Synthetic studies directed toward ergot alkaloids, (±)-6,7-secoagroclavine, (±)-chanoclavine-1, (±)-chanoclavine-II, and (±)-agroclavine-I, by an efficient and common synthetic route

メタデータ	言語: eng
	出版者:
	公開日: 2017-10-04
	キーワード (Ja):
	キーワード (En):
	作成者:
	メールアドレス:
	所属:
URL	http://hdl.handle.net/2297/23504

SYNTHETIC STUDIES DIRECTED TOWARD ERGOT ALKALOIDS, (±)-6,7-SECOAGROCLAVINE, (±)-CHANOCLAVINE-I, (±)-CHANOCLAVINE-II, AND (±)-AGROCLAVINE-I, BY AN EFFICIENT AND COMMON SYNTHETIC ROUTE^{1#}

Fumio Yamada, Yoshihiko Makita, and Masanori Somei*

Division of Pharmaceutical Sciences, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan Corresponding author: e-mail address: <u>somei@p.kanazawa-u.ac.jp</u>.

Abstract – Novel three synthetic routes to (\pm) -6,7-secoagroclavine were developed from either methyl 3-(3-formylindol-4-yl)acrylate, indole-4-carbaldehyde, or 4-iodoindole-3-carbaldehyde. The total syntheses of (\pm) -chanoclavine-I, (\pm) -chanoclavine–II, and (\pm) -agroclavine-I were accomplished as well from the synthetic intermediates involved in the synthesis of (\pm) -6,7-secoagroclavine, culminating in establishing an efficient and common synthetic method for ergot alkaloids.

Ergot alkaloids (Scheme 1) are one of the attractive alkaloids due to both their multimodal biological activities and the possibility for the development of new medicinal drugs.² Their synthetic studies have been performed by many groups.^{3–6} Nevertheless, an efficient total synthesis of ergot alkaloids has not been attained judged on our synthetic philosophy for evaluating the effectiveness.⁷

Our idea started from choosing 6,7-secoagroclavine (**1**, Scheme 1) as an important target, which was one of the ergot alkaloids isolated by D. C. Horwell's group.³ Because once the synthetic route to **1** is established, the synthetic intermediates involved in the route would be derived by simple chemical modifications to the more complex ergot alkaloids, such as chanoclavine-I (**2**),⁸ chanoclavine-II (**3**),⁸ and agroclavine-I (**4**)⁹ providing a common synthetic route to ergot alkaloids.

In order to meet our end, we have thus far created simple synthetic methods for various 4-substituted indoles from indole-3-carbaldehyde¹⁰ (**5**) utilizing (3-formylindol-4-yl)thallium bis(trifluoroacetate) (**6**) as an intermediate (Scheme 1). Examples are the synthesis of methyl 3-(3-formylindol-4-yl)acrylate¹¹ (**7a**)

Dedicated to Prof. Dr. Yoshito Kishi

by one pot procedure in 70% yield and indole-4-carbaldehyde (8) in five or six steps in 25-30% overall yield from 5.¹⁰ Preparation of 4-iodoindole-3-carbaldehyde¹² (9) was established as well by one pot procedure from 5 in 72% yield.

With these building blocks in hand, we succeeded in creating an efficient and common synthetic method for 1, chanoclavine-I (3), chanoclavine-II (4), and agroclavine-I (5). Part of this work was published as preliminary communications.^{13–18}

A Ten-Step Synthetic Route to (±)-6,7-Secoagroclavine (1)

The oxidation of the aldehyde group of 7a with NaClO₂ in *t*-BuOH-H₂O in the presence of NaH₂PO₄ and 2-methyl-2-butene¹⁹ gave the corresponding carboxylic acid 7b in 90% yield (Scheme 1). Decarboxylation of **7b** by heating in pyridine provided methyl 3-(indol-4-yl)acrylate (10)²⁰ in 91% yield. Compound 10 was also available by the following two alternative route: 1) direct decarbonylation of 7a with (Ph₃P)₃RhCl in refluxing benzene in 32% yield, 2) Wittig reaction of 8 with Ph₃P=CHCO₂Me in 99% yield. Subsequent Mannich reaction of 10 with Me₂NH and HCHO in AcOH afforded the corresponding gramine 11 in 95% yield. Treatment of 11 with MeNO₂ in refluxing MeCN in the presence 4,5-trans-5-KF and 18-crown-6 gave the tricyclic compounds, 4,5-cis-(12)of and methoxycarbonylmethyl-4-nitro-1,3,4,5-tetrahydrobenz[*cd*]indole (13), in 16 and 71% vields, respectively. Their stereochemistries were determined as shown in Scheme 1 comparing their coupling

constants between H-4 and H-5 (12: J=4.0 Hz, 13: J=6.0 Hz) in addition to the fact that the *trans* isomer 13 was eventually derived to the natural product 1.

