Synthetic studies directed toward ergot alkaloids， （ \pm ）－6，7－secoagroclavine，（ \pm ）－chanoclavine－1， （ \pm ）－chanoclavine－II，and（ \pm ）－agroclavine－I，by an efficient and common synthetic route

メタデータ	言語：eng
	出版者：
	公開日：2017－10－04
	キーワード（Ja）：
	キーワード（En）：
	作成者：
	メールアドレス：
	所属：
URL	http：／／hdl．handle．net／2297／23504

SYNTHETIC STUDIES DIRECTED TOWARD ERGOT ALKALOIDS, (\pm)-6,7-SECOAGROCLAVINE, (\pm)-CHANOCLAVINE-I, (\pm)-CHANOCLAVINEII, AND (\pm)-AGROCLAVINE-I, BY AN EFFICIENT AND COMMON SYNTHETIC ROUTE ${ }^{1 \#}$

Fumio Yamada, Yoshihiko Makita, and Masanori Somei*
Division of Pharmaceutical Sciences, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan Corresponding author: e-mail address: somei@p.kanazawa-u.ac.jp.

Abstract

Novel three synthetic routes to (\pm)-6,7-secoagroclavine were developed from either methyl 3-(3-formylindol-4-yl)acrylate, indole-4carbaldehyde, or 4-iodoindole-3-carbaldehyde. The total syntheses of (\pm)-chanoclavine-I, (\pm)-chanoclavine-II, and (\pm)-agroclavine-I were accomplished as well from the synthetic intermediates involved in the synthesis of (\pm)-6,7secoagroclavine, culminating in establishing an efficient and common synthetic method for ergot alkaloids.

Ergot alkaloids (Scheme 1) are one of the attractive alkaloids due to both their multimodal biological activities and the possibility for the development of new medicinal drugs. ${ }^{2}$ Their synthetic studies have been performed by many groups. ${ }^{3-6}$ Nevertheless, an efficient total synthesis of ergot alkaloids has not been attained judged on our synthetic philosophy for evaluating the effectiveness. ${ }^{7}$

Our idea started from choosing 6,7-secoagroclavine (1, Scheme 1) as an important target, which was one of the ergot alkaloids isolated by D. C. Horwell's group. ${ }^{3}$ Because once the synthetic route to $\mathbf{1}$ is established, the synthetic intermediates involved in the route would be derived by simple chemical modifications to the more complex ergot alkaloids, such as chanoclavine-I (2), ${ }^{8}$ chanoclavine-II (3), ${ }^{8}$ and agroclavine-I (4) ${ }^{9}$ providing a common synthetic route to ergot alkaloids.

In order to meet our end, we have thus far created simple synthetic methods for various 4 -substituted indoles from indole-3-carbaldehyde ${ }^{10}(\mathbf{5})$ utilizing (3-formylindol-4-yl)thallium bis(trifluoroacetate) (6) as an intermediate (Scheme 1). Examples are the synthesis of methyl 3-(3-formylindol-4-yl)acrylate ${ }^{11}$ (7a)

[^0]by one pot procedure in 70% yield and indole-4-carbaldehyde (8) in five or six steps in $25-30 \%$ overall yield from 5. ${ }^{10}$ Preparation of 4-iodoindole-3-carbaldehyde ${ }^{12}$ (9) was established as well by one pot procedure from 5 in 72% yield.

With these building blocks in hand, we succeeded in creating an efficient and common synthetic method for 1, chanoclavine-I (3), chanoclavine-II (4), and agroclavine-I (5). Part of this work was published as preliminary communications. ${ }^{13-18}$

Scheme 1

1: 6,7-Secoagroclavine

2: $R=\beta-H$, Chanoclavine-।
3: $\mathrm{R}=\alpha-\mathrm{H}$, Chanoclavine-II

10 KF, 18-Crown-6 MeNO

4: Agroclavine-I
e-l

5

7
9
11

12

13

14
b) $4 \beta-\mathrm{H}$

15 а) $4 \alpha-H$
b) $4 \beta-\mathrm{H}$

A Ten-Step Synthetic Route to (\pm)-6,7-Secoagroclavine (1)

The oxidation of the aldehyde group of $7 \mathbf{7 a}$ with NaClO_{2} in t - $\mathrm{BuOH}-\mathrm{H}_{2} \mathrm{O}$ in the presence of $\mathrm{NaH}_{2} \mathrm{PO}_{4}$ and 2-methyl-2-butene ${ }^{19}$ gave the corresponding carboxylic acid 7b in 90% yield (Scheme 1). Decarboxylation of 7b by heating in pyridine provided methyl 3-(indol-4-yl)acrylate (10) ${ }^{20}$ in 91% yield. Compound $\mathbf{1 0}$ was also available by the following two alternative route: 1) direct decarbonylation of $\mathbf{7 a}$ with $\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{3} \mathrm{RhCl}$ in refluxing benzene in 32% yield, 2) Wittig reaction of $\mathbf{8}$ with $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{CHCO}_{2} \mathrm{Me}$ in 99% yield. Subsequent Mannich reaction of $\mathbf{1 0}$ with $\mathrm{Me}_{2} \mathrm{NH}$ and HCHO in AcOH afforded the corresponding gramine $\mathbf{1 1}$ in 95% yield. Treatment of $\mathbf{1 1}$ with MeNO_{2} in refluxing MeCN in the presence of KF and 18 -crown-6 gave the tricyclic compounds, 4,5-cis- (12) and 4,5-trans-5-methoxycarbonylmethyl-4-nitro-1,3,4,5-tetrahydrobenz[$c d]$ indole (13), in 16 and 71% yields, respectively. Their stereochemistries were determined as shown in Scheme 1 comparing their coupling
constants between H-4 and H-5 (12: $J=4.0 \mathrm{~Hz}, \mathbf{1 3}: J=6.0 \mathrm{~Hz})$ in addition to the fact that the trans isomer 13 was eventually derived to the natural product 1.
In the next step, we needed a reductive methylation of the nitro group retaining the stereochemistry and the simultaneous transformation of the ester group to an isopropyl alcohol group. We conceived the idea that an excess amount of Grignard reagent could play dual role as a reducing reagent and a nucleophile, though nitroalkanes were rarely converted to N-substituted hydroxylamines with Grignard reagents. ${ }^{21,22}$ In fact, the treatment of the cis-compound $\mathbf{1 2}$ with excess MeMgI in THF- $\mathrm{Et}_{2} \mathrm{O}$ generated stereoselectively the hemiketal 14a as a single product in 69% yield. The configuration of the hydroxy group in the hemiketal part is unknown. Subsequent treatment of $\mathbf{1 4 a}$ with $\mathrm{Ac}_{2} \mathrm{O}$ opened the hemiketal ring resulting in the formation of the O-acetyl compound 15a in 93\% yield. On the basis of these results, the trans isomer 13 was similarly treated with excess MeMgI in $\mathrm{THF}-\mathrm{Et}_{2} \mathrm{O}$, followed by the acetylation without purification of the resulting methylhydroxylamine (14b), to afford the O-acetyl compound $\mathbf{1 5 b}$ in 69% overall yield. Since we have already established the conversion of $\mathbf{1 5 b}$ into (\pm)-6,7-secoagroclavine (1) in three steps, ${ }^{14)}$ the ten-step synthetic route of $\mathbf{1}$ was completed starting from indole-3-carbaldehyde (5). In this synthesis the originality rate (OR) is 27% because the following two steps, $\mathbf{5} \rightarrow \mathbf{7}$ and $\mathbf{1 3} \rightarrow \mathbf{1 4}$, are our original findings.

An Eight-Step Synthetic Route to (\pm)-6,7-Secoagroclavine (1)

To raise the OR rate, we attempted to develop a shorter-step synthesis than the above ten-step one. Utilizing 10 as a starting material, Grignard reaction was employed with MeMgI in $\mathrm{THF}^{2}-\mathrm{Et}_{2} \mathrm{O}$ to afford the allyl alcohol 16 in 89% yield (Scheme 2). Subsequent Mannich reaction of $\mathbf{1 6}$ with $\mathrm{Me}_{2} \mathrm{NH}$ and HCHO in AcOH gave many products and the desired gramine 17 was not obtained. However, dimethyl(methylene)ammonium chloride ${ }^{23}$ reacted well with 16 in MeCN affording 17 in 70% yield. Our monoalkylation method with MeNO_{2} in the presence of $n-\mathrm{Bu}_{3} \mathrm{P}$ as a catalyst ${ }^{24}$ was successfully applied to 17 resulting in the formation of nitroethyl compound $\mathbf{1 8}$ in 84% yield.
The construction of the 1,3,4,5-tetrahydrobenz[$c d]$ indole skeleton from $\mathbf{1 8}$ required a novel cyclization reaction. ${ }^{25}$ Our working hypothesis to meet our end is the following. A base can form nitronate on the nitro ethyl side chain of $\mathbf{1 8}$, while a Lewis acid can generate cation on the side chain at the 4-position, doubly stabilized by the allylic and benzylic systems. If a Lewis acid was added after the formation of the nitronate and if by chance the formation of the stable cation was faster than the disappearance of the nitronate, the desired cyclization would be realized. Hoping the existence of suitable combination, we examined various bases and acids and typical results are summarized in Table 1. As a result, the combination of zinc salt as a Lewis acid and $\mathrm{Et}_{3} \mathrm{~N}$ as a base was first found to be effective for our purpose. When 18 reacted with ZnCl_{2} and $\mathrm{Et}_{3} \mathrm{~N}$ in refluxing $\mathrm{ClCH}_{2} \mathrm{CH}_{2} \mathrm{Cl}, 4,5$-trans-5-(2-methyl-1-propen-1-yl)-4-nitro-1,3,4,5-tetrahydrobenz[cd]indole (19) was obtained in 41% yield together with 9% yield of diene $\mathbf{2 0}$
(Entry 4). Finally, we succeeded in creating a convenient cyclization method using NaBH_{4} as a base and aqueous HCl as an acid culminating in the formation of the desired 19 in 72% yield (Entry 7). ${ }^{25}$ The stereochemistry of $\mathbf{1 9}$ was elucidated as shown by its ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum showing the predicted coupling constant between H-4 and H-5 ($J=9.5 \mathrm{~Hz}$).

Scheme 2

Table 1. Novel Intramolecular Cyclization of $\mathbf{1 8}$ with Zinc Salts and NEt_{3}

Entry	Catalyst	Solvent	Yield (\%) of		
Entr	Catalyst	Solvent	19	20	18
1	$\mathrm{ZnCl}_{2} / \mathrm{NEt}_{3}(1.5: 1)$	THF	26	16	7
2	1	CHCl_{3}	35	23	14
3	11	DME	35	16	0
4	1	$\mathrm{ClCH}_{2} \mathrm{CH}_{2} \mathrm{Cl}$	41	9	4
5	$\mathrm{ZnBr}_{2} / \mathrm{NEt}_{3}(1.5: 1)$	II	23	12	10
6	$\mathrm{Zn}(\mathrm{OAc})_{2} / \mathrm{NEt}_{3}(2: 1)$	II	20	62	7
7	$\mathrm{NaBH}_{4} / \mathrm{HCl}^{\text {ref. } 25}$	$\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}$	72	0	3

We then applied our reductive methylation to the compound 19 using an excess amount of MeMgI. When the reaction was carried out at room temperature, epimerization at the 4 -position occurred, and the 4,5-cis- 21a and 4,5-trans-hydroxylamine 21b were obtained in 19 and 20\% yields, respectively. Subsequent reduction of 21a and 21b with $\mathrm{TiCl}_{3}{ }^{26}$ in MeOH in the presence of $\mathrm{NH}_{4} \mathrm{OAc}$ gave (\pm)-5-epi-6,7secoagroclavine (22) and (\pm)-6,7-secoagroclavine (1) in 44 and 27% yields, respectively. Based on the
results, at $0^{\circ} \mathrm{C}$ the reductive methylation of 19 with MeMgI was carried out expecting to minimize the epimerization. Without isolation of the hydroxylamines, the resulting reaction mixture was reduced with $\mathrm{Zn}-\mathrm{HCl}$ instead of TiCl_{3}. As expected in one pot procedure, both the stereoselectivity and the yield were improved to give $\mathbf{1}$ and $\mathbf{2 2}$ in 66 and 9% yields, respectively. Thus, the eight-step synthetic route to $\mathbf{1}$ from $\mathbf{7}$ was established with OR rate of 55%, because the following four steps, $\mathbf{5} \rightarrow \mathbf{7}, \mathbf{1 7} \rightarrow \mathbf{1 8}, \mathbf{1 8} \rightarrow \mathbf{1 9}$, and $\mathbf{1 9} \rightarrow \mathbf{1}$, are our original findings.

A Six-Step Synthetic Route to (\pm)-6,7-Secoagroclavine (1)

We were still not satisfied with the long steps in the above two synthetic routes. Therefore, further challenge was undertaken to develop a shorter-step and more practical synthetic route to $\mathbf{1}$ (Scheme 2). Utilizing 4-iodoindole-3-carbaldehyde (9) as a substrate, aldol condensation reaction with MeNO_{2} was performed in the presence of $\mathrm{NH}_{4} \mathrm{OAc}$ to provide 4-iodo-3-(2-nitrovinyl)indole (23) in 96% yield. Reduction of 23 with NaBH_{4} in i - PrOH and CHCl_{3} in the presence of $\mathrm{SiO}_{2}{ }^{27}$ afforded 4-iodo-3-(2ethyl)indole (24) in 84% yield. Improved procedure of Heck reaction in the presence of $n-\mathrm{Bu}_{4} \mathrm{Br}^{14,28}$ with 2-methyl-3-buten-2-ol was successfully applied to $\mathbf{2 4}$ resulting in the formation of $\mathbf{1 8}$ in 84% yield. In the above second route, $\mathbf{1 8}$ had been converted to (\pm)-6,7-secoagroclavine (1) in two steps. Consequently, without using any protective groups, ${ }^{29}$ we could create a six-step high regio- and stereo-selective synthesis of $\mathbf{1}$ from $\mathbf{7}$ with the OR rate of 57% because the following three steps, $\mathbf{5} \rightarrow \mathbf{9}, \mathbf{1 8} \rightarrow \mathbf{1 9}$, and $\mathbf{1 9} \rightarrow$ 1, are our original findings.

