at room temperature for 20 min . After evaporation of the solvent, the residue was dissolved in MeOH $(10.0 \mathrm{ml})$ and excess ethereal $\mathrm{CH}_{2} \mathrm{~N}_{2}$ was added to the resultant solution. After stirring at room temperature for 5 min , the solvent was evaporated under reduced pressure to leave an oil, which was column-chromatographed on SiO_{2} with $\mathrm{CHCl}_{3}-\mathrm{MeOH}(99: 1$, v/v) to give $\mathbf{1 3 b}(50.3 \mathrm{mg}, 3 \%)$ and $\mathbf{1 4}$ $(1.53 \mathrm{~g}, 89 \%)$ in the order of elution. 13b: mp $178-180^{\circ} \mathrm{C}$ (colorless prisms, recrystallized from CHCl_{3}-hexane). IR (KBr): $1770,1690 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 2.61(4 \mathrm{H}, \mathrm{s}), 3.06(2 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}), 3.83(2 \mathrm{H}, \mathrm{t}$, $J=7.6 \mathrm{~Hz}), 7.09(1 \mathrm{H}, \mathrm{d}, J=2.4 \mathrm{~Hz}), 7.13(1 \mathrm{H}, \mathrm{ddd}, J=8.0,7.0,1.0 \mathrm{~Hz}), 7.19$ $(1 \mathrm{H}, \mathrm{ddd}, J=8.0,7.0,1.0 \mathrm{~Hz}), 7.35(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}), 7.67(1 \mathrm{H}, \mathrm{d}$, $J=8.0 \mathrm{~Hz}), 8.02\left(1 \mathrm{H}, \mathrm{br}\right.$ s). Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{2}: \mathrm{C}, 69.40 ; \mathrm{H}, 5.83$; $\mathrm{N}, 11.56$. Found: $\mathrm{C}, 69.31 ; \mathrm{H}, 5.79 ; \mathrm{N}, 11.59 .14: \mathrm{mp} 118-120^{\circ} \mathrm{C}$ (colorless needles, recrystallized from $\left.\mathrm{CHCl}_{3}\right)$. IR (KBr) : $1723,1650,1545,1230$, $740 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta: 2.40(2 \mathrm{H}, \mathrm{t}, J=6.8 \mathrm{~Hz}), 2.65(2 \mathrm{H}, \mathrm{t}$, $J=6.8 \mathrm{~Hz}), 2.97(2 \mathrm{H}, \mathrm{t}, J=6.8 \mathrm{~Hz}), 3.60(2 \mathrm{H}, \mathrm{q}, J=6.8 \mathrm{~Hz}), 3.66(3 \mathrm{H}, \mathrm{s})$, $5.67(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 7.06(1 \mathrm{H}, \mathrm{d}, J=2.4 \mathrm{~Hz}), 7.13(1 \mathrm{H}$, ddd, $J=8.1,7.1,1.0 \mathrm{~Hz})$, $7.21(1 \mathrm{H}, \mathrm{ddd}, J=8.1,7.1,1.0 \mathrm{~Hz}), 7.38(1 \mathrm{H}, \mathrm{dt}, J=8.1,1.0 \mathrm{~Hz}), 7.61(1 \mathrm{H}$, dd, $J=8.1,1.0 \mathrm{~Hz}), 8.07(1 \mathrm{H}, \mathrm{br} s)$. MS $m / z: 274\left(\mathrm{M}^{+}\right)$. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{3} \cdot 1 / 8 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 65.14 ; \mathrm{H}, 6.65 ; \mathrm{N}, 10.13$. Found: C, $65.07 ; \mathrm{H}, 6.61$; N, 10.27 .
N-[2-(5-Hydroxyindol-3-yl)ethyl]succinimide (13c) from 3c 14\% aq. $\mathrm{K}_{2} \mathrm{CO}_{3}(3.0 \mathrm{ml})$ was added to a solution of $\mathbf{3 c}(72.6 \mathrm{mg}, 0.25 \mathrm{mmol})$ in $\mathrm{MeOH}(3.0 \mathrm{ml})$ and the mixture was stirred at room temperature for 40 min . AcOH was added to the reaction mixture until the pH of the whole became 5.0. Evaporation of the solvent under reduced pressure left brown solid, which was column-chromatographed with EtOAc-hexane ($1: 2, \mathrm{v} / \mathrm{v}$) to give 13c $(16.7 \mathrm{mg}, 26 \%) .13 \mathrm{c}: \mathrm{mp} 219-221^{\circ} \mathrm{C}$ (colorless needles, recrystallized from $\mathrm{CHCl}_{3}-\mathrm{MeOH}$). IR (KBr): 3400, 3300, 1763, $1680 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(\right.$ DMSO- $\left.d_{6}\right) \delta: 2.61(4 \mathrm{H}, \mathrm{s}), 2.76-2.79(2 \mathrm{H}, \mathrm{m}), 3.55-3.58(2 \mathrm{H}, \mathrm{m}), 6.59$ $(1 \mathrm{H}, \mathrm{dd}, J=8.6,2.2 \mathrm{~Hz}), 6.84(1 \mathrm{H}, \mathrm{d}, J=2.2 \mathrm{~Hz}), 7.07(1 \mathrm{H}, \mathrm{d}, J=2.2 \mathrm{~Hz})$, $7.12(1 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}), 8.63\left(1 \mathrm{H}, \mathrm{s}\right.$, disappeared on addition of $\left.\mathrm{D}_{2} \mathrm{O}\right), 10.51$ $(1 \mathrm{H}, \mathrm{s})$. MS m/z: $258\left(\mathrm{M}^{+}\right)$. Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{3} \cdot 1 / 8 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 64.54$; H, 5.51; N, 10.75. Found: C, 64.59; H, 5.35; N, 10.61 .

Methyl N-[2-(2,3-Dihydroindol-3-yl)ethyl]succinamate (15) from 14 $\mathrm{Et}_{3} \mathrm{SiH}(0.12 \mathrm{ml}, 0.73 \mathrm{mmol})$ was added to a solution of $14(100.1 \mathrm{mg}$, 0.36 mmol) in TFA $(5.0 \mathrm{ml})$ and the mixture was stirred at $60^{\circ} \mathrm{C}$ for 4 h . After evaporation of the solvent, the whole was made basic by adding saturated NaHCO_{3} under ice cooling and extracted with $\mathrm{CHCl}_{3}-\mathrm{MeOH}$ (95:5, v / v). The extract was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated under reduced pressure to leave an oil, which was column-chromatographed on SiO_{2} with $\mathrm{CHCl}_{3}-\mathrm{MeOH}(97: 3$, v/v) to give $\mathbf{1 5}$ ($99.6 \mathrm{mg}, 99 \%$). 15: mp $74-75^{\circ} \mathrm{C}$ (colorless prisms, recrystallized from CHCl_{3}-hexane). IR (KBr): $1724,1645 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta: 1.73-1.81(1 \mathrm{H}, \mathrm{m}), 1.95-2.02$ $(1 \mathrm{H}, \mathrm{m}), 2.43(2 \mathrm{H}, \mathrm{t}, J=6.8 \mathrm{~Hz}), 2.63-2.68(2 \mathrm{H}, \mathrm{m}), 3.26-3.41(4 \mathrm{H}, \mathrm{m})$, $3.68(3 \mathrm{H}, \mathrm{s}), 3.70(1 \mathrm{H}, \mathrm{t}, J=8.8 \mathrm{~Hz}), 5.82(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 6.65(1 \mathrm{H}, \mathrm{d}, J=7.5 \mathrm{~Hz})$, $6.73(1 \mathrm{H}, \mathrm{dt}, J=1.0,7.5 \mathrm{~Hz}), 7.04(1 \mathrm{H}, \mathrm{brt}, J=7.5 \mathrm{~Hz}), 7.09(1 \mathrm{H}$, br d, $J=$ $7.5 \mathrm{~Hz})$. MS m/z: $276\left(\mathrm{M}^{+}\right)$. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{3}$: C, 65.19; H, 7.30; N, 10.14. Found: C, 65.22; H, 7.37; N, 10.04.