In the next step, we needed a reductive methylation of the nitro group retaining the stereochemistry and the simultaneous transformation of the ester group to an isopropyl alcohol group. We conceived the idea that an excess amount of Grignard reagent could play dual role as a reducing reagent and a nucleophile, though nitroalkanes were rarely converted to *N*-substituted hydroxylamines with Grignard reagents.^{21,22} In fact, the treatment of the *cis*-compound **12** with excess MeMgI in THF-Et₂O generated stereoselectively the hemiketal **14a** as a single product in 69% yield. The configuration of the hydroxy group in the hemiketal part is unknown. Subsequent treatment of **14a** with Ac₂O opened the hemiketal ring resulting in the formation of the *O*-acetyl compound **15a** in 93% yield. On the basis of these results, the *trans* isomer **13** was similarly treated with excess MeMgI in THF-Et₂O, followed by the acetylation without purification of the resulting methylhydroxylamine (**14b**), to afford the *O*-acetyl compound **15b** in 69% overall yield. Since we have already established the conversion of **15b** into (±)-6,7-secoagroclavine (**1**) in three steps,¹⁴ the ten-step synthetic route of **1** was completed starting from indole-3-carbaldehyde (**5**). In this synthesis the originality rate (OR) is 27% because the following two steps, **5**→**7** and **13**→**14**, are our original findings.

An Eight-Step Synthetic Route to (±)-6,7-Secoagroclavine (1)

To raise the OR rate, we attempted to develop a shorter-step synthesis than the above ten-step one. Utilizing **10** as a starting material, Grignard reaction was employed with MeMgI in THF-Et₂O to afford the allyl alcohol **16** in 89% yield (Scheme 2). Subsequent Mannich reaction of **16** with Me₂NH and HCHO in AcOH gave many products and the desired gramine **17** was not obtained. However, dimethyl(methylene)ammonium chloride²³ reacted well with **16** in MeCN affording **17** in 70% yield. Our monoalkylation method with MeNO₂ in the presence of *n*-Bu₃P as a catalyst²⁴ was successfully applied to **17** resulting in the formation of nitroethyl compound **18** in 84% yield.

The construction of the 1,3,4,5-tetrahydrobenz[*cd*]indole skeleton from **18** required a novel cyclization reaction.²⁵ Our working hypothesis to meet our end is the following. A base can form nitronate on the nitro ethyl side chain of **18**, while a Lewis acid can generate cation on the side chain at the 4-position, doubly stabilized by the allylic and benzylic systems. If a Lewis acid was added after the formation of the nitronate and if by chance the formation of the stable cation was faster than the disappearance of the nitronate, the desired cyclization would be realized. Hoping the existence of suitable combination, we examined various bases and acids and typical results are summarized in Table 1. As a result, the combination of zinc salt as a Lewis acid and Et_3N as a base was first found to be effective for our purpose. When **18** reacted with ZnCl₂ and Et_3N in refluxing ClCH₂CH₂Cl, 4,5-*trans*-5-(2-methyl-1-propen-1-yl)-4-nitro-1,3,4,5-tetrahydrobenz[*cd*]indole (**19**) was obtained in 41% yield together with 9% yield of diene **20**

(Entry 4). Finally, we succeeded in creating a convenient cyclization method using NaBH₄ as a base and aqueous HCl as an acid culminating in the formation of the desired **19** in 72% yield (Entry 7).²⁵ The stereochemistry of **19** was elucidated as shown by its ¹H-NMR spectrum showing the predicted coupling constant between H-4 and H-5 (J=9.5 Hz).