Total Syntheses of (\pm)-Chanoclavine-I (2) and (\pm)-Chanoclavine-II (3)

We expected that the oxidation of the methyl group on the side chain in (\pm)-6,7-secoagroclavine (1) would provide (\pm)-chanoclavine-I (2) and (\pm)-chanoclavine-II (3) (Scheme 3).

According to the above idea, we first examined the oxidation of the methyl group of the side chain in the now readily available 4,5-trans-5-(2-methyl-1-propen-1-yl)-4-nitro-1,3,4,5-tetrahydrobenz[cd]indole (19)
with SeO_{2} in various solvents. Dioxane was finally found to be a solvent of choice producing the alcohol 25a and the aldehyde 26a in 36 and 19\% yields, respectively, together with a 32% yield of recovery. The structures of 25a and 26a were determined by spectral data and the following chemical conversions. Thus, oxidation of $\mathbf{2 5}$ a with PCC in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ afforded 26a in 55% yield, while reduction of 26a with NaBH_{4} in MeOH gave 25a in 93% yield.

Reduction of the alcohol $\mathbf{2 5 a}$ with $\mathrm{Zn}(\mathrm{Hg})$ in refluxing methanolic HCl provided (\pm)-norchanoclavine-I (27a) as a single product in 98% yield retaining the configuration of the 4-position. Treatment of $\mathbf{2 7 a}$ with $\mathrm{ClCO}_{2} \mathrm{Me}$ in THF afforded the carbamate 28a in 92% yield. Subsequent reduction of 28a with LiAlH_{4} in refluxing THF achieved the total synthesis of (\pm)-chanoclavine-I (2) in 96% yield. ${ }^{20,30-32}$

Both norchanoclavine-II (27b) and chanoclavine-II (3) have cis-configuration concerning the 4- and 5positions. Aiming at the total synthesis of these alkaloids, we next examined the inversion of the stereochemistry of the nitro group in 19. Treatment of 19 with excess NaOMe in refluxing MeOH and subsequent protonation afforded the desired cis-compound 29 in 85% yield. The cis-stereochemistry was proved by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ analysis of $\mathbf{2 9}$ observing the coupling constant ($J=4.4 \mathrm{~Hz}$) between H-4 and H-5. The same sequence of reactions as in the synthesis of 2 was next applied to 29 . The oxidation with SeO_{2} in dioxane- $\mathrm{H}_{2} \mathrm{O}$ afforded the alcohol $\mathbf{2 5 b}$ and the aldehyde $\mathbf{2 6 b}$ in 31 and 4% yields, respectively, in addition to a 62% yield of recovery. Subsequent reduction of the alcohol $\mathbf{2 5 b}$ with $\mathrm{Zn}(\mathrm{Hg})$ in refluxing methanolic HCl gave (\pm)-norchanoclavine-II (27b) in 95% yield. The carbamate 28b was obtained in $\mathbf{9 8 \%}$ yield by the treatment of $\mathbf{2 7 b}$ with $\mathrm{ClCO}_{2} \mathrm{Me}$ in THF. Finally, the reduction of $\mathbf{2 8 b}$ with LiAlH_{4} in THF achieved the first total synthesis of (\pm)-chanoclavine-II (3) in 86% yield. ${ }^{1}$ H-NMR spectrum of 3 was identical with that of the alkaloid reported in the literature. ${ }^{8}$ Thus, the total syntheses of (\pm)-chanoclavine-I (2) and (\pm)-chanoclavine-II (3) are accomplished in nine and ten steps from 5 in 10 and 7% overall yields, respectively, and with the respective OR rates of 27 and 25%.

Total syntheses of (\pm)-Agroclavine-I (4)
Agroclavine-I (4) was isolated by Sakharovsky's group in 1984^{9} and its total synthesis had been achieved by Kozikowski's ${ }^{33}$ and Ninomiya's ${ }^{34}$ groups in 1985. Wheeler also reported the formal synthesis of $4 .{ }^{35}$

Scheme 4

We considered that the synthesis of $\mathbf{4}$ would be readily achieved if we could create a regioselective
oxidation method of the Z-methyl group of the isobutyl group at the 5-position of (\pm)-5-epi-6,7secoagroclavine (22). After elaborations, we found that SeO_{2} in dioxane- $\mathrm{H}_{2} \mathrm{O}$ was the reagent of choice resulting in the formation of the desired alcohol $\mathbf{3 0}$ in 34% yield (Scheme 4).
The compound 22 is alternatively available from 29. Thus, the reduction of 29 with $\mathrm{Zn}(\mathrm{Hg})$ in refluxing methanolic HCl gave the corresponding amine $\mathbf{3 1}$ in 98% yield. Then the carbamate $\mathbf{3 2}$ was prepared by the treatment with $\mathrm{ClCO}_{2} \mathrm{Me}$ in THF in a quantitative yield. Subsequent reduction of $\mathbf{3 2}$ with LiAlH_{4} in THF provided 22 in 98% yield.
The mechanism of the above regioselective Z-methyl oxidation would be explained as shown in Scheme 5. Initial coordination of the methylamino-nitrogen (6-position of $\mathbf{2 2}$) to SeO_{2} forms a complex $\mathbf{3 3}$ placing SeO_{2} to the close vicinity of the Z-methyl group. According to the ordinary oxidation mechanism of $\mathrm{SeO}_{2},{ }^{36-38} \mathbf{3 3}$ then transforms to 34. Dehydration of $\mathbf{3 4}$ followed by [2,3] sigmatropic rearrangement generates $\mathbf{3 6}$ through $\mathbf{3 5}$. Subsequent hydrolysis gives $\mathbf{3 2}$.

Finally, treatment of $\mathbf{3 0}$ with POCl_{3} in the presence of $\mathrm{K}_{2} \mathrm{CO}_{3}{ }^{39}$ accomplished the total synthesis of $\mathbf{4}$ in 87% yield. Spectral data (${ }^{1} \mathrm{H}-\mathrm{NMR}$) of $\mathbf{4}$ was identical with that of the authentic (\pm)-agroclavine-I which was synthesized by Ninomiya's group. ${ }^{34}$ Thus, the total synthesis of (\pm)-agroclavine-I (4) was accomplished in eleven steps from 5 in 9% overall yield. The OR rate is 41% because our original step, $\mathbf{2 2} \rightarrow \mathbf{3 0}$, is added.

In conclusion, we succeeded in developing an efficient and common synthetic route for producing (\pm)-6,7-secoagroclavine ${ }^{40,41}(\mathbf{1}),(\pm)$-chanoclavine-I (2), (\pm)-chanoclavine-II (3), and (\pm)-agroclavine-I (4) with high OR rates, respectively, without using any protective groups. ${ }^{29}$

ACKNOWLEDGMENTS

The authors are grateful to the late Dr. M. Natsume for a gift of (\pm)-6,7-secoagroclavine and (\pm)-chanoclavine-I and also to Professor I. Ninomiya for (\pm)-agroclavine-I. The authors wish to thank Professor H. G. Floss for offering the informations about (\pm)-norchanoclavine-II and (\pm)-chanoclavine-II and Dr. V. G. Sakharovsky as well for the information about (\pm)-agroclavine-I.

EXPERIMENTAL

Melting points were determined on a Yanagimoto micro melting point apparatus and are uncorrected. IR spectra were determined with a Shimadzu IR-420 spectrophotometer, and ${ }^{1} \mathrm{H}$-NMR spectra with a JEOL JNM-PMX 60 or a JEOL JNM-FX100 spectrometer, with tetramethylsilane as an internal standard. MS were recorded on a JEOL 01SG or a HITACHI M-80 spectrometer. Preparative thin-layer chromatography (p-TLC) was performed on Merck Kiesel-gel GF_{254} (Type 60)(SiO_{2}). Column chromatography was performed on silica gel $\left(\mathrm{SiO}_{2}, 100-200\right.$ mesh, from Kanto Chemical Co. Inc.) throughout the present study. HPLC was conducted with a Kusano KPW-20 pump equipped with a Kusano KU-331 as a detector.
(E)-4-(2-Methoxycarbonylethen-1-yl)indole-3-carboxylic Acid (7b) from (E)-Methyl 3-(3-Formylindol-4-yl)acrylate (7a) $-\mathrm{NaClO}_{2}(368.1 \mathrm{mg}, 4.09 \mathrm{mmol})$ was added to a solution of $\mathbf{7 a}$ (45.9 $\mathrm{mg}, 0.20 \mathrm{mmol}$) and $\mathrm{NaH}_{2} \mathrm{PO}_{4}(497.1 \mathrm{mg}, 4.14 \mathrm{mmol})$ in a mixture of t - BuOH -2-methyl-2-butene- $\mathrm{H}_{2} \mathrm{O}$ (2:2:1, v/v, 10 mL) and stirred at $\mathrm{rt}\left(19^{\circ} \mathrm{C}\right)$ for 19 h . After addition of $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}(95: 5, \mathrm{v} / \mathrm{v})$, the whole was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated under reduced pressure to leave a solid, which was recrystallized from MeOH to give $\mathbf{7 b}(32.1 \mathrm{mg})$ as colorless prisms. The mother liquor was subjected to p-TLC on SiO_{2} with $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}(9: 1, \mathrm{v} / \mathrm{v})$ as a developing solvent to give additional 7b (12.3 mg). The total yield of $\mathbf{7 b}$ was $44.4 \mathrm{mg}(90 \%)$. $\mathbf{7 b}: \mathrm{mp} 232-233^{\circ} \mathrm{C}$ (decomp.). IR (KBr): 3200, $1669 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}\right) \delta: 3.84(3 \mathrm{H}, \mathrm{s}), 6.38(1 \mathrm{H}, \mathrm{d}, J=16 \mathrm{~Hz}), 7.23(1 \mathrm{H}, \mathrm{t}, J=7.8 \mathrm{~Hz}), 7.42-7.62$ $(2 \mathrm{H}, \mathrm{m}), 8.10(1 \mathrm{H}, \mathrm{s}), 9.42(1 \mathrm{H}, \mathrm{d}, J=16 \mathrm{~Hz}) . \mathrm{MS} m / z: 245\left(\mathrm{M}^{+}\right)$. Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{NO}_{4}: \mathrm{C}, 63.67 ; \mathrm{H}$, 4.52; N, 5.71. Found: C, 63.51; H, 4.51; N, 5.91.
(\boldsymbol{E})-Methyl 3-(Indol-4-yl)acrylate (10) from 7b - A solution of 7b $(99.5 \mathrm{mg}, 0.41 \mathrm{mmol}$) in pyridine (5 mL) was refluxed for 21 h with stirring. The solvent was evaporated under reduced pressure to leave a solid, which was subjected to p-TLC on SiO_{2} with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ as a developing solvent. Extraction of the band having an $R f$ value of $0.62-0.38$ with $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}(95: 5, \mathrm{v} / \mathrm{v}$) gave $\mathbf{1 0}$ ($74.2 \mathrm{mg}, 91 \%$). 10: mp $129-130^{\circ} \mathrm{C}$ (lit., ${ }^{13} \mathrm{mp} 125-126^{\circ} \mathrm{C}$) (pale yellow prisms, recrystallized from AcOEt). IR (KBr): 3340, $1685 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}\right) \delta: 3.81(3 \mathrm{H}, \mathrm{s}), 6.58(1 \mathrm{H}, \mathrm{d}, J=16.1 \mathrm{~Hz}), 6.71(1 \mathrm{H}, \mathrm{dd}, J=3.2,0.8 \mathrm{~Hz})$, $7.09(1 \mathrm{H}, \mathrm{t}, J=7.7 \mathrm{~Hz}), 7.30(1 \mathrm{H}, \mathrm{dd}, J=7.7,0.8 \mathrm{~Hz}), 7.34(1 \mathrm{H}, \mathrm{d}, J=3.2 \mathrm{~Hz}), 7.44(1 \mathrm{H}, \mathrm{dt}, J=7.7,0.8 \mathrm{~Hz})$, $8.04(1 \mathrm{H}, \mathrm{d}, J=16.1 \mathrm{~Hz})$.
(E)-Methyl 3-(Indol-4-yl)acrylate (10) from 7a - $\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{3} \mathrm{RhCl}(422.9 \mathrm{mg}, 0.46 \mathrm{mmol})$ was added to a solution of $9(103.8 \mathrm{mg}, 0.45 \mathrm{mmol})$ in benzene $(20 \mathrm{~mL})$ and the mixture was refluxed for 24 h with stirring under argon atmosphere. After evaporation of the solvent, $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}(95: 5, \mathrm{v} / \mathrm{v})$ was added and insoluble precipitates were filtered off through SiO_{2}. The filtrate was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated under reduced pressure to leave an oil, which was column-chromatographed on SiO_{2} with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to give $\mathbf{1 0}$ ($29.1 \mathrm{mg}, 32 \%$).
(\boldsymbol{E})-Methyl 3-(Indol-4-yl)acrylate (10) from Indole-4-carbaldehyde (8) - A solution of 8 (293.7 mg, 2.03 mmol) and (methoxycarbonylmethylene)triphenylphosphorane ($1172.4 \mathrm{mg}, 3.51 \mathrm{mmol}$) in benzene $(25 \mathrm{~mL})$ was refluxed for 4 h with stirring. The solvent was evaporated under reduced pressure to leave an oil, which was column-chromatographed on SiO_{2} with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to give $\mathbf{1 0}$ ($403.4 \mathrm{mg}, 99 \%$).
(\boldsymbol{E})-Methyl 3-(3-Dimethylaminomethylindol-4-yl)acrylate (11) from 10 - A solution of $\mathbf{1 0}$ (392.1 mg, 1.95 mmol) in $\mathrm{AcOH}(1 \mathrm{~mL})$ was added to a solution of $50 \% \mathrm{Me}_{2} \mathrm{NH}(193.3 \mathrm{mg}, 2.15 \mathrm{mmol})$ and 37% $\mathrm{HCHO}(162.8 \mathrm{mg}, 2.01 \mathrm{mmol})$ in $\mathrm{AcOH}(2 \mathrm{~mL})$, and the mixture was stirred at rt for 7.5 h . The resulting solution was made basic by adding $5 \% \mathrm{NaOH}$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}(95: 5, \mathrm{v} / \mathrm{v})$. The organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated under reduced pressure to leave an oil, which was column-chromatographed on SiO_{2} with $\mathrm{CHCl}_{3}-\mathrm{MeOH}-28 \% \mathrm{NH}_{4} \mathrm{OH}(46: 5: 0.5, \mathrm{v} / \mathrm{v})$ to give $\mathbf{1 1}$ ($476.1 \mathrm{mg}, 95 \%$) as pale yellow oil. 11: IR (film): $3320,1705 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta: 2.27(6 \mathrm{H}, \mathrm{s})$, $3.50(2 \mathrm{H}, \mathrm{s}), 3.74(3 \mathrm{H}, \mathrm{s}), 6.31(1 \mathrm{H}, \mathrm{d}, J=16.0 \mathrm{~Hz}), 6.18-7.36(4 \mathrm{H}, \mathrm{m}), 8.31(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 8.73(1 \mathrm{H}, \mathrm{d}$, $J=16.0 \mathrm{~Hz}$). High-resolution MS $m / z:$ Calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2}: 258.1366$. Found: 258.1363.
4,5-cis- (12) and 4,5-trans-5-Methoxycarbonylmethyl-4-nitro-1,3,4,5-tetrahydrobenz[cd]indole (13)
from 11 - KF ($26.7 \mathrm{mg}, 0.46 \mathrm{mmol})$ was added to a solution of $11(72.1 \mathrm{mg}, 0.28 \mathrm{mmol})$ and 18 -crown$6(26.5 \mathrm{mg}, 0.10 \mathrm{mmol})$ in $\mathrm{MeCN}-\mathrm{MeNO}_{2}(1: 1, \mathrm{v} / \mathrm{v}, 25 \mathrm{~mL})$ and the mixture was refluxed for 37.5 h with stirring. The solvent was evaporated under reduced pressure to leave an oil, which was subjected to pTLC on SiO_{2} (developed three times with ether-hexane as a developing solvent). Extraction of the band having an $R f$ value of $0.41-0.33$ with $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}(95: 5, \mathrm{v} / \mathrm{v})$ gave 12 ($12.2 \mathrm{mg}, 16 \%$) as a colorless oil. 12: IR (film): $3400,1730,1541,1364 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta: 2.64(2 \mathrm{H}, \mathrm{d}, J=6.8 \mathrm{~Hz}), 3.44(2 \mathrm{H}, \mathrm{d}$, $J=7.2 \mathrm{~Hz}), 3.61(3 \mathrm{H}, \mathrm{s}), 4.29(1 \mathrm{H}, \mathrm{dt}, J=6.8,4.0 \mathrm{~Hz}), 5.01(1 \mathrm{H}, \mathrm{dt}, J=7.2,4.0 \mathrm{~Hz}), 6.65-7.26(4 \mathrm{H}, \mathrm{m})$, $7.93(1 \mathrm{H}, \mathrm{br} \mathrm{s})$. High-resolution MS m / z : Calcd for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{4}: 274.0952$. Found: 274.0951. Extraction of the band having an $R f$ value of $0.33-0.17$ with $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}(95: 5$, v/v) gave $\mathbf{1 3}$ ($54.7 \mathrm{mg}, 71 \%$) as colorless oil. 13: IR (film): 3410, 1730, 1541, $1361 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta: 2.68(2 \mathrm{H}, \mathrm{d}, J=6.0 \mathrm{~Hz})$, $3.27(1 \mathrm{H}, \mathrm{dd}, J=15.5,4.8 \mathrm{~Hz}), 3.64(3 \mathrm{H}, \mathrm{s}), 3.68(1 \mathrm{H}, \mathrm{dd}, J=15.5,6.0 \mathrm{~Hz}), 4.26(1 \mathrm{H}, \mathrm{q}, J=6.0 \mathrm{~Hz}), 5.07$ $(1 \mathrm{H}, \mathrm{dt}, J=6.0,4.8 \mathrm{~Hz}), 6.61-7.17(4 \mathrm{H}, \mathrm{m}), 7.94(1 \mathrm{H}, \mathrm{br} \mathrm{s})$. High-resolution MS m$/ \mathrm{z}:$ Calcd for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{4}: 274.0952$. Found: 274.0955.