Methyl N-[2-(1-Hydroxyindol-3-yl)ethyl]succinamate (16) from 15 A solution of $\mathrm{Na}_{2} \mathrm{WO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}(24.1 \mathrm{mg}, 0.07 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}(1.0 \mathrm{ml})$ was added to a solution of $\mathbf{1 5}(100.6 \mathrm{mg}, 0.36 \mathrm{mmol})$ in $\mathrm{MeOH}(10.0 \mathrm{ml})$ and then 30% $\mathrm{H}_{2} \mathrm{O}_{2}(0.37 \mathrm{ml}, 3.64 \mathrm{mmol})$ was added to the reaction mixture at $0^{\circ} \mathrm{C}$. After stirring at room temperature for $1 \mathrm{~h}, \mathrm{H}_{2} \mathrm{O}$ was added to the reaction mixture and the whole was extracted with CHCl_{3}. The extract was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated under reduced pressure to leave an oil, which was column-chromatographed repeatedly on SiO_{2} with EtOAc-hexane ($1: 1, \mathrm{v} / \mathrm{v}$) and $\mathrm{CHCl}_{3}-\mathrm{MeOH}(99: 1, \mathrm{v} / \mathrm{v})$ to give 16 $(59.4 \mathrm{mg}, 56 \%)$ and unreacted $15(6.6 \mathrm{mg}, 7 \%)$ in the order of elution. 16: $\mathrm{mp} 151.5-153.5^{\circ} \mathrm{C}$ (colorless needles, recrystallized from EtOAc-hexane). IR (KBr): 3370, 1715, 1640, 1555, $740 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}\right) \delta: 2.45$ $(2 \mathrm{H}, \mathrm{t}, J=6.8 \mathrm{~Hz}), 2.58(2 \mathrm{H}, \mathrm{t}, J=6.8 \mathrm{~Hz}), 2.90(2 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}), 3.45(2 \mathrm{H}$, $\mathrm{t}, J=7.2 \mathrm{~Hz}), 3.65(3 \mathrm{H}, \mathrm{s}), 6.99(1 \mathrm{H}, \mathrm{t}, J=8.0 \mathrm{~Hz}), 7.11(1 \mathrm{H}, \mathrm{s}), 7.13(1 \mathrm{H}, \mathrm{t}$, $J=8.0 \mathrm{~Hz}), 7.34(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}), 7.53(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz})$. MS $m / z: 290$ $\left(\mathrm{M}^{+}\right)$. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{4} \cdot 1 / 8 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 61.58 ; \mathrm{H}, 6.29 ; \mathrm{N}, 9.58$. Found: C, 61.57; H, 6.18; N, 9.41.

Methyl N-[2-(5-Hydroxyindol-3-yl)ethyl]succinamate (3c) and Methyl N-[2-(1-Formyl-5-hydroxyindol-3-yl)ethyl]succinamate (3e) from 16 A solution of $\mathbf{1 6}(134.6 \mathrm{mg}, 0.46 \mathrm{mmol})$ in $85 \% \mathrm{HCOOH}(40.0 \mathrm{ml})$ was stirred at $50^{\circ} \mathrm{C}$ for 50 min . The solvent was evaporated under reduced pressure to leave an oil, which was column-chromatographed repeatedly on SiO_{2} with

EtOAc-hexane ($1: 1, \mathrm{v} / \mathrm{v}$) and $\mathrm{CHCl}_{3}-\mathrm{MeOH}(99: 1$, v/v) to give $\mathbf{3 e}$ $(30.6 \mathrm{mg}, 21 \%)$ and $\mathbf{3 c}(50.6 \mathrm{mg}, 38 \%)$ in the order of elution. $\mathbf{3 c}$: Colorless oil. IR (film): $3320,1730,1645 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta: 2.42(2 \mathrm{H}, \mathrm{t}, J=$ $6.3 \mathrm{~Hz}), 2.69(2 \mathrm{H}, \mathrm{t}, J=6.3 \mathrm{~Hz}), 2.91(2 \mathrm{H}, \mathrm{t}, J=6.3 \mathrm{~Hz}), 3.51(2 \mathrm{H}, \mathrm{q}, J=$ $6.3 \mathrm{~Hz}), 3.73(3 \mathrm{H}, \mathrm{s}), 5.66(1 \mathrm{H}, \mathrm{brt}, J=6.3 \mathrm{~Hz}), 6.07(1 \mathrm{H}, \mathrm{br} \mathrm{s}$, disappeared on addition of $\left.\mathrm{D}_{2} \mathrm{O}\right), 6.82(1 \mathrm{H}, \mathrm{dd}, J=8.8,2.5 \mathrm{~Hz}), 7.00(1 \mathrm{H}, \mathrm{d}, J=2.5 \mathrm{~Hz})$, $7.06(1 \mathrm{H}, \mathrm{d}, J=2.5 \mathrm{~Hz}), 7.22(1 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}), 7.91(1 \mathrm{H}, \mathrm{br}$ s, disappeared on addition of $\mathrm{D}_{2} \mathrm{O}$). HR-MS m/z: Calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{4}: 290.1267$. Found: 290.1264. 3e: mp $178-180^{\circ} \mathrm{C}$ (colorless needles, recrystallized from $\mathrm{MeOH}-\mathrm{CHCl}_{3}$). IR (KBr): $3350,1727,1697,1648 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}$ (DMSO$\left.d_{6}, 90^{\circ} \mathrm{C}\right) \delta: 2.36(2 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}), 2.50(2 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}), 2.74(2 \mathrm{H}, \mathrm{t}$, $J=7.5 \mathrm{~Hz}), 3.36(2 \mathrm{H}, \mathrm{q}, J=7.5 \mathrm{~Hz}), 3.58(3 \mathrm{H}, \mathrm{s}), 6.80(1 \mathrm{H}, \mathrm{dd}, J=8.7$, $2.2 \mathrm{~Hz}), 6.93(1 \mathrm{H}, \mathrm{d}, J=2.2 \mathrm{~Hz}), 7.47(1 \mathrm{H}, \mathrm{s}), 7.70(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 7.93(1 \mathrm{H}, \mathrm{br} \mathrm{s})$, $9.00(1 \mathrm{H}, \mathrm{brs}), 9.18(1 \mathrm{H}, \mathrm{brs})$. MS m/z: $318\left(\mathrm{M}^{+}\right)$. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{5}$: C, 60.37; H, 5.70; N, 8.80. Found: C, 60.29 ; H, 5.63; N, 8.73.

Bufobutanoic Acid (3a) from 3c 14% aq. $\mathrm{K}_{2} \mathrm{CO}_{3}(2.0 \mathrm{ml})$ was added to a solution of $3 \mathbf{c}(18.1 \mathrm{mg}, 0.062 \mathrm{mmol})$ in $\mathrm{MeOH}(2.0 \mathrm{ml})$ at $0^{\circ} \mathrm{C}$ and the mixture was stirred at $50^{\circ} \mathrm{C}$ for 1 h . The whole was made acidic by adding $6 \% \mathrm{HCl}$ under ice cooling and evaporated under reduced pressure to leave an oil, which was column-chromatographed on SiO_{2} with $\mathrm{CHCl}_{3}-\mathrm{MeOH}-$ $\mathrm{AcOH}(46: 5: 0.5, \mathrm{v} / \mathrm{v})$ to give unreacted $\mathbf{3 c}(2.5 \mathrm{mg}, 14 \%)$ and $\mathbf{3 a}(12.1 \mathrm{mg}$, 70%) in the order of elution.