Table 1. Novel Intramolecular Cyclization of 18 with Zinc Salts and NEt₃

	18 ——	→ 19) +	20	
Entry	Catalyst	Solvent	19	Yield (%) of 20	18
1	ZnCl ₂ /NEt ₃ (1.5:1)	THF	26	16	7
2	н	CHCI ₃	35	23	14
3	п	DME	35	16	0
4	11	CICH ₂ CH ₂ CI	41	9	4
5	ZnBr ₂ /NEt ₃ (1.5:1)	11	23	12	10
6	Zn(OAc) ₂ /NEt ₃ (2:1)	11	20	62	7
7	NaBH ₄ /HCI ^{ref.25}	MeOH-H ₂ O	72	0	3

We then applied our reductive methylation to the compound **19** using an excess amount of MeMgI. When the reaction was carried out at room temperature, epimerization at the 4-position occurred, and the 4,5*cis*- **21a** and 4,5-*trans*-hydroxylamine **21b** were obtained in 19 and 20% yields, respectively. Subsequent reduction of **21a** and **21b** with TiCl_{3}^{26} in MeOH in the presence of NH₄OAc gave (±)-5-*epi*-6,7secoagroclavine (**22**) and (±)-6,7-secoagroclavine (**1**) in 44 and 27% yields, respectively. Based on the results, at 0°C the reductive methylation of **19** with MeMgI was carried out expecting to minimize the epimerization. Without isolation of the hydroxylamines, the resulting reaction mixture was reduced with Zn-HCl instead of TiCl₃. As expected in one pot procedure, both the stereoselectivity and the yield were improved to give **1** and **22** in 66 and 9% yields, respectively. Thus, the eight-step synthetic route to **1** from **7** was established with OR rate of 55%, because the following four steps, **5** \rightarrow **7**, **17** \rightarrow **18**, **18** \rightarrow **19**, and **19** \rightarrow **1**, are our original findings.

A Six-Step Synthetic Route to (±)-6,7-Secoagroclavine (1)

We were still not satisfied with the long steps in the above two synthetic routes. Therefore, further challenge was undertaken to develop a shorter-step and more practical synthetic route to **1** (Scheme 2). Utilizing 4-iodoindole-3-carbaldehyde (**9**) as a substrate, aldol condensation reaction with MeNO₂ was performed in the presence of NH₄OAc to provide 4-iodo-3-(2-nitrovinyl)indole (**23**) in 96% yield. Reduction of **23** with NaBH₄ in *i*-PrOH and CHCl₃ in the presence of SiO₂²⁷ afforded 4-iodo-3-(2-ethyl)indole (**24**) in 84% yield. Improved procedure of Heck reaction in the presence of n-Bu₄Br^{14,28} with 2-methyl-3-buten-2-ol was successfully applied to **24** resulting in the formation of **18** in 84% yield. In the above second route, **18** had been converted to (±)-6,7-secoagroclavine (**1**) in two steps. Consequently, without using any protective groups,²⁹ we could create a six-step high regio- and stereo-selective synthesis of **1** from **7** with the OR rate of 57% because the following three steps, **5**→**9**, **18**→**19**, and **19**→ **1**, are our original findings.

Total Syntheses of (±)-Chanoclavine-I (2) and (±)-Chanoclavine-II (3)

We expected that the oxidation of the methyl group on the side chain in (\pm) -6,7-secoagroclavine (1) would provide (\pm) -chanoclavine-I (2) and (\pm) -chanoclavine-II (3) (Scheme 3).

According to the above idea, we first examined the oxidation of the methyl group of the side chain in the now readily available 4,5-*trans*-5-(2-methyl-1-propen-1-yl)-4-nitro-1,3,4,5-tetrahydrobenz[*cd*]indole (**19**)

with SeO₂ in various solvents. Dioxane was finally found to be a solvent of choice producing the alcohol **25a** and the aldehyde **26a** in 36 and 19% yields, respectively, together with a 32% yield of recovery. The structures of **25a** and **26a** were determined by spectral data and the following chemical conversions. Thus, oxidation of **25a** with PCC in CH₂Cl₂ afforded **26a** in 55% yield, while reduction of **26a** with NaBH₄ in MeOH gave **25a** in 93% yield.

Reduction of the alcohol **25a** with Zn (Hg) in refluxing methanolic HCl provided (\pm)-norchanoclavine-I (**27a**) as a single product in 98% yield retaining the configuration of the 4-position. Treatment of **27a** with ClCO₂Me in THF afforded the carbamate **28a** in 92% yield. Subsequent reduction of **28a** with LiAlH₄ in refluxing THF achieved the total synthesis of (\pm)-chanoclavine-I (**2**) in 96% yield.^{20,30–32}

Both norchanoclavine-II (27b) and chanoclavine-II (3) have *cis*-configuration concerning the 4- and 5positions. Aiming at the total synthesis of these alkaloids, we next examined the inversion of the stereochemistry of the nitro group in 19. Treatment of 19 with excess NaOMe in refluxing MeOH and subsequent protonation afforded the desired *cis*-compound 29 in 85% yield. The *cis*-stereochemistry was proved by ¹H-NMR analysis of 29 observing the coupling constant (J=4.4 Hz) between H-4 and H-5.