5,10-cis-6,8-Dimethyl-7-oxaergolin-8-ol (14a) from 12 - An ether solution of MeMgI was prepared with Mg ribbon ($237.2 \mathrm{mg}, 9.76 \mathrm{mmol}$) and $\mathrm{MeI}(1407.7 \mathrm{mg}, 9.92 \mathrm{mmol})$ in anhydrous $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL})$ under argon atmosphere. To the resulting solution was added a solution of $\mathbf{1 2}(82.8 \mathrm{mg}, 0.30 \mathrm{mmol})$ in anhydrous THF (5 mL) and the mixture was stirred at rt for 1 h under argon atmosphere. After cooling to $0^{\circ} \mathrm{C}, 20 \% \mathrm{NH}_{4} \mathrm{Cl}$ was added and the whole was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}(95: 5, \mathrm{v} / \mathrm{v})$. The organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated under reduced pressure to leave an oil, which was column-chromatographed on SiO_{2} with $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}(95: 5$, v/v) to give 14a ($53.5 \mathrm{mg}, 69 \%$).

14a: mp $185-187^{\circ} \mathrm{C}$ (decomp., colorless prisms, recrystallized from AcOEt). IR (KBr): 3330, 3260, $1607 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta: 1.37(3 \mathrm{H}, \mathrm{s}), 1.63(1 \mathrm{H}, \mathrm{dd}, J=13.6,12.6 \mathrm{~Hz}), 1.93(1 \mathrm{H}, \mathrm{dd}, J=13.6,5.3$ $\mathrm{Hz}), 2.78(3 \mathrm{H}, \mathrm{s}), 2.97-3.78(4 \mathrm{H}, \mathrm{m}), 4.74(1 \mathrm{H}, \mathrm{br}$ s), $6.70-6.96(2 \mathrm{H}, \mathrm{m}), 6.96-7.28(2 \mathrm{H}, \mathrm{m}), 7.93(1 \mathrm{H}$, br s). MS m/z: $258\left(\mathrm{M}^{+}\right)$. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2}$: C, 69.74; H, 7.02; N, 10.85. Found: C, 69.67; H, 7.10; N, 10.62.

4,5-cis-5-Acetonyl-4-(N-acetoxy- N-methyl)amino1,3,4,5-tetrahydrobenz[cd]indole (15a) from 14a A solution of $\mathbf{1 4 a}(26.5 \mathrm{mg}, 0.10 \mathrm{mmol})$ in pyridine $(2 \mathrm{~mL})$ and $\mathrm{Ac}_{2} \mathrm{O}(1 \mathrm{~mL})$ was stirred at rt for 6.5 h . The solvent was evaporated under reduced pressure to leave an oil, which was subjected to p-TLC on SiO_{2} with $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}(95: 5, \mathrm{v} / \mathrm{v})$ as a developing solvent. Extraction of the band having an $R f$ value of $0.33-0.49$ with $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}(95: 5, \mathrm{v} / \mathrm{v})$ gave 15a ($27.8 \mathrm{mg}, 93 \%$) as a colorless oil. 15a: IR (film): 3310, 1747, 1703, $1617 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta: 2.00(3 \mathrm{H}, \mathrm{s}), 2.09(3 \mathrm{H}, \mathrm{s}), 2.40(1 \mathrm{H}, \mathrm{dd}, J=17.6,9.8$ $\mathrm{Hz}), 2.50-3.38(4 \mathrm{H}, \mathrm{m}), 2.89(3 \mathrm{H}, \mathrm{s}), 3.98(1 \mathrm{H}, \mathrm{dt}, J=9.8,3.3 \mathrm{~Hz}), 6.76-7.22(4 \mathrm{H}, \mathrm{m}), 7.96(1 \mathrm{H}, \mathrm{br} \mathrm{s})$. High-resolution MS m / z : Calcd for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{3}: 300.1473$. Found: 300.1476.
4,5-trans-5-Acetonyl-4-(N-acetoxy- N-methyl)amino-1,3,4,5-tetrahydrobenz[cd]indole (15b) from 13

- An ether solution of MeMgI was prepared with Mg ribbon (637.4 mg , 26.2 mmol) and MeI (3516.7 $\mathrm{mg}, 24.8 \mathrm{mmol})$ in anhydrous $\mathrm{Et}_{2} \mathrm{O}(30 \mathrm{~mL})$ under argon atmosphere. To the resulting solution was added a solution of $\mathbf{1 3}(221.4 \mathrm{mg}, 0.81 \mathrm{mmol})$ in anhydrous THF (20 mL) and the mixture was stirred at rt for 1 h under argon atmosphere. After cooling to $0^{\circ} \mathrm{C}, 20 \% \mathrm{NH}_{4} \mathrm{Cl}$ was added and the whole was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}(95: 5, \mathrm{v} / \mathrm{v})$. The organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated under reduced pressure to leave an oil, which was dissolved in pyridine (2 mL) and $\mathrm{Ac}_{2} \mathrm{O}(1 \mathrm{~mL})$. The resulting solution was stirred at rt for 2 h . The solvent was evaporated under reduced pressure to leave an oil, which was subjected to p-TLC on SiO_{2} with $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}(95: 5, \mathrm{v} / \mathrm{v})$ as a developing solvent. Extraction of the band having an $R f$ value of $0.33-0.57$ with $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}(95: 5, \mathrm{v} / \mathrm{v}$) gave $\mathbf{1 5 b}$ (164.7 $\mathrm{mg}, 69 \%$). 15b: $\mathrm{mp} 137.5-139.5^{\circ} \mathrm{C}$ (lit., ${ }^{13} \mathrm{mp} 136.5-137.5^{\circ} \mathrm{C}$) (colorless prisms, recrystallized from MeOH). IR (KBr): $3300,1721,1704 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta: 1.88(3 \mathrm{H}, \mathrm{s}), 2.28(3 \mathrm{H}, \mathrm{s}), 2.71-3.51$ $(5 \mathrm{H}, \mathrm{m}), 2.83(3 \mathrm{H}, \mathrm{s}), 3.63-3.91(1 \mathrm{H}, \mathrm{m}), 6.59-6.75(1 \mathrm{H}, \mathrm{m}), 6.85(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 6.95-7.19(2 \mathrm{H}, \mathrm{m}), 7.95$ ($1 \mathrm{H}, \mathrm{br}$ s).
(\boldsymbol{E})-1-(Indol-4-yl)-3-methyl-1-buten-3-ol (16) from 10 - An ether solution of MeMgI was prepared with Mg ribbon ($373.7 \mathrm{mg}, 15.4 \mathrm{mmol}$) and $\mathrm{MeI}(0.9 \mathrm{~mL}, 14.6 \mathrm{mmol})$ in anhydrous $\mathrm{Et}_{2} \mathrm{O}(5 \mathrm{~mL})$ under argon atmosphere. To the resulting solution was added a solution of $\mathbf{1 0}(96.4 \mathrm{mg}, 0.48 \mathrm{mmol})$ in anhydrous THF (20 mL) and the mixture was stirred at rt for 2 h under argon atmosphere. After cooling to $0^{\circ} \mathrm{C}$, brine was added and the whole was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}(95: 5, \mathrm{v} / \mathrm{v})$. The organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated under reduced pressure to leave an oil, which was subjected to p-TLC on $\mathrm{Al}_{2} \mathrm{O}_{3}$ with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ as a developing solvent. Extraction of the band having an
$R f$ value of $0.47-0.78$ with $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}\left(95: 5, \mathrm{v} / \mathrm{v}\right.$) gave 16 ($85.4 \mathrm{mg}, 89 \%$). 16: mp $98-99^{\circ} \mathrm{C}$ (colorless prisms, recrystallized from benzene). IR (KBr): 3530, $3240 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}\right) \delta: 1.45$ ($6 \mathrm{H}, \mathrm{s}$), $6.47(1 \mathrm{H}, \mathrm{d}, J=16.1 \mathrm{~Hz}), 6.65(1 \mathrm{H}, \mathrm{dd}, J=3.2,0.8 \mathrm{~Hz}), 6.92-7.34(3 \mathrm{H}, \mathrm{m}), 6.95(1 \mathrm{H}, \mathrm{d}, J=16.1$ $\mathrm{Hz}), 7.23(1 \mathrm{H}, \mathrm{d}, J=3.2 \mathrm{~Hz})$. MS m/z: $201\left(\mathrm{M}^{+}\right)$. Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{NO}: \mathrm{C}, 77.58 ; \mathrm{H}, 7.51$; N, 6.96. Found: C, 77.71; H, 7.68; N, 6.69.
(\boldsymbol{E})-1-(3-Dimethylaminomethylindol-4-yl)-3-methyl-1-buten-3-ol (17) from 16 - N, N Dimethyl(methylene)ammonium chloride ($233.9 \mathrm{mg}, 2.50 \mathrm{mmol}$) was added to a solution of $\mathbf{1 6}$ (412.8 $\mathrm{mg}, 2.05 \mathrm{mmol})$ in anhydrous $\mathrm{MeCN}(4 \mathrm{~mL})$ and the mixture was stirred at rt for 10 min . After addition of $10 \% \mathrm{NaOH}$, the whole was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}(95: 5, \mathrm{v} / \mathrm{v})$. The organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated under reduced pressure to leave an oil, which was columnchromatographed on $\mathrm{Al}_{2} \mathrm{O}_{3}$ with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to give 17 ($372.7 \mathrm{mg}, 70 \%$). 17: mp $132-134^{\circ} \mathrm{C}$ (colorless needles, recrystallized from benzene). IR (KBr): 3570, $3140 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta: 1.44(6 \mathrm{H}, \mathrm{s}), 2.16$ $\left(1 \mathrm{H}, \mathrm{br} \mathrm{s}\right.$, disappeared on addition of $\left.\mathrm{D}_{2} \mathrm{O}\right), 2.23(6 \mathrm{H}, \mathrm{s}), 3.52(2 \mathrm{H}, \mathrm{s}), 6.20(1 \mathrm{H}, \mathrm{d}, J=16.0 \mathrm{~Hz})$, $6.87-7.28(4 \mathrm{H}, \mathrm{m}), 7.60(1 \mathrm{H}, \mathrm{d}, J=16.0 \mathrm{~Hz}), 8.10\left(1 \mathrm{H}, \mathrm{br} \mathrm{s}\right.$, disappeared on addition of $\left.\mathrm{D}_{2} \mathrm{O}\right) . \mathrm{MS} \mathrm{m} / \mathrm{z}$: $258\left(\mathrm{M}^{+}\right)$. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}: \mathrm{C}, 74.38 ; \mathrm{H}, 8.58 ; \mathrm{N}, 10.84$. Found: C, $74.65 ; \mathrm{H}, 8.63 ; \mathrm{N}, 10.62$. (\boldsymbol{E})-1-[3-(2-Nitroethyl)indol-4-yl]-3-methyl-1-buten-3-ol (18) from $17-n-\mathrm{Bu}_{3} \mathrm{P}^{24}$ (54.2 mg, 0.27 mmol) was added to a solution of $17(148.6 \mathrm{mg}, 0.58 \mathrm{mmol})$ in $\mathrm{MeNO}_{2}(3 \mathrm{~mL})$ and $\mathrm{MeCN}(3 \mathrm{~mL})$, and the mixture was refluxed for 2 h with stirring under argon atmosphere. The solvent was evaporated under reduced pressure to leave an oil, which was subjected to $\mathrm{p}-\mathrm{TLC}$ on SiO_{2} with $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}$ (97:3, v/v) as a developing solvent. Extraction of the band having an $R f$ value of $0.23-0.41$ with $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}$ ($95: 5, \mathrm{v} / \mathrm{v}$) gave 18 ($132.2 \mathrm{mg}, 84 \%$). 18: $\mathrm{mp} 106-107^{\circ} \mathrm{C}$ (pale yellow prisms, recrystallized from $\mathrm{MeOH})$. IR (KBr): 3450, 3310, 3230, 1562, 1537, 1382, 1370, $1344 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta: 1.45(6 \mathrm{H}$, s), $1.91\left(1 \mathrm{H}, \mathrm{br} \mathrm{s}\right.$, disappeared on addition of $\left.\mathrm{D}_{2} \mathrm{O}\right), 3.51(2 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}), 4.55(2 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}), 6.16$ $(1 \mathrm{H}, \mathrm{d}, J=15.2 \mathrm{~Hz}), 6.74-7.24(4 \mathrm{H}, \mathrm{m}), 7.16(1 \mathrm{H}, \mathrm{d}, J=15.2 \mathrm{~Hz}), 8.06(1 \mathrm{H}, \mathrm{br}$ s, disappeared on addition of $\mathrm{D}_{2} \mathrm{O}$). MS $m / z: 274\left(\mathrm{M}^{+}\right)$. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{3}: \mathrm{C}, 65.67 ; \mathrm{H}, 6.61 ; \mathrm{N}, 10.24$. Found: C, 65.83; H, 6.75; N, 10.09.