Compound 3a from 1a Succinic anhydride ($63.5 \mathrm{mg}, 0.64 \mathrm{mmol}$) was added to a solution of serotonin hydrochloride $(\mathbf{1 a} \cdot \mathrm{HCl}, 103.9 \mathrm{mg}$, $0.49 \mathrm{mmol})$ in DMF $(5.0 \mathrm{ml})$ and pyridine $(0.5 \mathrm{ml})$ at room temperature and stirring was continued for 10 h . After evaporation of solvent under reduced pressure, the residual oil was column-chromatographed on SiO_{2} with $\mathrm{CHCl}_{3}-\mathrm{MeOH}-\mathrm{AcOH}(46: 5: 0.5, \mathrm{v} / \mathrm{v})$ to give 3a ($113.0 \mathrm{mg}, 84 \%$) and unreacted $\mathbf{1 a}(12.7 \mathrm{mg}, 15 \%)$ in the order of elution.
N-Indol-3-ylmethyl- N-methyltryptamine (18) from 6a A solution of $n-\mathrm{Bu}_{3} \mathrm{P}(23.0 \mathrm{mg}, 0.11 \mathrm{mmol})$ in $\mathrm{MeCN}(3.0 \mathrm{ml})$ was added to a mixture of $\mathbf{6 a}(36.4 \mathrm{mg}, 0.21 \mathrm{mmol})$ and gramine $(\mathbf{1 7}, 44.3 \mathrm{mg}, 0.25 \mathrm{mmol})$ and the resultant solution was refluxed for 15 h under Ar atmosphere with stirring. After evaporation of the solvent under reduced pressure, the residual oil was column-chromatographed on SiO_{2} with $\mathrm{CHCl}_{3}-\mathrm{MeOH}-28 \%$ aq. NH_{3} (46: $5: 0.5, \mathrm{v} / \mathrm{v})$ to give $\mathbf{1 8}(46.3 \mathrm{mg}, 73 \%), \mathbf{1 7}(6.8 \mathrm{mg})$, and unreacted $\mathbf{6 a}$ $(9.5 \mathrm{mg}, 26 \%)$ in the order of elution. 18: mp $119-121^{\circ} \mathrm{C}$ (colorless prisms, recrystallized from acetone-hexane). IR $(\mathrm{KBr}): 3400,1619$, $1450 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta: 2.38(3 \mathrm{H}, \mathrm{s}), 2.81\left(2 \mathrm{H}, \mathrm{m}, \mathrm{A}_{2}\right.$ part of $\left.\mathrm{A}_{2} \mathrm{~B}_{2}\right), 3.03\left(2 \mathrm{H}, \mathrm{m}, \mathrm{B}_{2}\right.$ part of $\left.\mathrm{A}_{2} \mathrm{~B}_{2}\right), 3.81(2 \mathrm{H}, \mathrm{s}), 6.97(1 \mathrm{H}, \mathrm{d}, J=2.5 \mathrm{~Hz})$, $7.06-7.13(3 \mathrm{H}, \mathrm{m}), 7.15-7.21(2 \mathrm{H}, \mathrm{m}), 7.32(1 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}), 7.34(1 \mathrm{H}$, d, $J=8.1 \mathrm{~Hz}), 7.54(1 \mathrm{H}, \mathrm{d}, J=8.1 \mathrm{~Hz}), 7.72(1 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}), 7.95(1 \mathrm{H}, \mathrm{br} \mathrm{s}$, disappeared on addition of $\left.\mathrm{D}_{2} \mathrm{O}\right), 8.09(1 \mathrm{H}, \mathrm{brs}$, disappeared on addition of $\left.\mathrm{D}_{2} \mathrm{O}\right)$. MS m/z: $303\left(\mathrm{M}^{+}\right)$. Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{~N}_{3}: \mathrm{C}, 79.17 ; \mathrm{H}, 6.98 ; \mathrm{N}$, 13.85. Found: C, 79.11 ; H, 7.08; N, 13.60.

1-Ethyl- (19b) and/or 2,3-Dihydro- N -indol-3-ylmethyl- N -methyltryptamine (19a) from 18: Method $\mathbf{A}: \mathrm{NaBH}_{3} \mathrm{CN}(308.9 \mathrm{mg}, 4.92 \mathrm{mmol})$ was added to a solution of $\mathbf{1 8}(298.8 \mathrm{mg}, 0.98 \mathrm{mmol})$ in $\mathrm{AcOH}(12.0 \mathrm{ml})$ and TFA $(4.0 \mathrm{ml})$ and the mixture was stirred for 13 h at room temperature. After addition of $\mathrm{H}_{2} \mathrm{O}$, the mixture was made basic ($\mathrm{pH} \mathrm{10)}$) by adding 8% aq. NaOH and the whole was extracted with CHCl_{3}. The extract was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated under reduced pressure to leave an oil, which was column-chromatographed on SiO_{2} with $\mathrm{CHCl}_{3}-\mathrm{MeOH}-28 \%$ aq. $\mathrm{NH}_{3}(46: 5: 0.5$, v/v) to give $19 \mathrm{a}(213.0 \mathrm{mg}, 71 \%)$. 19a: Colorless viscous oil. IR (film): $3390,1606,1485,1457 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}\right) \delta: 1.72-1.80(1 \mathrm{H}, \mathrm{m}), 2.02-2.10(1 \mathrm{H}, \mathrm{m}), 2.29(3 \mathrm{H}, \mathrm{s})$, $2.52(1 \mathrm{H}, \mathrm{ddd}, J=12.2,10.7,5.1 \mathrm{~Hz}), 2.61(1 \mathrm{H}, \mathrm{ddd}, J=12.2,10.7,5.6 \mathrm{~Hz})$, $3.07(1 \mathrm{H}, \mathrm{dd}, J=8.9,7.1 \mathrm{~Hz}), 3.18-3.25(1 \mathrm{H}, \mathrm{m}), 3.51(1 \mathrm{H}, \mathrm{t}, J=8.9 \mathrm{~Hz})$, $3.76(1 \mathrm{H}, \mathrm{d}, J=13.4 \mathrm{~Hz}), 3.80(1 \mathrm{H}, \mathrm{d}, J=13.4 \mathrm{~Hz}), 6.64(1 \mathrm{H}, \mathrm{d}, J=7.3 \mathrm{~Hz})$, $6.65(1 \mathrm{H}, \mathrm{dt}, J=1,7.3 \mathrm{~Hz}), 6.96(1 \mathrm{H}, \mathrm{brt}, J=7.3 \mathrm{~Hz}), 6.99(1 \mathrm{H}, \mathrm{br}$ d, $J=7.3 \mathrm{~Hz}), 7.03(1 \mathrm{H}, \mathrm{ddd}, J=8.1,7.1,1 \mathrm{~Hz}), 7.10(1 \mathrm{H}$, ddd, $J=8.1,7.1$, $1 \mathrm{~Hz}), 7.19(1 \mathrm{H}, \mathrm{s}), 7.35(1 \mathrm{H}, \mathrm{dt}, J=8.1,1 \mathrm{~Hz}), 7.62(1 \mathrm{H}, \mathrm{dt}, J=8.1,1 \mathrm{~Hz})$. HR-MS m / z : Calcd for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{~N}_{3}: 305.1892$. Found: 305.1895 .