The same sequence of reactions as in the synthesis of **2** was next applied to **29**. The oxidation with SeO₂ in dioxane-H₂O afforded the alcohol **25b** and the aldehyde **26b** in 31 and 4% yields, respectively, in addition to a 62% yield of recovery. Subsequent reduction of the alcohol **25b** with Zn (Hg) in refluxing methanolic HCl gave (\pm)-norchanoclavine-II (**27b**) in 95% yield. The carbamate **28b** was obtained in 98% yield by the treatment of **27b** with ClCO₂Me in THF. Finally, the reduction of **28b** with LiAlH₄ in THF achieved the first total synthesis of (\pm)-chanoclavine-II (**3**) in 86% yield. ¹H-NMR spectrum of **3** was identical with that of the alkaloid reported in the literature.⁸ Thus, the total syntheses of (\pm)-chanoclavine-II (**3**) are accomplished in nine and ten steps from **5** in 10 and 7% overall yields, respectively, and with the respective OR rates of 27 and 25%.

Total syntheses of (±)-Agroclavine-I (4)

Agroclavine-I (4) was isolated by Sakharovsky's group in 1984⁹ and its total synthesis had been achieved by Kozikowski's³³ and Ninomiya's³⁴ groups in 1985. Wheeler also reported the formal synthesis of 4.³⁵

We considered that the synthesis of 4 would be readily achieved if we could create a regioselective

oxidation method of the Z-methyl group of the isobutyl group at the 5-position of (\pm) -5-*epi*-6,7secoagroclavine (**22**). After elaborations, we found that SeO₂ in dioxane-H₂O was the reagent of choice resulting in the formation of the desired alcohol **30** in 34% yield (Scheme 4).

The compound **22** is alternatively available from **29**. Thus, the reduction of **29** with Zn (Hg) in refluxing methanolic HCl gave the corresponding amine **31** in 98% yield. Then the carbamate **32** was prepared by the treatment with $ClCO_2Me$ in THF in a quantitative yield. Subsequent reduction of **32** with $LiAlH_4$ in THF provided **22** in 98% yield.

The mechanism of the above regioselective Z-methyl oxidation would be explained as shown in Scheme 5. Initial coordination of the methylamino-nitrogen (6-position of **22**) to SeO₂ forms a complex **33** placing SeO₂ to the close vicinity of the Z-methyl group. According to the ordinary oxidation mechanism of SeO₂,^{36–38} **33** then transforms to **34**. Dehydration of **34** followed by [2,3] signatropic rearrangement generates **36** through **35**. Subsequent hydrolysis gives **32**.

Finally, treatment of **30** with POCl₃ in the presence of $K_2CO_3^{39}$ accomplished the total synthesis of **4** in 87% yield. Spectral data (¹H-NMR) of **4** was identical with that of the authentic (±)-agroclavine-I which was synthesized by Ninomiya's group.³⁴ Thus, the total synthesis of (±)-agroclavine-I (**4**) was accomplished in eleven steps from **5** in 9% overall yield. The OR rate is 41% because our original step, **22** \rightarrow **30**, is added.

In conclusion, we succeeded in developing an efficient and common synthetic route for producing (\pm) -6,7-secoagroclavine^{40,41}(1), (\pm) -chanoclavine-I (2), (\pm) -chanoclavine-II (3), and (\pm) -agroclavine-I (4) with high OR rates, respectively, without using any protective groups.²⁹

ACKNOWLEDGMENTS

The authors are grateful to the late Dr. M. Natsume for a gift of (\pm) -6,7-secoagroclavine and (\pm) chanoclavine-I and also to Professor I. Ninomiya for (\pm) -agroclavine-I. The authors wish to thank Professor H. G. Floss for offering the informations about (\pm) -norchanoclavine-II and (\pm) -chanoclavine-II and Dr. V. G. Sakharovsky as well for the information about (\pm) -agroclavine-I.