4,5-trans-5-(2-Methyl-1-propen-1-yl)-4-nitro-1,3,4,5-tetrahydrobenz[cd]indole (19) and (E)-4-(3-methyl-1,3-butadien-1-yl)-3-(2-nitroethyl)indole (20) from 18 - [Entry 1] - A solution of $\mathbf{1 8}$ (50.8 $\mathrm{mg}, 0.19 \mathrm{mmol}$), ZnCl_{2} ($379.0 \mathrm{mg}, 2.78 \mathrm{mmol}$), and $\mathrm{Et}_{3} \mathrm{~N}$ ($181.6 \mathrm{mg}, 1.79 \mathrm{mmol}$) in THF (4 mL) was refluxed for 4 h with stirring. MeOH was added to the resulting solution. After evaporation of the solvent, $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}(95: 5, \mathrm{v} / \mathrm{v})$ was added and insoluble precipitates were filtered off through SiO_{2}. The filtrate was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated under reduced pressure to leave an oil, which was subjected to p-TLC on SiO_{2} with $\mathrm{Et}_{2} \mathrm{O}-$ hexane $(1: 1, \mathrm{v} / \mathrm{v})$ as a developing solvent. Extraction of the band having an $R f$ value of $0.44-0.51$ with $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}(95: 5, \mathrm{v} / \mathrm{v})$ gave 19 ($12.4 \mathrm{mg}, 26 \%$). 19:
$\mathrm{mp} 164-165^{\circ} \mathrm{C}$ (pale yellow prisms, recrystallized from MeOH). IR (KBr): 3420, 1540, $1342 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-$ NMR (CDCl_{3}) $\delta: 1.78(3 \mathrm{H}, \mathrm{d}, J=1.4 \mathrm{~Hz}), 1.84(3 \mathrm{H}, \mathrm{d}, J=1.4 \mathrm{~Hz}), 3.51(2 \mathrm{H}, \mathrm{dd}, J=7.1,1.0 \mathrm{~Hz}), 4.51(1 \mathrm{H}, \mathrm{t}$, $J=9.5 \mathrm{~Hz}), 4.75(1 \mathrm{H}, \mathrm{dt}, J=9.5,7.1 \mathrm{~Hz}), 5.14(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J=9.5 \mathrm{~Hz}), 6.70-6.85(1 \mathrm{H}, \mathrm{m}), 6.90(1 \mathrm{H}, \mathrm{dt}$, $J=2.0,1.0 \mathrm{~Hz}), 6.98-7.26(2 \mathrm{H}, \mathrm{m}), 7.98(1 \mathrm{H}, \mathrm{br} s) . \mathrm{MS} m / z: 256\left(\mathrm{M}^{+}\right)$. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2}: \mathrm{C}$, 70.29 ; H, 6.29 ; N, 10.93. Found: C, 70.06 ; H, 6.15 ; N, 11.08. Extraction of the band having an $R f$ value of $0.28-0.44$ with $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}(95: 5, \mathrm{v} / \mathrm{v})$ gave $\mathbf{2 0}$ ($7.6 \mathrm{mg}, 16 \%$) as an unstable colorless oil. 20: IR (film): 3410, 1546, $1380 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(20 \% \mathrm{CD}_{3} \mathrm{OD}\right.$ in $\left.\mathrm{CDCl}_{3}\right) \delta: 2.00(3 \mathrm{H}, \mathrm{d}, J=0.8 \mathrm{~Hz}), 3.54(2 \mathrm{H}, \mathrm{t}$, $J=7.0 \mathrm{~Hz}), 4.55(2 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}), 5.01(2 \mathrm{H}, \mathrm{br} \mathrm{s}), 6.48-7.48(6 \mathrm{H}, \mathrm{m})$. High-resolution MS m/z: Calcd for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2}$: 256.1211. Found: 256.1211. Extraction of the band having an $R f$ value of $0.13-0.24$ with $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}(95: 5, \mathrm{v} / \mathrm{v})$ gave 18 ($3.3 \mathrm{mg}, 7 \%$).
[Entry 2] - A solution of $\mathbf{1 8}(32.0 \mathrm{mg}, 0.12 \mathrm{mmol}), \mathrm{ZnCl}_{2}(245.4 \mathrm{mg}, 1.80 \mathrm{mmol})$, and $\mathrm{Et}_{3} \mathrm{~N}(116.7 \mathrm{mg}$, 1.15 mmol) in $\mathrm{CHCl}_{3}(4 \mathrm{~mL})$ was refluxed for 2 h with stirring. After the same work-up and separation as described in entry 1,19 ($10.5 \mathrm{mg}, 35 \%$), $\mathbf{2 0}(7.0 \mathrm{mg}, 23 \%)$, and $\mathbf{1 8 (4 . 5 \mathrm { mg } , 1 4 \%) \text { were obtained. }}$
[Entry 3] - A solution of $\mathbf{1 8}$ ($31.4 \mathrm{mg}, 0.12 \mathrm{mmol}$), $\mathrm{ZnCl}_{2}(243.4 \mathrm{mg}, 1.79 \mathrm{mmol})$, and $\mathrm{Et}_{3} \mathrm{~N}$ (117.0 mg , 1.15 mmol) in dimethoxyethane (4 mL) was refluxed for 2 h with stirring. After the same work-up and separation as described in entry $1,19(10.3 \mathrm{mg}, 35 \%)$ and $\mathbf{2 0}(4.8 \mathrm{mg}, 16 \%)$ were obtained.
[Entry 4] - A solution of $\mathbf{1 8}(31.6 \mathrm{mg}, 0.12 \mathrm{mmol}), \mathrm{ZnCl}_{2}(240.8 \mathrm{mg}, 1.77 \mathrm{mmol})$, and $\mathrm{Et}_{3} \mathrm{~N}(119.6 \mathrm{mg}$, 1.18 mmol) in 1,2-dichloroethane (4 mL) was refluxed for 2 h with stirring. After the same work-up and separation as described in entry $1, \mathbf{1 9}(12.0 \mathrm{mg}, 41 \%), \mathbf{2 0}(2.5 \mathrm{mg}, 9 \%)$, and $\mathbf{1 8}(1.2 \mathrm{mg}, 4 \%)$ were obtained.
[Entry 5] - A solution of $\mathbf{1 8}(29.8 \mathrm{mg}, 0.11 \mathrm{mmol}), \mathrm{ZnBr}_{2}(377.6 \mathrm{mg}, 1.68 \mathrm{mmol})$, and $\mathrm{Et}_{3} \mathrm{~N}(118.7 \mathrm{mg}$, 1.17 mmol) in 1,2-dichloroethane (4 mL) was refluxed for 45 min with stirring. After the same work-up and separation as described in entry $1, \mathbf{1 9}(6.4 \mathrm{mg}, 23 \%), \mathbf{2 0}(3.3 \mathrm{mg}, 12 \%)$, and $\mathbf{1 8}(3.0 \mathrm{mg}, 10 \%)$ were obtained.
[Entry 6] - A solution of $\mathbf{1 8}(30.0 \mathrm{mg}, 0.11 \mathrm{mmol}), \mathrm{Zn}(\mathrm{OAc})_{2}(362.1 \mathrm{mg}, 1.97 \mathrm{mmol})$, and $\mathrm{Et}_{3} \mathrm{~N}(108.4$ $\mathrm{mg}, 1.07 \mathrm{mmol}$) in 1,2-dichloroethane (4 mL) was refluxed for 47 h with stirring. After the same work-up and separation as described in entry $1, \mathbf{1 9}(5.5 \mathrm{mg}, 20 \%), \mathbf{2 0}(17.4 \mathrm{mg}, 62 \%)$, and $\mathbf{1 8}(2.2 \mathrm{mg}, 7 \%)$ were obtained.
[Entry 7] - See reference 25.
4,5-cis- (21a) and 4,5-trans-4-(N-Hydroxy- N-methyl)amino-5-(2-methyl-1-propen-1-yl)-1,3,4,5tetrahydrobenz[cd]indole (21b) from 19 - An ether solution of MeMgI was prepared with Mg ribbon ($364.9 \mathrm{mg}, 15.0 \mathrm{mmol}$) and $\mathrm{MeI}(1921.3 \mathrm{mg}, 13.5 \mathrm{mmol})$ in anhydrous $\mathrm{Et}_{2} \mathrm{O}(8 \mathrm{~mL})$ under argon atmosphere. To the resulting solution was added a solution of $\mathbf{1 9}(76.3 \mathrm{mg}, 0.30 \mathrm{mmol})$ in anhydrous THF $(4 \mathrm{~mL})$ and the mixture was stirred at rt for 0.5 h under argon atmosphere. After cooling to $0^{\circ} \mathrm{C}, 20 \%$
$\mathrm{NH}_{4} \mathrm{Cl}$ was added and the whole was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}(95: 5, \mathrm{v} / \mathrm{v})$. The organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated under reduced pressure to leave an oil, which was subjected to p-TLC on SiO_{2} with $\mathrm{CHCl}_{3}-\mathrm{MeOH}-28 \% \mathrm{NH}_{4} \mathrm{OH}(46: 5: 0.5$, v/v) as a developing solvent. Extraction of the band having an $R f$ value of $0.54-0.66$ with $\mathrm{CHCl}_{3}-\mathrm{MeOH}-28 \% \mathrm{NH}_{4} \mathrm{OH}(46: 5: 0.5, \mathrm{v} / \mathrm{v})$ gave 21a ($14.5 \mathrm{mg}, 19 \%$) as a colorless oil. 21a: $\mathrm{IR}(\mathrm{KBr}): 3400,1619 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta: 1.67$ $(3 \mathrm{H}, \mathrm{d}, J=1.5 \mathrm{~Hz}), 1.93(3 \mathrm{H}, \mathrm{d}, J=1.5 \mathrm{~Hz}), 2.75-3.49(3 \mathrm{H}, \mathrm{m}), 2.77(3 \mathrm{H}, \mathrm{s}), 4.28(1 \mathrm{H}, \mathrm{dd}, J=10.0,2.0$ $\mathrm{Hz}), 5.01\left(1 \mathrm{H}, \mathrm{br}\right.$ s, disappeared on addition of $\left.\mathrm{D}_{2} \mathrm{O}\right), 5.30(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J=10.0 \mathrm{~Hz}), 6.64-7.27(4 \mathrm{H}, \mathrm{m})$, $7.82\left(1 \mathrm{H}\right.$, br s, disappeared on addition of $\left.\mathrm{D}_{2} \mathrm{O}\right)$. High-resolution MS m/z: Calcd for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}: 256.1575$. Found: 256.1614. Extraction of the band having an $R f$ value of $0.47-0.54$ with $\mathrm{CHCl}_{3}-\mathrm{MeOH}-28 \%$ $\mathrm{NH}_{4} \mathrm{OH}(46: 5: 0.5, \mathrm{v} / \mathrm{v})$ gave 21b ($15.3 \mathrm{mg}, 20 \%$). 21b: mp $147-149^{\circ} \mathrm{C}$ (decomp., colorless prisms, recrystallized from benzene). IR (KBr): 3400, $3310,1603 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta: 1.82(6 \mathrm{H}, \mathrm{d}, J=1.5$ $\mathrm{Hz}), 2.68(3 \mathrm{H}, \mathrm{s}), 2.86-3.40(3 \mathrm{H}, \mathrm{m}), 3.90-4.24(1 \mathrm{H}, \mathrm{m}), 4.94(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 5.19(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J=9.5 \mathrm{~Hz})$, $6.59-6.79(1 H, m), 6.83(1 H, b r s), 6.96-7.20(2 H, m), 7.83(1 H, b r s)$. High-resolution MS m/z: Calcd for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}: 256.1575$. Found: 256.1616.
(\pm)-5-epi-6,7-Secoagroclavine (22) from 21a $-\mathrm{A} \mathrm{TiCl}_{3}$ solution ($16 \%, 0.2 \mathrm{~mL}, 0.31 \mathrm{mmol}$) was added to a solution of $21 \mathrm{a}(14.5 \mathrm{mg}, 0.06 \mathrm{mmol})$ and $\mathrm{NH}_{4} \mathrm{OAc}(100.7 \mathrm{mg}, 1.31 \mathrm{mmol})$ in $\mathrm{MeOH}(2 \mathrm{~mL})$ and the mixture was stirred at rt for 7 min . The resulting solution was made basic with $8 \% \mathrm{NaOH}$ and the whole was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}(95: 5$, v/v). The organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated under reduced pressure to leave an oil, which was subjected to p-TLC on $\mathrm{Al}_{2} \mathrm{O}_{3}$ with $\mathrm{Et}_{2} \mathrm{O}-\mathrm{AcOEt}-\mathrm{CH}_{2} \mathrm{Cl}_{2}(5: 2: 8, \mathrm{v} / \mathrm{v})$ as a developing solvent. Extraction of the band having an $R f$ value of $0.31-0.41$ with $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}$ ($95: 5$, v/v) gave 22 ($6.0 \mathrm{mg}, 44 \%$). 22: mp $177-178^{\circ} \mathrm{C}$ (colorless prisms, recrystallized from $\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}$). IR (KBr): 3140, 3090, 3050, 2860, 1661, 1616, 1603, 1437, $1092 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta: 1.57\left(1 \mathrm{H}, \mathrm{s}\right.$, disappeared on addition of $\left.\mathrm{D}_{2} \mathrm{O}\right), 1.73(3 \mathrm{H}, \mathrm{d}, J=1.2 \mathrm{~Hz})$, $1.89(3 \mathrm{H}, \mathrm{d}, J=1.2 \mathrm{~Hz}), 2.51(3 \mathrm{H}, \mathrm{s}), 2.77(1 \mathrm{H}, \mathrm{ddd}, J=15.4,10.3,1.5 \mathrm{~Hz}), 2.93-3.22(2 \mathrm{H}, \mathrm{m}), 4.14(1 \mathrm{H}$, dd, $J=10.3,3.7 \mathrm{~Hz}), 5.21(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J=10.3 \mathrm{~Hz}), 6.69-6.87(1 \mathrm{H}, \mathrm{m}), 6.81(1 \mathrm{H}, \mathrm{br}$ s), $6.91-7.15(2 \mathrm{H}, \mathrm{m})$, $8.01\left(1 \mathrm{H}, \mathrm{br} \mathrm{s}\right.$, disappeared on addition of $\left.\mathrm{D}_{2} \mathrm{O}\right)$. MS m/z: $240\left(\mathrm{M}^{+}\right)$. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{~N}_{2}: \mathrm{C}, 79.95 ; \mathrm{H}$, 8.39; N, 11.66. Found: C, 79.99; H, 8.51; N, 11.60.
($\mathbf{\pm}$)-6,7-Secoagroclavine (1) from 21b $-\mathrm{A} \mathrm{TiCl}_{3}$ solution ($16 \%, 0.2 \mathrm{~mL}, 0.31 \mathrm{mmol}$) was added to a solution of $\mathbf{2 1 b}(12.6 \mathrm{mg}, 0.05 \mathrm{mmol})$ and $\mathrm{NH}_{4} \mathrm{OAc}(96.6 \mathrm{mg}, 1.29 \mathrm{mmol})$ in $\mathrm{MeOH}(2 \mathrm{~mL})$ and the mixture was stirred at rt for 7 min . After the same work-up and separation as described above, $\mathbf{1}(3.2 \mathrm{mg}$, 27%) was obtained. 1: $\mathrm{mp} 202-203^{\circ} \mathrm{C}$ (lit., ${ }^{3} \mathrm{mp} 202-205^{\circ} \mathrm{C}$) (colorless prisms, recrystallized from MeOH). IR (KBr): 3300, 3150, 2950, 2900, 1609, 1440, 1350, 1340, 1329, 1140, 1091, $1030 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 1.58(1 \mathrm{H}, \mathrm{s}), 1.84(3 \mathrm{H}, \mathrm{d}, J=1.5 \mathrm{~Hz}), 1.88(3 \mathrm{H}, \mathrm{d}, J=1.5 \mathrm{~Hz}), 2.51(3 \mathrm{H}, \mathrm{s}), 2.51-3.05$ $(2 \mathrm{H}, \mathrm{m}), 3.05-3.44(1 \mathrm{H}, \mathrm{m}), 3.86(\mathrm{br} \mathrm{dd}, J=10.0,8.0 \mathrm{~Hz}$ and d, $J=10.0 \mathrm{~Hz}$, total 1 H$), 5.13(1 \mathrm{H}, \mathrm{br}$ d,
$J=10.0 \mathrm{~Hz}), 6.72(1 \mathrm{H}, \mathrm{ddd}, J=5.0,3.0,1.0 \mathrm{~Hz}), 6.90(1 \mathrm{H}, \mathrm{d}, J=1.0 \mathrm{~Hz}), 6.98-7.27(2 \mathrm{H}, \mathrm{m}), 7.95(1 \mathrm{H}, \mathrm{br}$ s). MS $m / z: 240\left(\mathrm{M}^{+}\right)$.