Method B: $\mathrm{NaBH}_{3} \mathrm{CN}(39.8 \mathrm{mg}, 0.63 \mathrm{mmol})$ was added to a solution of $\mathbf{1 8}(25.5 \mathrm{mg}, 0.08 \mathrm{mmol})$ in $\mathrm{AcOH}(2.0 \mathrm{ml})$ and the mixture was stirred for 7 h at room temperature After addition of $\mathrm{H}_{2} \mathrm{O}$, the mixture was made basic (pH 10) by adding 8% aq. NaOH and the whole was extracted with CHCl_{3}. The extract was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated under reduced pressure to leave an oil, which was column-chromatographed on SiO_{2} with $\mathrm{CHCl}_{3}-\mathrm{MeOH}-28 \%$ aq. $\mathrm{NH}_{3}(46: 5: 0.5$, v/v) to give 19b ($3.1 \mathrm{mg}, 11 \%$), 19a ($7.1 \mathrm{mg}, 28 \%$), and unreacted $18(15.3 \mathrm{mg}, 60 \%) .19 b:$ Colorless viscous oil. IR (film): 3410, 1603, 1486, $1455 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(\mathrm{CD}_{3} \mathrm{OD}\right) \delta: 1.10(3 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}), 1.70-1.78(1 \mathrm{H}, \mathrm{m}), 2.01-2.09(1 \mathrm{H}$, m), $2.32(3 \mathrm{H}, \mathrm{s}), 2.52(1 \mathrm{H}, \mathrm{ddd}, J=12.2,10.8,4.9 \mathrm{~Hz}), 2.63(1 \mathrm{H}, \mathrm{ddd}$,
$J=12.2,10.8,5.6 \mathrm{~Hz}), 2.84(1 \mathrm{H}, \mathrm{dd}, J=8.7,7 \mathrm{~Hz}), 3.01(1 \mathrm{H}, \mathrm{dq}, J=13.2$, $7.2 \mathrm{~Hz}), 3.09-3.16(1 \mathrm{H}, \mathrm{m}), 3.10(1 \mathrm{H}, \mathrm{dq}, J=13.2,7.2 \mathrm{~Hz}), 3.34(1 \mathrm{H}, \mathrm{t}$, $J=8.7 \mathrm{~Hz}), 3.77(1 \mathrm{H}, \mathrm{d}, J=13.4 \mathrm{~Hz}), 3.83(1 \mathrm{H}, \mathrm{d}, J=13.4 \mathrm{~Hz}), 6.48(1 \mathrm{H}, \mathrm{d}$, $J=7.3 \mathrm{~Hz}), 6.59(1 \mathrm{H}, \mathrm{dt}, J=1,7.3 \mathrm{~Hz}), 6.95(1 \mathrm{H}, \mathrm{d}, J=7.3 \mathrm{~Hz}), 7.00(1 \mathrm{H}$, br t, $J=7.3 \mathrm{~Hz}$), $7.03(1 \mathrm{H}$, ddd, $J=8.1,7.1,1 \mathrm{~Hz}), 7.10(1 \mathrm{H}, \operatorname{ddd}, J=8.1,7.1$, $1 \mathrm{~Hz}), 7.20(1 \mathrm{H}, \mathrm{s}), 7.36(1 \mathrm{H}, \mathrm{dt}, J=8.1,1 \mathrm{~Hz}), 7.62(1 \mathrm{H}, \mathrm{dt}, J=8.1,1 \mathrm{~Hz})$. HR-MS m / z : Calcd for $\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{~N}_{3}: 333.2205$. Found: 333.2201 .

1-Hydroxy- N -indol-3-ylmethyl- N -methyltryptamine (20) from 19a A solution of $\mathrm{Na}_{2} \mathrm{WO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}(54.3 \mathrm{mg}, 0.16 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}(2.8 \mathrm{ml})$ was added to a solution of $19 \mathrm{a}(213.0 \mathrm{mg}, 0.70 \mathrm{mmol})$ in $\mathrm{MeOH}(28.0 \mathrm{ml})$. To the resultant solution was added $30 \% \mathrm{H}_{2} \mathrm{O}_{2}(0.72 \mathrm{ml}, 7.05 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$ with stirring. After stirring at room temperature for $1 \mathrm{~h}, \mathrm{Me}_{2} \mathrm{~S}(0.6 \mathrm{ml}, 8.2 \mathrm{mmol})$ was added to the reaction mixture cautiously under ice-cooling. Stirring was continued at room temperature for 30 min and the whole was extracted with CHCl_{3}. The extract was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated under reduced pressure to leave an oil, which was column-chromatographed on SiO_{2} with $\mathrm{CHCl}_{3}-\mathrm{MeOH}-28 \%$ aq. $\mathrm{NH}_{3}(46: 5: 0.5$, v/v) to give $20(113.9 \mathrm{mg}, 51 \%) .20: \mathrm{mp} 173-174^{\circ} \mathrm{C}$ (decomp., colorless prisms, recrystallized from acetone). IR (KBr): $3380,1540,1451 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}$ (DMSO- d_{6}) $\delta: 2.24(3 \mathrm{H}, \mathrm{s}), 2.65(2 \mathrm{H}, \mathrm{t}, J=7.8 \mathrm{~Hz}), 2.88(2 \mathrm{H}, \mathrm{t}, J=7.8 \mathrm{~Hz})$, $3.71(2 \mathrm{H}, \mathrm{s}), 6.92(1 \mathrm{H}$, ddd, $J=7.8,7.1,1 \mathrm{~Hz}), 6.95(1 \mathrm{H}, \mathrm{ddd}, J=7.8,7.1$, $1 \mathrm{~Hz}), 7.06(1 \mathrm{H}$, ddd, $J=8.1,7.1,1 \mathrm{~Hz}), 7.10(1 \mathrm{H}$, ddd, $J=8.1,7.1,1 \mathrm{~Hz})$, $7.21(1 \mathrm{H}, \mathrm{d}, J=2.1 \mathrm{~Hz}), 7.22(1 \mathrm{H}, \mathrm{s}), 7.30(1 \mathrm{H}, \mathrm{d}, J=8.1 \mathrm{~Hz}), 7.34(1 \mathrm{H}, \mathrm{d}$, $J=8.2 \mathrm{~Hz}), 7.40(1 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}), 7.61(1 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}), 10.87(1 \mathrm{H}, \mathrm{brs}$, disappeared on addition of $\left.\mathrm{D}_{2} \mathrm{O}\right), 10.97(1 \mathrm{H}$, br s, disappeared on addition of $\left.\mathrm{D}_{2} \mathrm{O}\right)$. MS m/z: $319\left(\mathrm{M}^{+}\right)$. Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O} \cdot 1 / 8 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 74.68 ; \mathrm{H}$, 6.66; N, 13.06. Found: C, 74.65; H, 6.65; N, 12.90.