EXPERIMENTAL

Melting points were determined on a Yanagimoto micro melting point apparatus and are uncorrected. IR spectra were determined with a Shimadzu IR-420 spectrophotometer, and ¹H-NMR spectra with a JEOL JNM-PMX 60 or a JEOL JNM-FX100 spectrometer, with tetramethylsilane as an internal standard. MS were recorded on a JEOL 01SG or a HITACHI M-80 spectrometer. Preparative thin-layer chromatography (p-TLC) was performed on Merck Kiesel-gel GF_{254} (Type 60)(SiO₂). Column chromatography was performed on silica gel (SiO₂, 100–200 mesh, from Kanto Chemical Co. Inc.) throughout the present study. HPLC was conducted with a Kusano KPW-20 pump equipped with a Kusano KU-331 as a detector.

(*E*)-4-(2-Methoxycarbonylethen-1-yl)indole-3-carboxylic Acid (7b) from (*E*)-Methyl 3-(3-Formylindol-4-yl)acrylate (7a) — NaClO₂ (368.1 mg, 4.09 mmol) was added to a solution of 7a (45.9 mg, 0.20 mmol) and NaH₂PO₄ (497.1 mg, 4.14 mmol) in a mixture of *t*-BuOH–2-methyl-2-butene–H₂O (2:2:1, v/v, 10 mL) and stirred at rt (19°C) for 19 h. After addition of CH₂Cl₂–MeOH (95:5, v/v), the whole was washed with brine, dried over Na₂SO₄, and evaporated under reduced pressure to leave a solid, which was recrystallized from MeOH to give 7b (32.1 mg) as colorless prisms. The mother liquor was subjected to p-TLC on SiO₂ with CH₂Cl₂–MeOH (9:1, v/v) as a developing solvent to give additional 7b (12.3 mg). The total yield of 7b was 44.4 mg (90%). 7b: mp 232–233°C (decomp.). IR (KBr): 3200, 1669 cm^{-1.} ¹H-NMR (CD₃OD) δ : 3.84 (3H, s), 6.38 (1H, d, *J*=16 Hz), 7.23 (1H, t, *J*=7.8 Hz), 7.42–7.62 (2H, m), 8.10 (1H, s), 9.42 (1H, d, *J*=16 Hz). MS *m/z*: 245 (M⁺). *Anal.* Calcd for C₁₃H₁₁NO₄: C, 63.67; H, 4.52; N, 5.71. Found: C, 63.51; H, 4.51; N, 5.91.

(*E*)-Methyl 3-(Indol-4-yl)acrylate (10) from 7b — A solution of 7b (99.5 mg, 0.41 mmol) in pyridine (5 mL) was refluxed for 21 h with stirring. The solvent was evaporated under reduced pressure to leave a solid, which was subjected to p-TLC on SiO₂ with CH₂Cl₂ as a developing solvent. Extraction of the band having an *Rf* value of 0.62—0.38 with CH₂Cl₂–MeOH (95:5, v/v) gave 10 (74.2 mg, 91%). 10: mp 129—130°C (lit.,¹³ mp 125—126°C) (pale yellow prisms, recrystallized from AcOEt). IR (KBr): 3340, 1685 cm⁻¹. ¹H-NMR (CD₃OD) δ : 3.81 (3H, s), 6.58 (1H, d, *J*=16.1 Hz), 6.71 (1H, dd, *J*=3.2, 0.8 Hz), 7.09 (1H, t, *J*=7.7 Hz), 7.30 (1H, dd, *J*=7.7, 0.8 Hz), 7.34 (1H, d, *J*=3.2 Hz), 7.44 (1H, dt, *J*=7.7, 0.8 Hz), 8.04 (1H, d, *J*=16.1 Hz).

(*E*)-Methyl 3-(Indol-4-yl)acrylate (10) from 7a — $(Ph_3P)_3RhCl$ (422.9 mg, 0.46 mmol) was added to a solution of 9 (103.8 mg, 0.45 mmol) in benzene (20 mL) and the mixture was refluxed for 24 h with stirring under argon atmosphere. After evaporation of the solvent, CH_2Cl_2 -MeOH (95:5, v/v) was added and insoluble precipitates were filtered off through SiO₂. The filtrate was washed with brine, dried over Na₂SO₄, and evaporated under reduced pressure to leave an oil, which was column-chromatographed on SiO₂ with CH₂Cl₂ to give 10 (29.1 mg, 32%).