Direct Synthesis of $\mathbf{1}$ from 19 - An ether solution of MeMgI was prepared with Mg ribbon (1113.3 mg , $45.8 \mathrm{mmol})$ and $\mathrm{MeI}(2.5 \mathrm{~mL}, 40.2 \mathrm{mmol})$ in anhydrous $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL})$ under argon atmosphere. To the resulting solution was added a solution of $19(499.1 \mathrm{mg}, 1.95 \mathrm{mmol})$ in anhydrous THF (20 mL) and the mixture was stirred at rt for 1 h under argon atmosphere. After cooling to $0^{\circ} \mathrm{C}, 20 \% \mathrm{NH}_{4} \mathrm{Cl}$ was added and the whole was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}(95: 5, \mathrm{v} / \mathrm{v})$. The organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated under reduced pressure to leave an oil, which was dissolved in $\mathrm{MeOH}(80$ $\mathrm{mL})$. The resulting solution was added to a suspension of $\mathrm{Zn}(3998.7 \mathrm{mg}, 61.2 \mathrm{mmol})$ in $6 \% \mathrm{HCl}(25 \mathrm{~mL})$ and the mixture was refluxed for 12 h with stirring. Unreacted Zn was filtered off. The filtrate was concentrated and made basic with $8 \% \mathrm{NaOH}$, and the whole was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}$ (95:5, $\mathrm{v} / \mathrm{v})$. The organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated under reduced pressure to leave a solid, which was recrystallized from MeOH to give $\mathbf{1}(207 \mathrm{mg})$ as colorless prisms. The mother liquor was subjected to HPLC [column, CPS-223L-1 (i.d. $22 \times 100 \mathrm{~mm}$); solvent, $\mathrm{AcOEt}-\mathrm{Et}_{2} \mathrm{O}-\mathrm{Et}_{3} \mathrm{~N}$ (100:10:1, v/v); flow rate, $1.0 \mathrm{~mL} / \mathrm{min}$; detection, UV 303 nm$] .22$ ($40.4 \mathrm{mg}, 9 \%$) and additional 1 (102.7 mg) were obtained in the order of elution. The total yield of $\mathbf{1}$ was 309.9 mg (66%).
(\boldsymbol{E})-4-Iodo-3-(2-nitrovinyl)indole (23) from 4-Iodo-3-indolecarbaldehyde (9) - $\mathrm{NH}_{4} \mathrm{OAc}$ (108.5 mg , $1.41 \mathrm{mmol})$ was added to a solution of $9(103.1 \mathrm{mg}, 0.38 \mathrm{mmol})$ in $\mathrm{MeNO}_{2}(5 \mathrm{~mL})$ and the mixture was refluxed for 1 h with stirring. After evaporation of the solvent, brine was added and the whole was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}\left(95: 5, \mathrm{v} / \mathrm{v}\right.$). The organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated under reduced pressure to leave a solid, which was recrystallized from AcOEt to give 23 ($114.7 \mathrm{mg}, 96 \%$). 23: $\mathrm{mp} 255-265^{\circ} \mathrm{C}$ (decomp., orange needles, recrystallized from $\mathrm{MeOH}-\mathrm{CHCl}_{3}$). IR $(\mathrm{KBr}): 3230,1597,1478 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\right.$ pyridine- $\left.d_{5}\right) \delta: 6.83(1 \mathrm{H}, \mathrm{dd}, J=8.0,7.2 \mathrm{~Hz}), 7.42(1 \mathrm{H}, \mathrm{dd}, J=8.0$, $1.0 \mathrm{~Hz}), 7.67(1 \mathrm{H}, \mathrm{dd}, J=7.2,1.0 \mathrm{~Hz}), 7.75(1 \mathrm{H}, \mathrm{s}), 8.07(1 \mathrm{H}, \mathrm{d}, J=13.2 \mathrm{~Hz}), 9.65(1 \mathrm{H}, \mathrm{d}, J=13.2 \mathrm{~Hz}) . \mathrm{MS}$ $m / z: 314\left(\mathrm{M}^{+}\right)$. Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{7} \mathrm{IN}_{2} \mathrm{O}_{2}$: C, 38.24; H, 2.25; N, 8.92. Found: C, 38.34; H, 2.20; N, 8.69.