N -Indol-3-ylmethyl-5-methoxy- N -methyltryptamine (4) from 2a A solution of $n-\mathrm{Bu}_{3} \mathrm{P}(22.9 \mathrm{mg}, 0.11 \mathrm{mmol})$ in $\mathrm{MeCN}(5.0 \mathrm{ml})$ was added to a mixture of $\mathbf{2 a}(57.3 \mathrm{mg}, 0.28 \mathrm{mmol})$ and gramine $(\mathbf{1 7}, 59.6 \mathrm{mg}, 0.34 \mathrm{mmol})$ and the resultant solution was refluxed for 24 h under an Ar atmosphere with stirring. After evaporation of the solvent under reduced pressure, the residual oil was column-chromatographed on SiO_{2} with $\mathrm{CHCl}_{3}-\mathrm{MeOH}-28 \%$ aq. $\mathrm{NH}_{3}(46: 5: 0.5, \mathrm{v} / \mathrm{v})$ to give $\mathbf{4}(73.0 \mathrm{mg}, 78 \%), \mathbf{1 7}(12.1 \mathrm{mg})$, and unreacted 2a ($12.0 \mathrm{mg}, 21 \%$) in the order of elution. 4: Colorless viscous oil (lit., ${ }^{7}$ amorphous whitish powder). Although IR and ${ }^{1} \mathrm{H}-\mathrm{NMR}$ data differ slightly from the reported values, ${ }^{7)}$ we found that proton signals shift markedly depending on the deuterated solvent and concentration. The data of ${ }^{13} \mathrm{C}-\mathrm{NMR}$ are completely identical with the reported values. ${ }^{7}$ IR $\left(\mathrm{CHCl}_{3}\right): 3450$ (br), 2780, 1621, 1585, 1483, $1451 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(5 \% \mathrm{CD}_{3} \mathrm{OD}\right.$ in $\left.\mathrm{CDCl}_{3}\right) \delta$: $2.40(3 \mathrm{H}, \mathrm{s}), 2.81\left(2 \mathrm{H}, \mathrm{m}, \mathrm{A}_{2}\right.$ part of $\left.\mathrm{A}_{2} \mathrm{~B}_{2}\right), 3.00\left(2 \mathrm{H}, \mathrm{m}, \mathrm{B}_{2}\right.$ part of $\left.\mathrm{A}_{2} \mathrm{~B}_{2}\right)$, $3.79(3 \mathrm{H}, \mathrm{s}), 3.85(2 \mathrm{H}, \mathrm{s}), 6.82(1 \mathrm{H}, \mathrm{dd}, J=8.8,2.5 \mathrm{~Hz}), 6.95(1 \mathrm{H}, \mathrm{s}), 6.97$ $(1 \mathrm{H}, \mathrm{d}, J=2.5 \mathrm{~Hz}), 7.11(1 \mathrm{H}, \mathrm{ddd}, J=8.1,7,1 \mathrm{~Hz}), 7.17(1 \mathrm{H}, \mathrm{s}), 7.18(1 \mathrm{H}$, ddd, $J=8.1,7,1 \mathrm{~Hz}), 7.23(1 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}), 7.37(1 \mathrm{H}, \mathrm{dt}, J=8.1,1 \mathrm{~Hz})$, $7.69(1 \mathrm{H}, \mathrm{dt}, J=8.1,1 \mathrm{~Hz})$. HR-MS m/z: Calcd for $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}: 333.1841$. Found: 333.1852.

Compound 4 from 20 A solution of $20(29.8 \mathrm{mg}, 0.09 \mathrm{mmol})$ in 10% $\mathrm{H}_{2} \mathrm{SO}_{4}$ in $\mathrm{MeOH}(4.0 \mathrm{ml})$ was refluxed for 6 h with stirring. After cooling, the reaction mixture was made basic (pH 10) by adding 20% aq. NaOH and the whole was extracted with $\mathrm{CHCl}_{3}-\mathrm{MeOH}(9: 1$, v/v). The extract was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated under reduced pressure to leave an oil, which was column-chromatographed on SiO_{2} with $\mathrm{CHCl}_{3}-\mathrm{MeOH}-28 \%$ aq. $\mathrm{NH}_{3}(46: 5: 0.5, \mathrm{v} / \mathrm{v})$ to give 4 ($5.8 \mathrm{mg}, 19 \%$), $\mathbf{1 8}$ ($2.6 \mathrm{mg}, 9 \%$), and unreacted $20(15.9 \mathrm{mg}, 53 \%)$ in the order of elution.

1-Hydroxy-2-oxindole (26) from Methyl 2-Nitrophenylacetate (25) $\mathrm{Zn}(314.6 \mathrm{mg}, 4.81 \mathrm{mg}$ atom) was added to a solution of $25(46.1 \mathrm{mg}$, $0.23 \mathrm{mmol})$ and $\mathrm{NH}_{4} \mathrm{Cl}(49.3 \mathrm{mg}, 0.92 \mathrm{mmol})$ in $\mathrm{MeOH}(2.0 \mathrm{ml})$ and $\mathrm{H}_{2} \mathrm{O}$ $(0.5 \mathrm{ml})$ and the mixture was stirred at room temperature for 3 h . To the reaction mixture, $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}(95: 5, \mathrm{v} / \mathrm{v})$ was added. The precipitates were filtered off through thin SiO_{2} layer and washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}(95: 5$, v / v). The filtrate and washings were combined and evaporated under reduced pressure to leave the residue, which was made acidic by adding $0.3 \% \mathrm{aq}$. HCl and the whole was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}(95: 5$, v/v). The extract was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated under reduced pressure to leave an oil, which was subjected to p - TLC on SiO_{2} with $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}(95: 5, \mathrm{v} / \mathrm{v})$ to give $26(16.8 \mathrm{mg}, 48 \%)$. 26: mp 200.5$202.0{ }^{\circ} \mathrm{C}$ (colorless prisms, recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}$, lit., ${ }^{25)} \mathrm{mp}$ 199-201 ${ }^{\circ} \mathrm{C}$). IR (KBr): $1675,1617 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(10 \% \mathrm{CD}_{3} \mathrm{OD}\right.$ in $\left.\mathrm{CDCl}_{3}\right) \delta: 3.35(1 \mathrm{H}, \mathrm{br} s), 3.43(2 \mathrm{H}, \mathrm{s}), 6.65-7.41(4 \mathrm{H}, \mathrm{m})$.

Zinc Complex of 1-Hydroxy-2-oxindole (27) from $25 \mathrm{Zn}(6.405 \mathrm{~g}$, 98 mg atom) was added to a solution of $25(1.018 \mathrm{~g}, 5.2 \mathrm{mmol})$ and $\mathrm{NH}_{4} \mathrm{Cl}$ $(1.084 \mathrm{~g}, 20.2 \mathrm{mmol})$ in $\mathrm{MeOH}(40 \mathrm{ml})$ and $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{ml})$ and the mixture was stirred at room temperature for 3 h . The precipitates were filtered off through filter paper and washed with hot MeOH . The filtrate and washings were
combined and evaporated under reduced pressure to dryness. Acetone was added to the residue, and the precipitates were removed through thin SiO_{2} layer. The filtrate was evaporated under reduced pressure to leave a crystalline solid, which was recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}(95: 5$, v/v) to give 27 ($243.7 \mathrm{mg}, 26 \%$) as colorless prisms. 27: mp $>300^{\circ} \mathrm{C}$. IR (KBr): $1630,1605 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\right.$ pyridine- $\left.d_{5}\right) \delta: 3.28(4 \mathrm{H}, \mathrm{s}), 6.62-7.38(8 \mathrm{H}$, m). HR-MS m / z : Calcd for $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Zn}: 360.0087$ and 362.0057 . Found: 360.0109 and 361.9963.