(*E*)-Methyl 3-(Indol-4-yl)acrylate (10) from Indole-4-carbaldehyde (8) — A solution of 8 (293.7 mg, 2.03 mmol) and (methoxycarbonylmethylene)triphenylphosphorane (1172.4 mg, 3.51 mmol) in benzene (25 mL) was refluxed for 4 h with stirring. The solvent was evaporated under reduced pressure to leave an oil, which was column-chromatographed on SiO₂ with CH₂Cl₂ to give 10 (403.4 mg, 99%).

(*E*)-Methyl 3-(3-Dimethylaminomethylindol-4-yl)acrylate (11) from 10 — A solution of 10 (392.1 mg, 1.95 mmol) in AcOH (1 mL) was added to a solution of 50% Me₂NH (193.3mg, 2.15 mmol) and 37% HCHO (162.8 mg, 2.01 mmol) in AcOH (2 mL), and the mixture was stirred at rt for 7.5 h. The resulting solution was made basic by adding 5% NaOH and extracted with CH₂Cl₂–MeOH (95:5, v/v). The organic layer was washed with brine, dried over Na₂SO₄, and evaporated under reduced pressure to leave an oil, which was column-chromatographed on SiO₂ with CHCl₃–MeOH–28% NH₄OH (46:5:0.5, v/v) to give 11 (476.1 mg, 95 %) as pale yellow oil. 11: IR (film): 3320, 1705 cm⁻¹. ¹H-NMR (CDCl₃) δ : 2.27 (6H, s), 3.50 (2H, s), 3.74 (3H, s), 6.31 (1H, d, *J*=16.0 Hz), 6.18–7.36 (4H, m), 8.31 (1H, br s), 8.73 (1H, d, *J*=16.0 Hz). High-resolution MS *m/z*: Calcd for C₁₅H₁₈N₂O₂: 258.1366. Found: 258.1363.

4,5-*cis*- (**12**) and **4,5**-*trans*-**5**-Methoxycarbonylmethyl-4-nitro-1,3,4,5-tetrahydrobenz[*cd*]indole (**13**) from **11** — KF (26.7 mg, 0.46 mmol) was added to a solution of **11** (72.1 mg, 0.28 mmol) and 18-crown-6 (26.5 mg, 0.10 mmol) in MeCN–MeNO₂ (1:1, v/v, 25 mL) and the mixture was refluxed for 37.5 h with stirring. The solvent was evaporated under reduced pressure to leave an oil, which was subjected to p-TLC on SiO₂ (developed three times with ether–hexane as a developing solvent). Extraction of the band having an *Rf* value of 0.41–0.33 with CH₂Cl₂–MeOH (95:5, v/v) gave **12** (12.2 mg, 16%) as a colorless oil. **12**: IR (film): 3400, 1730, 1541, 1364 cm⁻¹. ¹H-NMR(CDCl₃) & 2.64 (2H, d, *J*=6.8 Hz), 3.44 (2H, d, *J*=7.2 Hz), 3.61 (3H, s), 4.29 (1H, dt, *J*=6.8, 4.0 Hz), 5.01 (1H, dt, *J*=7.2, 4.0 Hz), 6.65–7.26 (4H, m), 7.93 (1H, br s). High-resolution MS *m/z*: Calcd for C₁₄H₁₄N₂O₄: 274.0952. Found: 274.0951. Extraction of the band having an *Rf* value of 0.33–0.17 with CH₂Cl₂–MeOH (95:5, v/v) gave **13** (54.7 mg, 71%) as colorless oil. **13**: IR (film): 3410, 1730, 1541, 1361 cm⁻¹. ¹H-NMR (CDCl₃) &: 2.68 (2H, d, *J*=6.0 Hz), 3.27 (1H, dt, *J*=15.5, 4.8 Hz), 3.64 (3H, s), 3.68 (1H, dd, *J*=15.5, 6.0 Hz), 4.26 (1H, q, *J*=6.0 Hz), 5.07 (1H, dt, *J*=6.0, 4.8 Hz), 6.61–7.17 (4H, m), 7.94 (1H, br s). High-resolution MS *m/z*: Calcd for C₁₄H₁₄N₂O₄: 274.0952. Found: 274.0952. Found: 274.0955.