4-Iodo-3-(2-nitroethyl)indole (24) from $23-\mathrm{NaBH}_{4}(45.8 \mathrm{mg}, 1.28 \mathrm{mmol})$ was added to a suspension of $\mathbf{2 3}(95.2 \mathrm{mg}, 0.30 \mathrm{mmol})$ and $\mathrm{SiO}_{2}(1213.8 \mathrm{mg})$ in $\mathrm{CHCl}_{3}(10 \mathrm{~mL})$ and $i-\mathrm{PrOH}(2 \mathrm{~mL})$, and the mixture was stirred at rt for 1 h . The resulting solution was made acidic by adding $1 \% \mathrm{HCl}$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}(95: 5, \mathrm{v} / \mathrm{v})$. The organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated under reduced pressure to leave an oil, which was subjected to $\mathrm{p}-\mathrm{TLC}$ on SiO_{2} with $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}$ (95:5, v / v) as a developing solvent. Extraction of the band having an $R f$ value of $0.69-0.85$ with $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}\left(95: 5, \mathrm{v} / \mathrm{v}\right.$) gave 24 ($80.5 \mathrm{mg}, 84 \%$). 24: mp 97-98 ${ }^{\circ} \mathrm{C}$ (yellow prisms, recrystallized from $\left.\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}\right)$. IR (KBr): $3320,1604,1539 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta: 3.63(2 \mathrm{H}, \mathrm{t}, J=6.8 \mathrm{~Hz}), 4.67(2 \mathrm{H}, \mathrm{t}$, $J=6.8 \mathrm{~Hz}), 6.74(1 \mathrm{H}, \mathrm{dd}, J=8.0,7.2 \mathrm{~Hz}), 6.96(1 \mathrm{H}, \mathrm{d}, J=2.5 \mathrm{~Hz}), 7.21(1 \mathrm{H}, \mathrm{dd}, J=8.0,1.2 \mathrm{~Hz}), 7.47(1 \mathrm{H}$,
dd, $J=7.2,1.2 \mathrm{~Hz}), 8.04(1 \mathrm{H}, \mathrm{br} s) . \mathrm{MS} m / z: 316\left(\mathrm{M}^{+}\right)$. Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{IN}_{2} \mathrm{O}_{2}: \mathrm{C}, 38.00 ; \mathrm{H}, 2.87 ; \mathrm{N}$, 8.86. Found: C, 37.75; H, 2.64; N, 8.90.
(E)-4,5-trans-5-(2-Formyl-1-propen-1-yl)- (26a) and (E)-4,5-trans-5-(2-Hydroxymethyl-1-propen-1-yl)-4-nitro-1,3,4,5-tetrahydrobenz[cd]indole (25a) from $19-\mathrm{SeO}_{2}(143.8 \mathrm{mg}, 1.30 \mathrm{mmol})$ was added to a solution of $19(57.2 \mathrm{mg}, 0.22 \mathrm{mmol})$ in 1,4 -dioxane (8 mL) and $\mathrm{H}_{2} \mathrm{O}(2 \mathrm{~mL})$, and the mixture was refluxed for 12 h with stirring. After evaporation of the solvent, brine was added and the whole was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}(95: 5, \mathrm{v} / \mathrm{v})$. The organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated under reduced pressure to leave an oil, which was subjected to p-TLC on SiO_{2} with $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}(98: 2, \mathrm{v} / \mathrm{v})$ as a developing solvent. Extraction of the band having an $R f$ value of $0.64-0.72$ with $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}(95: 5, \mathrm{v} / \mathrm{v})$ gave $\mathbf{1 9}$ ($18.3 \mathrm{mg}, 32 \%$). Extraction of the band having an $R f$ value of $0.53-0.64$ with $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}\left(95: 5\right.$, v/v) gave 26a (11.5 mg , 19\%). 26a: mp $186-188^{\circ} \mathrm{C}$ (decomp., colorless prisms, recrystallized from MeOH). IR (KBr): 3400, 1677, 1542, $1341 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(10 \% \mathrm{CD}_{3} \mathrm{OD}\right.$ in $\left.\mathrm{CDCl}_{3}\right) \delta: 1.95(3 \mathrm{H}, \mathrm{d}, J=1.5 \mathrm{~Hz}), 3.47-3.75(2 \mathrm{H}, \mathrm{m}), 4.75-5.10(2 \mathrm{H}, \mathrm{m}), 6.48(1 \mathrm{H}, \mathrm{br}$ d, $J=8.3 \mathrm{~Hz}), 6.65(1 \mathrm{H}, \mathrm{d}, J=6.8 \mathrm{~Hz}), 7.03(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 7.14(1 \mathrm{H}, \mathrm{dd}, J=8.3,6.8 \mathrm{~Hz}), 7.30(1 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz})$, $9.51(1 \mathrm{H}, \mathrm{s})$. MS m/z: $270\left(\mathrm{M}^{+}\right)$. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{3}: \mathrm{C}, 66.65$; H, 5.22; N, 10.37. Found: C, $66.76 ; \mathrm{H}, 5.20 ; \mathrm{N}, 10.54$. Extraction of the band having an $R f$ value of $0.16-0.23$ with $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}$ ($95: 5$, v/v) gave 25a ($21.6 \mathrm{mg}, 36 \%$). 25a: $\mathrm{mp} 156-156.5^{\circ} \mathrm{C}$ (colorless prisms, recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexane). IR (KBr): 3520, 3250, 1540, $1345 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(10 \% \mathrm{CD}_{3} \mathrm{OD}\right.$ in $\left.\mathrm{CDCl}_{3}\right) \delta: 1.81(3 \mathrm{H}$, d, $J=1.5 \mathrm{~Hz}), 3.53(2 \mathrm{H}, \mathrm{d}, J=7.4 \mathrm{~Hz}), 4.09(2 \mathrm{H}, \mathrm{s}), 4.60(1 \mathrm{H}, \mathrm{dd}, J=9.7,9.5 \mathrm{~Hz}), 4.81(1 \mathrm{H}, \mathrm{dt}, J=9.7,7.4$ $\mathrm{Hz}), 5.48(1 \mathrm{H}, \mathrm{dq}, J=9.5,1.5 \mathrm{~Hz}), 6.76(1 \mathrm{H}, \mathrm{d}, J=6.8 \mathrm{~Hz}), 6.96(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 7.00-7.34(2 \mathrm{H}, \mathrm{m}), 9.16(1 \mathrm{H}$, br s). MS m/z: $272\left(\mathrm{M}^{+}\right)$. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{3}$: C, 66.16; H, 5.92; N, 10.29. Found: C, 65.97; H, 5.86; N, 10.04.

Oxidation of 25a with PCC to 26a - A solution of $\mathbf{2 5 a}(55.8 \mathrm{mg}, 0.21 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ was added to a solution of PCC ($67.9 \mathrm{mg}, 0.32 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ and the mixture was stirred at rt for $1.5 \mathrm{~h} . i-\mathrm{PrOH}(0.1 \mathrm{~mL})$ was added and the resulting solution was stirred at rt for 0.5 h . After addition of $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}\left(95: 5, \mathrm{v} / \mathrm{v}\right.$), insoluble precipitates were filtered off through SiO_{2}. The filtrate was evaporated under reduced pressure to leave an oil, which was column-chromatographed on SiO_{2} with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to give 26a ($30.5 \mathrm{mg}, 55 \%$).