1-Acetoxy-2-oxindole (28) from $25 \mathrm{Zn}(6.590 \mathrm{~g}, 100 \mathrm{mg}$ atom) was added to a solution of $25(1.035 \mathrm{~g}, 5.4 \mathrm{mmol})$ and $\mathrm{NH}_{4} \mathrm{Cl}(1.137 \mathrm{~g}$, $21.2 \mathrm{mmol})$ in $\mathrm{MeOH}(40 \mathrm{ml})$ and $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{ml})$ and the mixture was stirred at room temperature for 3 h . The precipitates were filtered off through filter paper and washed with hot MeOH . The filtrate and washings were combined and evaporated under reduced pressure to dryness. To the residue, pyridine $(20 \mathrm{ml})$ and $\mathrm{Ac}_{2} \mathrm{O}(10 \mathrm{ml})$ were added and the mixture was stirred at room temperature for 4 h . After evaporation of the solvent under reduced pressure, $\mathrm{H}_{2} \mathrm{O}$ was added to the residue and the whole was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The extract was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated under reduced pressure to leave an oil, which was column-chromatographed on SiO_{2} with $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{Et}_{2} \mathrm{O}(10: 1, \mathrm{v} / \mathrm{v})$ to give 28 ($709.9 \mathrm{mg}, 70 \%$). 28: mp 97$99^{\circ} \mathrm{C}$ (colorless prisms, recrystallized from $\mathrm{Et}_{2} \mathrm{O}$-hexane). IR (KBr): 1807, $1727 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta: 2.33(3 \mathrm{H}, \mathrm{s}), 3.55(2 \mathrm{H}, \mathrm{s}), 6.50-7.35(4 \mathrm{H}$, m). MS m/z: $191\left(\mathrm{M}^{+}\right)$. Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{NO}_{3}: \mathrm{C}, 62.82 ; \mathrm{H}, 4.75 ; \mathrm{N}$, 7.33. Found: C, 63.00; H, 4.72; N, 7.04.

Compound 26 from 28 A solution of $28(104.2 \mathrm{mg}, 0.54 \mathrm{mmol})$ in sat. aq. $\mathrm{Na}_{2} \mathrm{CO}_{3}(10 \mathrm{ml})$ was heated at $100^{\circ} \mathrm{C}$ for 30 min with stirring. After cooling, the reaction mixture was made acidic by adding 18% aq. HCl and the resultant precipitates $(\mathbf{2 6}, 16.5 \mathrm{mg})$ were collected by filtration. The filtrate was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}(95: 5, \mathrm{v} / \mathrm{v})$. The extract was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated under reduced pressure to leave an oil, which was column-chromatographed on SiO_{2} with $\mathrm{Et}_{2} \mathrm{O}-\mathrm{CH}_{2} \mathrm{Cl}_{2}(3: 2, \mathrm{v} / \mathrm{v})$ to give further crop of $\mathbf{2 6}(59.8 \mathrm{mg})$. Total yield of 26 was 76.3 mg (94%).

1-Methoxy-2-oxindole (29) from $25 \mathrm{Zn}(823.5 \mathrm{mg}, 12.6 \mathrm{mg}$ atom) was added to a solution of $25(121.0 \mathrm{mg}, 0.62 \mathrm{mmol})$ and $\mathrm{NH}_{4} \mathrm{Cl}(130.4 \mathrm{mg}$, $2.43 \mathrm{mmol})$ in $\mathrm{MeOH}(5.0 \mathrm{ml})$ and $\mathrm{H}_{2} \mathrm{O}(1.2 \mathrm{ml})$ and the mixture was stirred at room temperature for 3 h . The precipitates were filtered off through filter paper and washed with hot MeOH . The filtrate and washings were combined and evaporated under reduced pressure to dryness and the residue was dissolved in $\mathrm{MeOH}(5.0 \mathrm{ml})$. To the resultant solution, ethereal $\mathrm{CH}_{2} \mathrm{~N}_{2}$ was added until the gas evolution was not observed. After evaporation of the solvent under reduced pressure, the residual oil was subjected to p-TLC on SiO_{2} with $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}(97: 3, \mathrm{v} / \mathrm{v})$ to give 29 ($78.0 \mathrm{mg}, 77 \%$). 29: mp $84.5-86.0^{\circ} \mathrm{C}$ (colorless prisms, recrystallized from $\mathrm{Et}_{2} \mathrm{O}$, lit., ${ }^{25}$) $\mathrm{mp} 84-$ $86^{\circ} \mathrm{C}$). IR (KBr): $1712,1617 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta: 3.42(2 \mathrm{H}, \mathrm{s}), 3.95$ $(3 \mathrm{H}, \mathrm{s}), 6.65-7.42(4 \mathrm{H}, \mathrm{m}) . \mathrm{MS} m / z: 163\left(\mathrm{M}^{+}\right)$.

1-Methoxy-2-oxindole-3-spirocyclopropane (30) from 29 A solution of $29(103.4 \mathrm{mg}, 0.63 \mathrm{mmol})$ in anhydrous DMF $(2.5 \mathrm{ml})$ was added to 50% $\mathrm{NaH}\left(62.8 \mathrm{mg}, 1.30 \mathrm{mmol}\right.$, washed with dry benzene) at $0^{\circ} \mathrm{C}$ with stirring. To the resultant solution was added a solution of ethylene dibromide $(144 \mathrm{mg}, 2.5 \mathrm{mmol})$ in DMF $(1.5 \mathrm{ml})$ and the mixture was stirred at room temperature for 4 h . After addition of $\mathrm{H}_{2} \mathrm{O}$ under ice cooling, the whole was extracted with benzene. The extract was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated under reduced pressure to leave an oil, which was subjected to p-TLC on SiO_{2} with $\mathrm{Et}_{2} \mathrm{O}$-hexane to give 30 ($108.7 \mathrm{mg}, 90 \%$). 30: Colorless viscous oil. IR (film): 1723, $1619 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CCl}_{4}\right) \delta$: $1.17-1.54(2 \mathrm{H}, \mathrm{m}), 1.54-1.87(2 \mathrm{H}, \mathrm{m}), 3.92(3 \mathrm{H}, \mathrm{s}), 6.41-7.21(4 \mathrm{H}, \mathrm{m})$. HR-MS m / z : Calcd for $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{NO}_{2}$: 189.0789. Found: 189.0795.

1-Methoxy-3-(2- N, N-dimethylaminoethyl)-2-oxindole (31) and 2-(2- N -Methoxyaminophenyl)- N, N-dimethyl-4-(N, N-dimethylamino)butylamide (32) from 3050% aq. $\mathrm{Me}_{2} \mathrm{NH}(12.0 \mathrm{ml}, 107 \mathrm{mmol})$ was added to a solution of $\mathbf{3 0}(404.4 \mathrm{mg}, 2.1 \mathrm{mmol})$ and $\mathrm{Me}_{2} \mathrm{NH} \cdot \mathrm{HCl}(1.614 \mathrm{~g}, 19.5 \mathrm{mmol})$ in DMF $(28 \mathrm{ml})$ and the mixture was sealed in a tube. The whole was heated at $65 \pm 5^{\circ} \mathrm{C}$ for 20 h with stirring. After cooling, the reaction mixture was made basic with $0.8 \% \mathrm{NaOH}$ and the whole was extracted with benzene. The extract was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated under reduced pressure to leave an oil, which was column-chromatographed on SiO_{2} with $\mathrm{CHCl}_{3}-\mathrm{MeOH}-28 \%$ aq. $\mathrm{NH}_{3}-1,2$-dichloroethane ($46: 5: 0.5: 2.5$, v/v) to give $31(270.3 \mathrm{mg}, 54 \%)$ and $32(60.0 \mathrm{mg}, 10 \%)$ in the order of elution. 31: Colorless viscous oil. IR (film): $1727,1616 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CCl}_{4}\right) \delta$: $1.69-2.50\left(4 \mathrm{H}, \mathrm{A}_{2} \mathrm{~B}_{2}, \mathrm{~m}\right), 2.06(6 \mathrm{H}, \mathrm{s}), 3.32(1 \mathrm{H}, \mathrm{t}, J=5.6 \mathrm{~Hz}), 3.86(3 \mathrm{H}$, $\mathrm{s})$, 6.57-7.29 (4H, m). HR-MS m / z : Calcd for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2}$: 234.1367. Found: 234.1375. 32: Colorless viscous oil. IR (film): $3480,1647 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 1.67-2.57(4 \mathrm{H}, \mathrm{m}), 2.32(6 \mathrm{H}, \mathrm{s}), 2.73(3 \mathrm{H}, \mathrm{s}), 2.86(3 \mathrm{H}$,
s), $3.66(3 \mathrm{H}, \mathrm{s}), 3.90(1 \mathrm{H}, \mathrm{dd}, J=8.8,5.2 \mathrm{~Hz}), 6.50-7.30(4 \mathrm{H}, \mathrm{m}), 6.93(1 \mathrm{H}$, br s). HR-MS m / z : Calcd for $\mathrm{C}_{15} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{2}$: 279.1944. Found: 279.1937.

2,3-Dihydro-2-hydroxy-3-[2-(N, N-dimethylamino)ethyl]-1-methoxyindole (33) from $31 \mathrm{LiAlH}_{4}(9.6 \mathrm{mg}, 0.25 \mathrm{mmol})$ was added to a solution of $31(54.1 \mathrm{mg}, 0.23 \mathrm{mmol})$ in anhydrous $\mathrm{Et}_{2} \mathrm{O}(9.0 \mathrm{ml})$ and the mixture was stirred at room temperature for 2 h . After addition of MeOH at $0^{\circ} \mathrm{C}$ to the reaction mixture to destroy excess $\mathrm{LiAlH}_{4}, 10 \%$ aq. Rochelle salt was added and the whole was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}(95: 5, \mathrm{v} / \mathrm{v})$. The extract was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated under reduced pressure to leave an oil, which was column-chromatographed on SiO_{2} with $\mathrm{CHCl}_{3}-\mathrm{MeOH}-28 \%$ aq. $\mathrm{NH}_{3}(46: 5: 0.5, \mathrm{v} / \mathrm{v})$ to give $33(34.0 \mathrm{mg}, 62 \%)$. 33: Colorless viscous oil. IR (film): $3340,1612,1596,1475,1463 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-$ NMR $\left(\mathrm{CCl}_{4}\right) \delta: 1.84-2.75(5 \mathrm{H}, \mathrm{m}), 2.25(6 \mathrm{H}, \mathrm{s}), 3.82(3 \mathrm{H}, \mathrm{s}), 4.60$ and 4.92 (total 1 H , each d, $J=8 \mathrm{~Hz}$), $5.83(1 \mathrm{H}$, brs), $6.44-7.15(4 \mathrm{H}, \mathrm{m})$. HRMS m/z: Calcd for $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{2}$: 236.1523. Found: 236.1539.

Lespedamine (5) from $31 \quad \mathrm{LiAlH}_{4}(10.1 \mathrm{mg}, 0.25 \mathrm{mmol})$ was added to a solution of $\mathbf{3 1}(54.0 \mathrm{mg}, 0.23 \mathrm{mmol})$ in anhydrous $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{ml})$ and the mixture was stirred at room temperature for 3.5 h . After addition of MeOH at $0{ }^{\circ} \mathrm{C}$ to the reaction mixture to destroy excess LiAlH_{4}, the mixture was made acidic by adding $6 \% \mathrm{HCl}$. The whole was then made basic with $8 \% \mathrm{NaOH}$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}(95: 5, \mathrm{v} / \mathrm{v})$. The extract was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated under reduced pressure to leave an oil, which was subjected to p-TLC on SiO_{2} with $\mathrm{CHCl}_{3}-\mathrm{MeOH}-28 \%$ aq. $\mathrm{NH}_{3}(46: 5: 0.5, \mathrm{v} / \mathrm{v})$ to give $5(32.4 \mathrm{mg}, 64 \%)$. 5: Colorless viscous oil. IR $\left(\mathrm{CHCl}_{3}\right): 1460 \mathrm{~cm}^{-1}$ (lit., $\left.{ }^{8}\right) 1459 \mathrm{~cm}^{-1}$). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta: 2.37(6 \mathrm{H}, \mathrm{s})$, $2.65(2 \mathrm{H}, \mathrm{t}, J=8 \mathrm{~Hz}), 2.93(2 \mathrm{H}, \mathrm{t}, J=8 \mathrm{~Hz}), 4.05(3 \mathrm{H}, \mathrm{s}), 7.10(1 \mathrm{H}, \mathrm{dt}$, $J=0.9,7.8 \mathrm{~Hz}), 7.10(1 \mathrm{H}, \mathrm{s}), 7.23(1 \mathrm{H}, \mathrm{dt}, J=0.9,7.8 \mathrm{~Hz}), 7.40(1 \mathrm{H}, \mathrm{dd}$, $J=7.8,0.9 \mathrm{~Hz}), 7.57(1 \mathrm{H}, \mathrm{dd}, J=0.9,7.8 \mathrm{~Hz})$. HR-MS m / z : Calcd for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}: 218.1419$. Found: 218.1416. IR and ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra are identical with those of natural product reported in the literature. ${ }^{8)}$ Picrate: mp $161-163^{\circ} \mathrm{C}$ (lit., ${ }^{8)} \mathrm{mp} 160-162^{\circ} \mathrm{C}$).
Compound 5 from 33 Three drops of $6 \% \mathrm{HCl}$ were added to a solution of $\mathbf{3 3}(33.7 \mathrm{mg}, 0.14 \mathrm{mmol})$ in $\mathrm{MeOH}(5.0 \mathrm{ml})$ at room temperature with stirring. After 10 min , the reaction mixture was made basic with $0.8 \% \mathrm{NaOH}$ and the whole was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}(95: 5, \mathrm{v} / \mathrm{v})$. The extract was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated under reduced pressure to leave an oil, which was subjected to p-TLC on SiO_{2} with $\mathrm{CHCl}_{3}-$ $\mathrm{MeOH}-28 \%$ aq. $\mathrm{NH}_{3}(46: 5: 0.5, \mathrm{v} / \mathrm{v})$ to give $5(29.7 \mathrm{mg}, 95 \%)$.

Compound 5 and Lespedamine \boldsymbol{N}-Oxide (24a) from 7e A solution of $\mathrm{Na}_{2} \mathrm{WO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}(15.5 \mathrm{mg}, 0.05 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}(0.5 \mathrm{ml})$ was added to a solution of $7 \mathrm{e}(43.9 \mathrm{mg}, 0.23 \mathrm{mmol})$ in $\mathrm{MeOH}(5.0 \mathrm{ml})$. To the resultant solution was added $30 \% \mathrm{H}_{2} \mathrm{O}_{2}(0.24 \mathrm{ml}, 2.3 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$ with stirring. After stirring at room temperature for 30 min , excess ethereal $\mathrm{CH}_{2} \mathrm{~N}_{2}$ was added and stirring was continued for $30 \mathrm{~min} . \mathrm{H}_{2} \mathrm{O}$ was added to the reaction mixture and the whole was extracted with $\mathrm{CHCl}_{3}-\mathrm{MeOH}(95: 5, \mathrm{v} / \mathrm{v})$. The extract was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated under reduced pressure to leave an oil, which was column-chromatographed on SiO_{2} with $\mathrm{CHCl}_{3}-\mathrm{MeOH}-28 \%$ aq. $\mathrm{NH}_{3}(46: 5: 0.5$, v/v) to give $5(13.1 \mathrm{mg}, 26 \%)$ and $\mathbf{2 4 a}(17.0 \mathrm{mg}, 31 \%)$ in the order of elution. 24a: Colorless viscous oil. IR (film): 1644 (br), $1453 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta: 3.31(6 \mathrm{H}, \mathrm{s}), 3.37-3.40$ $(2 \mathrm{H}, \mathrm{m}), 3.57-3.60(2 \mathrm{H}, \mathrm{m}), 4.06(3 \mathrm{H}, \mathrm{s}), 7.13(1 \mathrm{H}, \mathrm{ddd}, J=7.9,7.5$, $1.1 \mathrm{~Hz}), 7.18(1 \mathrm{H}, \mathrm{s}), 7.25(1 \mathrm{H}, \mathrm{ddd}, J=7.9,7.5,1.1 \mathrm{~Hz}), 7.42(1 \mathrm{H}, \mathrm{dt}$, $J=7.9,1.1 \mathrm{~Hz}), 7.59(1 \mathrm{H}, \mathrm{dt}, J=7.9,1.1 \mathrm{~Hz})$. HR-MS m / z : Calcd for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2}: 234.1368$. Found: 234.1370 .