Reduction of 26a with $\mathbf{N a B H}_{4}$ to $\mathbf{2 5 a}$ - $\mathrm{NaBH}_{4}(4.3 \mathrm{mg}, 0.11 \mathrm{mmol})$ was added to a solution of 26a ($24.1 \mathrm{mg}, 0.09 \mathrm{mmol}$) in $\mathrm{MeOH}(10 \mathrm{~mL})$ and the mixture was stirred at rt for 0.5 h . The resulting solution was made acidic by adding $3 \% \mathrm{HCl}$ and the whole was extracted with AcOEt. The organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated under reduced pressure to leave an oil, which was subjected to p-TLC on SiO_{2} with $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}(98: 2, \mathrm{v} / \mathrm{v})$ as a developing solvent. Extraction of the band having an $R f$ value of $0.20-0.32$ with $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}(95: 5, \mathrm{v} / \mathrm{v}$) gave $\mathbf{2 5 a}$ ($22.6 \mathrm{mg}, 93 \%$).
($\mathbf{\pm}$)-Norchanoclavine-I (27a) from 25a - A solution of 25a ($50.8 \mathrm{mg}, 0.19 \mathrm{mmol}$) in $\mathrm{MeOH}(12 \mathrm{~mL})$ and $6 \% \mathrm{HCl}(4 \mathrm{~mL})$ was added to $\mathrm{Zn}(\mathrm{Hg})$, prepared from Zn powder ($353.0 \mathrm{mg}, 5.40 \mathrm{mmol}$) and HgCl_{2} $(54.2 \mathrm{mg}, 0.20 \mathrm{mmol})$ in $6 \% \mathrm{HCl}(4 \mathrm{~mL})$, and the mixture was refluxed for 2 h with stirring. Unreacted $\mathrm{Zn}(\mathrm{Hg})$ was filtered off and the filtrate was evaporated under reduced pressure. The residue was made basic by adding $8 \% \mathrm{NaOH}$ and the whole was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated under reduced pressure to leave a solid, which was recrystallized from $\mathrm{MeOH}-\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to give $\mathbf{2 7 a}(44.5 \mathrm{mg}, 98 \%)$ as colorless prisms. 27 a : $\mathrm{mp} 184-185^{\circ} \mathrm{C}$. IR (KBr): 3230, 3050-3150 cm ${ }^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\right.$ pyridine- $\left.d_{5}\right) \delta: 2.03(3 \mathrm{H}, \mathrm{d}, J=1.2 \mathrm{~Hz}), 2.95(1 \mathrm{H}, \mathrm{dd}, J=15.4$, $10.3 \mathrm{~Hz}), 3.18-3.50(2 \mathrm{H}, \mathrm{m}), 4.00(1 \mathrm{H}, \mathrm{dd}, J=9.8,6.5 \mathrm{~Hz}), 4.45(2 \mathrm{H}, \mathrm{s}), 5.85(1 \mathrm{H}, \mathrm{br}$ d, $J=9.8 \mathrm{~Hz}), 6.98$ $(1 \mathrm{H}, \mathrm{d}, J=6.6 \mathrm{~Hz}), 7.06-7.48(3 \mathrm{H}, \mathrm{m}), 11.50(1 \mathrm{H}, \mathrm{br} \mathrm{s}) . \mathrm{MS} \mathrm{m} / \mathrm{z}: 242\left(\mathrm{M}^{+}\right)$. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O} \cdot 1 / 8 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 73.66 ; \mathrm{H}, 7.52 ; \mathrm{N}, 11.46$. Found: C, 73.67; H, 7.51; N, 11.42.
(\boldsymbol{E})-4,5-trans-5-(2-Hydroxymethyl-1-propen-1-yl)-4-methoxycarbonylamino-1,3,4,5-
tetrahydrobenz $[\boldsymbol{c} d]$ indole (28a) from $27 \mathrm{a}-\mathrm{ClCO}_{2} \mathrm{Me}(0.07 \mathrm{~mL}, 0.88 \mathrm{mmol})$ was added to a solution of 27a ($51.0 \mathrm{mg}, 0.21 \mathrm{mmol}$) and $\mathrm{Et}_{3} \mathrm{~N}(0.15 \mathrm{~mL}, 1.08 \mathrm{mmol})$ in THF (3 mL), and the mixture was stirred at rt for 1 h . Brine was added and the whole was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}(95: 5, \mathrm{v} / \mathrm{v})$. The organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated under reduced pressure to leave an oil, which was subjected to $\mathrm{p}-\mathrm{TLC}$ on SiO_{2} with $\mathrm{CHCl}_{3}-\mathrm{MeOH}-28 \% \mathrm{NH}_{4} \mathrm{OH}(46: 5: 0.5$, v/v) as a developing solvent. Extraction of the band having an $R f$ value of $0.35-0.53$ with $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}(95: 5$, v/v) gave 28a ($58.4 \mathrm{mg}, 92 \%$) as a colorless oil. 28a: IR (KBr): 3380, $1690 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta: 1.63(1 \mathrm{H}, \mathrm{s})$, $1.92(3 \mathrm{H}, \mathrm{d}, J=1.4 \mathrm{~Hz}), 2.84(1 \mathrm{H}, \mathrm{dd}, J=15.7,5.4 \mathrm{~Hz}), 3.25(1 \mathrm{H}, \mathrm{ddd}, J=15.7,3.9,1.2 \mathrm{~Hz}), 3.62(3 \mathrm{H}, \mathrm{s})$, $3.85-4.37(2 \mathrm{H}, \mathrm{m}), 4.03(2 \mathrm{H}, \mathrm{s}), 4.75(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J=8.0 \mathrm{~Hz}), 5.38(1 \mathrm{H}, \mathrm{dq}, J=9.2,1.4 \mathrm{~Hz}), 6.80(1 \mathrm{H}, \mathrm{dd}$, $J=5.9,2.0 \mathrm{~Hz}), 6.90(1 \mathrm{H}, \mathrm{s}), 7.02-7.28(2 \mathrm{H}, \mathrm{m}), 8.02(1 \mathrm{H}, \mathrm{br} \mathrm{s})$. High-resolution MS m/z: Calcd for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{3}: 300.1472$. Found: 300.1464.
($\mathbf{\pm}$)-Chanoclavine-I (2) from $\mathbf{2 8 a}-\mathrm{LiAlH}_{4}(542.8 \mathrm{mg}, 14.3 \mathrm{mmol})$ was added to a solution of 28a ($353.2 \mathrm{mg}, 1.18 \mathrm{mmol}$) in anhydrous THF (15 mL) and the mixture was refluxed for 1 h with stirring. To the resulting solution, MeOH was added at $0^{\circ} \mathrm{C}$ to decompose excess LiAlH_{4}. After addition of 20% potassium sodium tartrate, the whole was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated under reduced pressure to leave a solid, which was recrystallized from $\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}$ to give $2(288.2 \mathrm{mg}, 96 \%)$ as colorless prisms. 2: mp $194-195^{\circ} \mathrm{C}$ (lit. ${ }^{20}$ $\mathrm{mp} 185-186^{\circ} \mathrm{C}$). IR (KBr): 3230, 1600, 1435, 1034, $743 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}$ (pyridine- d_{5}) $\delta: 2.02(3 \mathrm{H}, \mathrm{d}$, $J=1.5 \mathrm{~Hz}), 2.40(3 \mathrm{H}, \mathrm{s}), 2.70-3.15(2 \mathrm{H}, \mathrm{m}), 3.41(1 \mathrm{H}, \mathrm{dd}, J=18.8,8.3 \mathrm{~Hz}), 4.03-4.29(1 \mathrm{H}, \mathrm{m}), 4.41(2 \mathrm{H}$, s), $5.85(1 \mathrm{H}, \mathrm{dq}, J=10.0,1.5 \mathrm{~Hz}), 6.42\left(1 \mathrm{H}, \mathrm{br}\right.$ s, disappeared on addition of $\left.\mathrm{D}_{2} \mathrm{O}\right), 6.97(1 \mathrm{H}, \mathrm{d}, J=6.6 \mathrm{~Hz})$, $7.06-7.47(3 H, m), 11.49(1 H, b r s) . M S m / z: 256\left(M^{+}\right)$. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}: \mathrm{C}, 74.96 ; \mathrm{H}, 7.86 ; \mathrm{N}$, 10.93. Found: C, 74.91; H, 7.99; N, 10.96.
(E)-4,5-cis-5-(2-Methyl-1-propen-1-yl)-4-nitro-1,3,4,5-tetrahydrobenz[cd]indole (29) from 19 $\mathrm{NaOMe}(3757.9 \mathrm{mg}, 69.6 \mathrm{mmol})$ was added to a solution of $19(3015.8 \mathrm{mg}, 11.8 \mathrm{mmol})$ in anhydrous $\mathrm{MeOH}(300 \mathrm{~mL})$ and the mixture was refluxed for 5 h with stirring. After evaporation of the solvent, the residue was made acidic (pH 4) by adding $10 \% \mathrm{AcOH}$ and the whole was extracted with AcOEt. The organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated under reduced pressure to leave an oil, which was column-chromatographed on SiO_{2} with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexane ($1: 1, \mathrm{v} / \mathrm{v}$) and recrystallized from MeOH to give $29(2035.1 \mathrm{mg})$ as colorless prisms. The mother liquor was a mixture of $\mathbf{1 9}$ and $\mathbf{2 9}$ in the ratio of 1:2.3 by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ analysis. Therefore, the yields of 19 and 29 were 8 and 85%, respectively. 29: mp $147-148^{\circ} \mathrm{C}$. IR (KBr): $3380,1526,1378 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta: 1.67(3 \mathrm{H}, \mathrm{d}, J=1.2 \mathrm{~Hz}), 1.83$ ($3 \mathrm{H}, \mathrm{d}, J=1.2 \mathrm{~Hz}$), $3.33(1 \mathrm{H}, \mathrm{dd}, J=15.4,5.3 \mathrm{~Hz}$), $3.59(1 \mathrm{H}, \mathrm{ddd}, J=15.4,10.0,1.5 \mathrm{~Hz}), 4.73(1 \mathrm{H}, \mathrm{dd}$, $J=10.3,4.4 \mathrm{~Hz}), 4.96(1 \mathrm{H}, \mathrm{ddd}, J=10.0,5.3,4.4 \mathrm{~Hz}), 5.13(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J=10.3 \mathrm{~Hz}), 6.75-6.98(1 \mathrm{H}, \mathrm{m})$, $6.92(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 7.00-7.25(2 \mathrm{H}, \mathrm{m}), 7.98(1 \mathrm{H}, \mathrm{br} \mathrm{s}) . \mathrm{MS} \mathrm{m} / \mathrm{z}: 256\left(\mathrm{M}^{+}\right)$. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2} \cdot 1 / 6 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 69.48 ; \mathrm{H}, 6.35$; N, 10.93. Found: C, 69.38; H, 6.14; N, 10.89.
(E)-4,5-cis-5-(2-Formyl-1-propen-1-yl)- (26b) and (E)-4,5-cis-5-(2-Hydroxymethyl-1-propen-1-yl)-4-nitro-1,3,4,5-tetrahydrobenz[$\boldsymbol{c d}]$ indole ($\mathbf{2 5 b}$) from $29-\mathrm{SeO}_{2}(89.4 \mathrm{mg}, 0.81 \mathrm{mmol})$ was added to a solution of $29(57.2 \mathrm{mg}, 0.22 \mathrm{mmol})$ in 1,4-dioxane- $\mathrm{H}_{2} \mathrm{O}(4: 1, \mathrm{v} / \mathrm{v}, 8 \mathrm{~mL})$ and the mixture was refluxed for 4 h with stirring. After evaporation of the solvent, brine was added and the whole was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}(95: 5, \mathrm{v} / \mathrm{v})$. The organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated under reduced pressure to leave an oil, which was subjected to p - TLC on SiO_{2} with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ as a developing solvent. Extraction of the band having an $R f$ value of $0.76-0.86$ with $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}$ (95:5, v / v) gave 29 ($30.3 \mathrm{mg}, 62 \%$). Extraction of the band having an $R f$ value of $0.36-0.46$ with $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}(95: 5, \mathrm{v} / \mathrm{v})$ gave 26b ($2.0 \mathrm{mg}, 4 \%$) as a colorless oil. 26b: IR (KBr): 3400, 1676, 1636, $1544,1362 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta: 1.96(3 \mathrm{H}, \mathrm{d}, J=1.5 \mathrm{~Hz}), 3.32-3.84(2 \mathrm{H}, \mathrm{m}), 4.89-5.21(2 \mathrm{H}, \mathrm{m})$, $6.41(1 \mathrm{H}, \mathrm{br}$ d, $J=10.2 \mathrm{~Hz}), 6.83(1 \mathrm{H}, \mathrm{dd}, J=6.2,1.5 \mathrm{~Hz}), 7.01(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 7.12(1 \mathrm{H}, \mathrm{dd}, J=8.2,6.2 \mathrm{~Hz})$, $7.25(1 \mathrm{H}, \mathrm{dd}, J=8.2,1.5 \mathrm{~Hz}), 8.15(1 \mathrm{H}, \mathrm{br} s), 9.51(1 \mathrm{H}, \mathrm{s})$. High-resolution MS $m / z:$ Calcd for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{3}$: 270.1003. Found: 270.1008. Extraction of the band having an $R f$ value of $0.11-0.20$ with $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}(95: 5, \mathrm{v} / \mathrm{v})$ gave 25b ($16.0 \mathrm{mg}, 31 \%$). 25b: mp $134-135^{\circ} \mathrm{C}$ (colorless prisms, recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexane). IR (KBr): 3490, $3240,1532,1366 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta: 1.56$ $(1 \mathrm{H}, \mathrm{s}), 1.86(3 \mathrm{H}, \mathrm{d}, J=1.5 \mathrm{~Hz}), 3.36(2 \mathrm{H}, \mathrm{dd}, J=15.5,5.5 \mathrm{~Hz}), 3.61(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=15.5,10.0,1.5 \mathrm{~Hz}), 3.92$ $(2 \mathrm{H}, \mathrm{s}), 4.81(1 \mathrm{H}, \mathrm{dd}, J=10.4,4.4 \mathrm{~Hz}), 5.01(1 \mathrm{H}, \mathrm{ddd}, J=10.0,5.5,4.4 \mathrm{~Hz}), 5.43(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J=10.4 \mathrm{~Hz})$, $6.83(1 \mathrm{H}, \mathrm{dd}, J=5.8,2.4 \mathrm{~Hz}), 6.94(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 7.00-7.27(2 \mathrm{H}, \mathrm{m}), 8.03(1 \mathrm{H}, \mathrm{br} \mathrm{s}) . \mathrm{MS} \mathrm{m} / \mathrm{z}: 272\left(\mathrm{M}^{+}\right)$. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{3}$: C, 66.16; H, 5.92; N, 10.29. Found: C, 66.05; H, 5.91; N, 10.08.
$\mathbf{(\pm) - N o r c h a n o c l a v i n e - I I ~ (2 7 b) ~ f r o m ~ 2 5 b ~ - ~ A ~ s o l u t i o n ~ o f ~ 2 5 b ~ (~} 52.3 \mathrm{mg}, 0.19 \mathrm{mmol}$) in $\mathrm{MeOH}(12 \mathrm{~mL})$ and $6 \% \mathrm{HCl}(4 \mathrm{~mL})$ was added to $\mathrm{Zn}(\mathrm{Hg})$, prepared from Zn powder ($358.6 \mathrm{mg}, 5.49 \mathrm{mmol}$) and HgCl_{2}
$(53.4 \mathrm{mg}, 0.20 \mathrm{mmol})$ in $6 \% \mathrm{HCl}(4 \mathrm{~mL})$, and the mixture was refluxed for 1.5 h with stirring. Unreacted $\mathrm{Zn}(\mathrm{Hg})$ was filtered off and the filtrate was evaporated under reduced pressure. The residue was made basic by adding $8 \% \mathrm{NaOH}$ and the whole was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}(95: 5, \mathrm{v} / \mathrm{v})$. The organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated under reduced pressure to leave a solid, which was recrystallized from AcOEt to give $\mathbf{2 7 b}(39.4 \mathrm{mg})$ as colorless prisms. The mother liquor was subjected to p-TLC on SiO_{2} with $\mathrm{CHCl}_{3}-\mathrm{MeOH}-28 \% \mathrm{NH}_{4} \mathrm{OH}(46: 5: 0.5, \mathrm{v} / \mathrm{v}$) as a developing solvent. Extraction of the band having an $R f$ value of $0.24-0.32$ with $\mathrm{CHCl}_{3}-\mathrm{MeOH}-28 \% \mathrm{NH}_{4} \mathrm{OH}(46: 5: 0.5, \mathrm{v} / \mathrm{v})$ gave additional $\mathbf{2 7 b}(4.6 \mathrm{mg})$. The total yield of $\mathbf{2 7 b}$ was $44.0 \mathrm{mg}(95 \%) . \mathbf{2 7 b}$: $\mathrm{mp} 208-210^{\circ} \mathrm{C}$ (decomp.). IR (KBr): 3360, $3150 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\right.$ pyridine- $\left.d_{5}\right) \delta: 2.06(3 \mathrm{H}, \mathrm{d}, J=1.0 \mathrm{~Hz}), 2.98(1 \mathrm{H}, \mathrm{dd}, J=15.3,7.3$ $\mathrm{Hz}), 3.19(1 \mathrm{H}, \mathrm{dd}, J=15.3,3.9 \mathrm{~Hz}), 3.50-3.77(1 \mathrm{H}, \mathrm{m}), 4.28(1 \mathrm{H}, \mathrm{dd}, J=9.8,3.9 \mathrm{~Hz}), 4.34(2 \mathrm{H}, \mathrm{s}), 6.05$ $(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J=9.8 \mathrm{~Hz}), 7.01(1 \mathrm{H}, \mathrm{d}, J=6.8 \mathrm{~Hz}), 7.09-7.46(3 \mathrm{H}, \mathrm{m}), 11.55(1 \mathrm{H}, \mathrm{br} \mathrm{s}) . \mathrm{MS} m / z: 242\left(\mathrm{M}^{+}\right)$. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O} \cdot 1 / 8 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 73.66 ; \mathrm{H}, 7.52 ; \mathrm{N}, 11.46$. Found: C, 73.88; H, 7.49; N, 11.33.
(E)-4,5-cis-5-(2-Hydroxymethyl-1-propen-1-yl)-4-methoxycarbonylamino-1,3,4,5tetrahydrobenz[$\boldsymbol{c d}]$ indole (28b) from 27b $\mathbf{~ - ~ A ~ s o l u t i o n ~ o f ~} \mathrm{ClCO}_{2} \mathrm{Me}(16.9 \mathrm{mg}, 0.18 \mathrm{mmol})$ in THF (0.5 mL) was added to a solution of $\mathbf{2 7 b}(10.1 \mathrm{mg}, 0.04 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(0.03 \mathrm{~mL}, 0.22 \mathrm{mmol})$ in THF $(1 \mathrm{~mL})$, and the mixture was stirred at rt for $0.5 \mathrm{~h} . \mathrm{H}_{2} \mathrm{O}$ was added and the whole was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated under reduced pressure to leave an oil, which was subjected to p-TLC on SiO_{2} with $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}(95: 5$, v/v) as a developing solvent. Extraction of the band having an $R f$ value of $0.47-0.55$ with $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}(95: 5, \mathrm{v} / \mathrm{v}$) gave 28b (12.3 $\mathrm{mg}, 98 \%)$ as a colorless oil. 28b: IR (KBr): 3350, $1695 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta: 1.86(3 \mathrm{H}, \mathrm{d}, J=1.2 \mathrm{~Hz})$, $2.91(1 \mathrm{H}, \mathrm{dd}, J=15.5,6.3 \mathrm{~Hz}), 3.14(1 \mathrm{H}, \mathrm{dd}, J=15.5,4.5 \mathrm{~Hz}), 3.60(3 \mathrm{H}, \mathrm{s}), 4.07(2 \mathrm{H}, \mathrm{s}), 4.14(1 \mathrm{H}, \mathrm{dd}$, $J=9.8,3.7 \mathrm{~Hz}), 4.20-4.57(1 \mathrm{H}, \mathrm{m}), 4.89(1 \mathrm{H}$, br d, $J=9.5 \mathrm{~Hz}), 5.56(1 \mathrm{H}, \mathrm{br}$ d, $J=9.8 \mathrm{~Hz}), 6.64-6.96(2 \mathrm{H}$, m), 6.96-7.31 (2H, m), $8.07(1 \mathrm{H}, \mathrm{br} s)$. High-resolution MS m/z: Calcd for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{3}$: 300.1472. Found: 300.1521.
($\mathbf{\pm}$)-Chanoclavine-II (3) from 28b $-\operatorname{LiAlH}_{4}(379.8 \mathrm{mg}, 10.0 \mathrm{mmol})$ was added to a solution of 28b ($95.2 \mathrm{mg}, 0.32 \mathrm{mmol}$) in anhydrous THF (6 mL) and the mixture was refluxed for 1 h with stirring. To the resulting solution, MeOH was added at $0^{\circ} \mathrm{C}$ to decompose excess LiAlH_{4}. After addition of 20% potassium sodium tartrate, the whole was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}$ ($95: 5, \mathrm{v} / \mathrm{v}$). The organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated under reduced pressure to leave an oil, which was subjected to p-TLC on SiO_{2} with $\mathrm{CHCl}_{3}-\mathrm{MeOH}-28 \% \mathrm{NH}_{4} \mathrm{OH}(46: 5: 0.5, \mathrm{v} / \mathrm{v})$ as a developing solvent. Extraction of the band having an $R f$ value of $0.18-0.32$ with $\mathrm{CHCl}_{3}-\mathrm{MeOH}-28 \% \mathrm{NH}_{4} \mathrm{OH}(46: 5: 0.5, \mathrm{v} / \mathrm{v})$ gave 3 ($69.5 \mathrm{mg}, 86 \%$). 3: mp $153.5-154^{\circ} \mathrm{C}$ (colorless prisms, recrystallized from acetone). IR (KBr): $3220,1617,1604,1440,1335,1068,746 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\right.$ pyridine- $\left.d_{5}\right) \delta: 2.12(3 \mathrm{H}, \mathrm{d}, J=1.2 \mathrm{~Hz}), 2.47(3 \mathrm{H}$, s), $2.96(1 \mathrm{H}, \mathrm{dd}, J=15.0,9.5 \mathrm{~Hz}), 3.06-3.39(2 \mathrm{H}, \mathrm{m}), 4.29(2 \mathrm{H}, \mathrm{s}), 4.44(1 \mathrm{H}, \mathrm{dd}, J=10.2,3.5 \mathrm{~Hz}), 6.03$
$(1 \mathrm{H}, \mathrm{d}, J=10.2 \mathrm{~Hz}), 6.26\left(1 \mathrm{H}, \mathrm{br} \mathrm{s}\right.$, disappeared on addition of $\left.\mathrm{D}_{2} \mathrm{O}\right), 7.04(1 \mathrm{H}, \mathrm{d}, J=6.5 \mathrm{~Hz}), 7.11-7.34$ $(2 \mathrm{H}, \mathrm{m}), 7.40(1 \mathrm{H}, \mathrm{dd}, J=8.0,1.2 \mathrm{~Hz}), 11.53\left(1 \mathrm{H}, \mathrm{br} \mathrm{s}\right.$, disappeared on addition of $\left.\mathrm{D}_{2} \mathrm{O}\right)$. MS m/z: 256 $\left(\mathrm{M}^{+}\right)$. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}: \mathrm{C}, 74.96 ; \mathrm{H}, 7.86 ; \mathrm{N}, 10.93$. Found: C, $74.73 ; \mathrm{H}, 7.90 ; \mathrm{N}, 10.80$.
(Z)-4,5-cis-5-(2-Hydroxymethyl-1-propen-1-yl)-4-methylamino-1,3,4,5-tetrahydrobenz[cd] indole
(30) from $22-\mathrm{SeO}_{2}(16.5 \mathrm{mg}, 0.15 \mathrm{mmol})$ was added to a solution of $22(30.5 \mathrm{mg}, 0.13 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(84.3 \mathrm{mg}, 0.83 \mathrm{mmol})$ in 1,4-dioxane (3 mL), and the mixture was heated at $90^{\circ} \mathrm{C}$ for 4 h with stirring. The resulting solution was made basic by adding $8 \% \mathrm{NaOH}$ and the whole was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}(95: 5, \mathrm{v} / \mathrm{v})$. The organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated under reduced pressure to leave an oil, which was subjected to $\mathrm{p}-\mathrm{TLC}$ on SiO_{2} with $\mathrm{CHCl}_{3}-\mathrm{MeOH}-28 \%$ $\mathrm{NH}_{4} \mathrm{OH}(46: 5: 0.5, \mathrm{v} / \mathrm{v})$ as a developing solvent. Extraction of the band having an $R f$ value of $0.33-0.43$ with $\mathrm{CHCl}_{3}-\mathrm{MeOH}-28 \% \mathrm{NH}_{4} \mathrm{OH}(46: 5: 0.5, \mathrm{v} / \mathrm{v})$ gave 22 ($14.0 \mathrm{mg}, 46 \%$). Extraction of the band having an $R f$ value of $0.24-0.33$ with $\mathrm{CHCl}_{3}-\mathrm{MeOH}-28 \% \mathrm{NH}_{4} \mathrm{OH}(46: 5: 0.5$, v/v) gave 30 ($11.0 \mathrm{mg}, 34 \%$). 30: $\mathrm{mp} 179-182^{\circ} \mathrm{C}$ (decomp., colorless prisms, recrystallized from acetone). IR (KBr): 3190, 1620, 1470, 1438, 1101, 1038, 1011, $745 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta: 1.79(3 \mathrm{H}, \mathrm{d}, J=1.2 \mathrm{~Hz}), 2.39-3.39(3 \mathrm{H}, \mathrm{m}), 2.55$ $(3 \mathrm{H}, \mathrm{s}), 2.87(2 \mathrm{H}, \mathrm{br} \mathrm{s}), 3.83(1 \mathrm{H}, \mathrm{d}, J=12.0 \mathrm{~Hz}), 4.21(1 \mathrm{H}, \mathrm{dd}, J=10.5,4.2 \mathrm{~Hz}), 4.55(1 \mathrm{H}, \mathrm{dd}, J=12.0,1.0$ $\mathrm{Hz}), 5.19(1 \mathrm{H}, \mathrm{br}$ d, $J=10.5 \mathrm{~Hz}), 6.75(1 \mathrm{H}, \mathrm{dd}, J=5.4,2.4 \mathrm{~Hz}), 6.84(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 7.06(1 \mathrm{H}, \mathrm{dd}, J=8.1,5.4$ $\mathrm{Hz}), 7.15(1 \mathrm{H}, \mathrm{dd}, J=8.1,2.4 \mathrm{~Hz}), 7.98(1 \mathrm{H}, \mathrm{br} s) . \mathrm{MS} m / z: 256\left(\mathrm{M}^{+}\right)$. Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}: \mathrm{C}$, 74.96; H, 7.86; N, 10.93. Found: C, 74.95; H, 7.90; N, 10.95.
(\pm)-Agroclavine-I (4) from 30 - A solution of $\mathrm{POCl}_{3}(134.5 \mathrm{mg}, 0.88 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(0.5 \mathrm{~mL})$ was added to a suspension of $\mathbf{3 0}(7.4 \mathrm{mg}, 0.03 \mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(55.5 \mathrm{mg}, 0.40 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(1 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$, and the mixture was stirred at $0^{\circ} \mathrm{C}$ for 1 h and at rt for an additional 3 h . After cooling to $0^{\circ} \mathrm{C}$, the resulting solution was made basic by adding $8 \% \mathrm{NaOH}$ and the whole was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}$ ($95: 5, \mathrm{v} / \mathrm{v}$). The organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated under reduced pressure to leave an oil, which was subjected to p-TLC on SiO_{2} with $\mathrm{CHCl}_{3}-\mathrm{MeOH}-28 \% \mathrm{NH}_{4} \mathrm{OH}$ (46:5:0.5, v/v) as a developing solvent. Extraction of the band having an $R f$ value of $0.45-0.55$ with $\mathrm{CHCl}_{3}-\mathrm{MeOH}-28 \% \mathrm{NH}_{4} \mathrm{OH}(46: 5: 0.5, \mathrm{v} / \mathrm{v})$ gave $4(6.0 \mathrm{mg}, 87 \%)$. 4: mp $157-158^{\circ} \mathrm{C}$ (colorless prisms, recrystallized from acetone). IR (KBr): 3400, 3100, 2860, 1618, 1607, $1444 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta$: $1.63(3 \mathrm{H}, \mathrm{br} \mathrm{s}), 2.56(3 \mathrm{H}, \mathrm{s}), 2.78(1 \mathrm{H}, \mathrm{ddd}, J=15.0,10.0,1.5 \mathrm{~Hz}), 2.98(1 \mathrm{H}, \mathrm{dd}, J=15.0,4.5 \mathrm{~Hz}), 3.07$ $(2 \mathrm{H}, \mathrm{br}$ s), $3.24-3.49(1 \mathrm{H}, \mathrm{m}), 3.78-4.08(1 \mathrm{H}, \mathrm{m}), 5.48(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 6.74-6.98(1 \mathrm{H}, \mathrm{m}), 6.79(1 \mathrm{H}, \mathrm{br} \mathrm{s})$, 6.98-7.18 (2H, m), $7.87\left(1 \mathrm{H}\right.$, br s). High-resolution MS $m / z:$ Calcd for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{~N}_{2}: 238.1468$. Found: 238.1467.