Compound 5 from 8e Excess ethereal $\mathrm{CH}_{2} \mathrm{~N}_{2}$ was added to a solution of $\mathbf{8 e}(13.1 \mathrm{mg}, 0.06 \mathrm{mmol})$ in $\mathrm{MeOH}(5.0 \mathrm{ml})$ and stirring was continued at room temperature for 30 min . After removal of the solvent under reduced pressure, the residue was subjected to p-TLC on SiO_{2} with $\mathrm{CHCl}_{3}-\mathrm{MeOH}-$ 28% aq. $\mathrm{NH}_{3}(46: 5: 0.5, \mathrm{v} / \mathrm{v})$ to give $5(8.0 \mathrm{mg}, 57 \%)$.

References and Notes

1) Part CII: Somei M., Yamada F., Goto A., Hayashi M., Hasegawa M., Heterocycles, 53, 2487-2498 (2000).
2) Rapport M. M., Green A. A., Page I. H., Science, 108, 329-330 (1948); Idem., J. Biol. Chem., 176, 1237-1241 (1948); Rapport M. M., ibid., 180, 961—969 (1949).
3) Stoll A., Troxler F., Peyer J., Hofmann A., Helv. Chim. Acta, 38, 1452-1472 (1955).
4) a) Wieland T., Motzel W., Merz H., Ann., 581, 10-16 (1953); b)

Stromberg V. L., J. Am. Chem. Soc., 76, 1707 (1954).
5) Marczynski T., Dissertationes Pharm., 11, 296-313 (1959); Wilkinson S., J. Chem. Soc., 1958, 2079— 2081.
6) Lerner A. B., Case J. D., Takahashi Y., Lee T. H., Mori W., J. Am. Chem. Soc., 80, 2587 (1958).
7) Weniger B., Rafik W., Bastida J., Quirion J.-C., Anton R., Planta Med., 61, 569—570 (1995).
8) Kamano Y., Morita H., Takano R., Kotake A., Nogawa T., Hashima H., Takeya K., Itokawa H., Pettit G. R., Heterocycles, 50, 499-503 (1999).
9) Morimoto H., Oshio H., Liebigs Ann. Chem., 682, 212-218 (1965).
10) Acheson R. M., Hunt P. G., Littlewood D. M., Murrer B. A., Rosenberg H. E., J. Chem. Soc., Perkin 1., 1978, 1117-1125.
11) a) Somei M., Kawasaki T., Fukui Y., Yamada F., Kobayashi T., Aoyama H., Shinmyo D., Heterocycles, 34, 1877-1884 (1992); b) Yamada F., Fukui Y., Shinmyo D., Somei M., ibid., 36, 99-104 (1993); c) Somei M., Fukui Y., ibid., 36, 1859-1866 (1993); d) Yamada F., Shinmyo D., Somei M., ibid., 38, 273-276 (1994); e) Hasegawa M., Tabata M., Satoh K., Yamada F., Somei M., ibid., 43, 2333-2336 (1996); f) Review: Somei M., ibid., 50, 1157-1211 (1999).
12) a) Review: Somei M., J. Synth. Org. Chem., 49, 205-217 (1991); b) Somei M., Kawasaki T., Shimizu K., Fukui Y., Ohta T., Chem. Pharm. Bull., 39, $1905-1907$ (1991); c) Somei M., Morikawa H., Yamada K., Yamada F., Heterocycles, 48, 1117-1120 (1998); d) Hasegawa M., Yamada K., Nagahama Y., Somei M., ibid., 51, 2815-2821 (1999).
13) Joule J. A., "Progress in Heterocyclic Chemistry," Vol. 11, ed. by Gribble G. W., Gilchrist T. L., Elsevier Science Ltd., Oxford, 1999, pp. 45-65.
14) a) Somei M., Sato H., Kaneko C., Heterocycles, 20, 1797-1799 (1983); b) Somei M., Yamada F., Morikawa H., ibid., 46, 91-94 (1997); c) Kurauchi T., Nagahama Y., Hasegawa M., Yamada K., Somei M., ibid., 53, 1017-1019 (2000) and a part of the reference 17.
15) Lanzilotti A. E., Littell R., Fanshawe W. J., McKenzie T. C., Lovell F. M., J. Org. Chem., 44, 4809-4813 (1979).
16) Somei M., Yamada K., Hasegawa M., Tabata M., Nagahama Y., Morikawa H., Yamada F., Heterocycles, 43, 1855-1858 (1996).
17) Somei M., Kobayashi K., Tanii K., Mochizuki T., Kawada Y., Fukui Y., Heterocycles, 40, 119-112 (1995).
18) Somei M., J. Synth. Org. Chem., 40, 387-400 (1982); Somei M., Makita Y., Yamada F., The 3rd International Kyoto Conference on New Aspects of Organic Chemistry, Abstracts Papers, Nov. (1985), p. 128 (presented orally); Somei M., Yakugaku Zasshi, 108, 361-380 (1988).

Originality rate is the result of the following calculation:
originality rate $(\%)=100 \times[$ number of newly developed steps +1$] \div$ [total number of synthetic steps +1]
19) Although hydrochloride of $\mathbf{1 2 b}$ is commercially available from Sigma, it is expensive and therefore not suitable as a common starting material for the production of serotonin congeners. Our present method seems to be better to obtain 12b at cheaper cost than the conventional one.
20) Cai P., Snyder J. K., Tetrahedron Lett., 31, 969-972 (1990).
21) Flaugh M. E., Cromwell T. A., Clemens J. A., Sawyer B. D., J. Med. Chem., 22, 63-69 (1979).
22) Somei M., Karasawa Y., Kaneko C., Heterocycles, 16, 941—947 (1981).
23) Gribble G. W., Hoffman J. H., Synthesis, 1977, 859-860; Flaugh M. E., Mullen D. L., Fuller R. W., Mason N. R., J. Med. Chem., 31, 1746-1753 (1988).
24) Optimum reaction conditions have not yet been determined. Treatment of 20 with $50 \% \mathrm{BF}_{3}$ in MeOH was also successful, but at present the yield of $\mathbf{4}$ is no more than 20% in addition to $20-30 \%$ yield of starting material recovery.
25) Wright W. B., Jr., Collins K. H., J. Am. Chem. Soc., 78, 221-224 (1956); Andre T., Georges M., Gilbert R., C. R. Acad. Sci., Ser. C, 274, 1378-1381 (1971) [Chem. Abstr., 76, 59359w (1972)]; Muth C. W., Beers R. N., Proc. W. Va. Acad. Sci., 41, 235-238 (1969) [Chem. Abstr., 74, 42104v (1971)].