4,5-cis-5-(2-Methyl-1-propen-1-yl)-4-amino-1,3,4,5-tetrahydrobenz[cd]indole (31) from 29 - A solution of $29(129.6 \mathrm{mg}, 0.51 \mathrm{mmol})$ in $\mathrm{MeOH}(30 \mathrm{~mL})$ and $6 \% \mathrm{HCl}(10 \mathrm{~mL})$ was added to $\mathrm{Zn}(\mathrm{Hg})$, prepared from Zn powder $(997.8 \mathrm{mg}, 15.3 \mathrm{mmol})$ and $\mathrm{HgCl}_{2}(154.2 \mathrm{mg}, 0.57 \mathrm{mmol})$ in $6 \% \mathrm{HCl}(10 \mathrm{~mL})$,

REFERENCES AND NOTES

1. a) This report is Part 130 of a series entitled "The Chemistry of Indoles". Part 129: M. Somei, K. Noguchi, K. Yoshino, K. Mori, M. Asada, F. Yamada, Y. Tanaka, K. Shigenobu, and K. Koike, Heterocycles, 2006, 69, 259-269.
2. M. Somei, Y. Yokoyama, Y. Murakami, I. Ninomiya, T. Kiguchi, and T. Naito, "Recent Synthetic Studies on the Ergot Alkaloids and Related Compounds", The Alkaloids, Vol. 54, eds. by G. A. Cordell, Academic Press, 2000, pp. 191-257.
3. D. C. Horwell and J. P. Verge, Phytochemistry, 1979, 18, 519.
4. M. Natsume and H. Muratake, Heterocycles, 1980, 14, 1101-1105.
5. W. Oppolzer, J. I. Grayson, H. Wegmann, and M. Urrea, Tetrahedron, 1983, 39, 3695-3706.
6. N. Hatanaka, O. Ozaki, and M. Matsumoto, Tetrahedron Lett., 1986, 27, 3169-3172.
7. M. Somei, T. Iwaki, F. Yamada, Y. Tanaka, K. Shigenobu, K. Koike, N. Suzuki, and A. Hattori, Heterocycles, 2006, 68, 1565-1569.
8. D. Stauffacher and H. Tscherter, Helv. Chim. Acta, 1964, 47, 2186-2194.
9. V. G. Sakharovsky and A. G. Kozlovsky, Tetrahedron Lett., 1984, 25, 109-112.
10. F. Yamada and M. Somei, Heterocycles, 1987, 26, 1173-1176.
11. M. Somei, T. Hasegawa, and C. Kaneko, Heterocycles, 1983, 20, 1983-1985.
12. M. Somei, F. Yamada, M. Kunimoto, and C. Kaneko, Heterocycles, 1984, 22, 797-801.
13. M. Somei, F. Yamada, Y. Karasawa, and C. Kaneko, Chemistry Lett., 1981, 615-618.
14. M. Somei and M. Tsuchiya, Chem. Pharm. Bull., 1981, 29, 3145-3157.
15. F. Yamada, Y. Makita, T. Suzuki, and M. Somei, Chem. Pharm. Bull., 1985, 33, 2162-2163.
16. M. Somei, Y. Makita, and F. Yamada, Chem. Pharm. Bull., 1986, 34, 948-950.
17. M. Somei, Y. Fumio, and Y. Makita, Heterocycles, 1987, 26, 895-898.
18. M. Somei, F. Yamada, H. Ohnishi, Y. Makita, and M. Kuriki, Heterocycles, 1987, 26, 2823-2828.
19. B. S. Bal, W. E. Childers, Jr., and H. W. Pinnick, Tetrahedron, 1981, 37, 2091 - 2096.
20. W. Oppolzer and J. I. Grayson, Helv. Chim. Acta, 1980, 63, 1706-1710.
21. J. Beward, Chem. Ber., 1907, 40, 3065-3083.
22. F. Klages, R. Heinle, H. Sitz, and E. Specht, Chem. Ber., 1963, 96, 2387 - 2393.
23. A. P. Kozikowski and H. Ishida, Heterocycles, 1980, 14, 55-58.
24. M. Somei, Y. Karasawa, and C. Kaneko, Heterocycles, 1981, 16, 941-949.
M. Somei and F. Yamada, Chem. Pharm. Bull., 1984, 32, 5064-5065.
M. Somei, K. Kato, and S. Inoue, Chem. Pharm. Bull., 1980, 28, 2515-2516.
25. A. K. Sinhababu and R. T. Borchardt, Tetrahedron Lett., 1983, 24, 227 - 230.
26. T. Jeffery, J. Chem. Soc., Chem. Commun., 1984, 1287-1289.
27. Synthesis of ergot alkaloid without using any protective groups: ref. 25 and F. Yamada, Y. Makita, T. Suzuki, and M. Somei, Chem. Pharm. Bull., 1985, 33, 2162-2163.
28. H. Plieninger and D. Schmalz, Chem. Ber, 1976, 109, 2140-2147.
29. A. P. Kozikowski and H. Ishida, J. Am. Chem. Soc., 1980, 102, 4265-4267.
30. M. Natsume and H. Muratake, Heterocycles, 1981, 16, 375-379.
31. A. P. Kozikowski and P. D. Stein, J. Am. Chem. Soc., 1985, 107, 2569 - 2571.
32. T. Kiguchi, C. Hashimoto, and I. Ninomiya, Heterocycles, 1985, 23, 2891-2893.
33. W. J. Wheeler, Tetrahedron Lett., 1986, 27, 3469-3470.
34. K. B. Sharpless and R. F. Lauer, J. Am. Chem. Soc., 1972, 94, 7154-7155.
35. H. P. Jensen and K. B. Sharpless, J. Org. Chem., 1975, 40, 264-265.
36. D. Arigoni, A. Vasella, K. B. Sharpless, and H. P. Jensen, J. Am. Chem. Soc., 1973, 95, 7917-7919.
37. H. Ishii, I. -S. Chen, S. Ueki, M. Akaike, and T. Ishikawa, Chem. Pharm. Bull., 1987, 35, 2717-2725.
Synthesis of optically active 6,7-secoagroclavine: K. Nakagawa and M. Somei, Heterocycles, 1991, 32, 873-878.
38. Synthesis of (\pm)-1-methoxy-6,7-secoagroclavine: M. Somei, H. Ohnishi, and Y. Shoken, Chem. Pharm. Bull., 1986, 34, 677-681.

[^0]: \# Dedicated to Prof. Dr. Yoshito Kishi