5,10-*cis*-**6,8**-Dimethyl-7-oxaergolin-8-ol (14a) from 12 — An ether solution of MeMgI was prepared with Mg ribbon (237.2 mg, 9.76 mmol) and MeI (1407.7 mg, 9.92 mmol) in anhydrous Et_2O (20 mL) under argon atmosphere. To the resulting solution was added a solution of 12 (82.8 mg, 0.30 mmol) in anhydrous THF (5 mL) and the mixture was stirred at rt for 1 h under argon atmosphere. After cooling to 0°C, 20% NH₄Cl was added and the whole was extracted with CH₂Cl₂–MeOH (95:5, v/v). The organic layer was washed with brine, dried over Na₂SO₄, and evaporated under reduced pressure to leave an oil, which was column-chromatographed on SiO₂ with CH₂Cl₂–MeOH (95:5, v/v) to give 14a (53.5 mg, 69%).

14a: mp 185–187°C (decomp., colorless prisms, recrystallized from AcOEt). IR (KBr): 3330, 3260, 1607 cm⁻¹. ¹H-NMR (CDCl₃) δ : 1.37 (3H, s), 1.63 (1H, dd, *J*=13.6, 12.6 Hz), 1.93 (1H, dd, *J*=13.6, 5.3 Hz), 2.78 (3H, s), 2.97–3.78 (4H, m), 4.74 (1H, br s), 6.70–6.96 (2H, m), 6.96–7.28 (2H, m), 7.93 (1H, br s). MS *m/z*: 258 (M⁺). *Anal.* Calcd for C₁₅H₁₈N₂O₂: C, 69.74; H, 7.02; N, 10.85. Found: C, 69.67; H, 7.10; N, 10.62.

4,5-*cis*-5-Acetonyl-4-(*N*-acetoxy-*N*-methyl)amino1,3,4,5-tetrahydrobenz[*cd*]indole (15a) from 14a — A solution of 14a (26.5 mg, 0.10 mmol) in pyridine (2 mL) and Ac₂O (1 mL) was stirred at rt for 6.5 h. The solvent was evaporated under reduced pressure to leave an oil, which was subjected to p-TLC on SiO₂ with CH₂Cl₂–MeOH (95:5, v/v) as a developing solvent. Extraction of the band having an *Rf* value of 0.33–0.49 with CH₂Cl₂–MeOH (95:5, v/v) gave 15a (27.8 mg, 93%) as a colorless oil. 15a: IR (film): 3310, 1747, 1703, 1617 cm⁻¹. ¹H-NMR (CDCl₃) δ : 2.00 (3H, s), 2.09 (3H, s), 2.40 (1H, dd, *J*=17.6, 9.8 Hz), 2.50–3.38 (4H, m), 2.89 (3H, s), 3.98 (1H, dt, *J*=9.8, 3.3 Hz), 6.76–7.22 (4H, m), 7.96 (1H, br s). High-resolution MS *m/z*: Calcd for C₁₇H₂₀N₂O₃: 300.1473. Found: 300.1476.

4,5-*trans***-5-Acetonyl-4-(***N***-acetoxy-***N***-methyl)amino-1,3,4,5-***t***etrahydrobenz**[*cd*]**indole (15b) from 13** — An ether solution of MeMgI was prepared with Mg ribbon (637.4 mg, 26.2 mmol) and MeI (3516.7 mg, 24.8 mmol) in anhydrous Et₂O (30 mL) under argon atmosphere. To the resulting solution was added a solution of **13** (221.4 mg, 0.81 mmol) in anhydrous THF (20 mL) and the mixture was stirred at rt for 1 h under argon atmosphere. After cooling to 0°C, 20% NH₄Cl was added and the whole was extracted with CH₂Cl₂–MeOH (95:5, v/v). The organic layer was washed with brine, dried over Na₂SO₄, and evaporated under reduced pressure to leave an oil, which was dissolved in pyridine (2 mL) and Ac₂O (1 mL). The resulting solution was stirred at rt for 2 h. The solvent was evaporated under reduced pressure to leave an oil, which was dissolved (95:5, v/v) as a developing solvent. Extraction of the band having an *Rf* value of 0.33–0.57 with CH₂Cl₂–MeOH (95:5, v/v) gave **15b** (164.7 mg, 69%). **15b**: mp 137.5–139.5°C (lit.,¹³ mp 136.5–137.5°C) (colorless prisms, recrystallized from MeOH). IR (KBr): 3300, 1721, 1704 cm⁻¹. ¹H-NMR (CDCl₃) & the solvent, be solv

(*E*)-1-(Indol-4-yl)-3-methyl-1-buten-3-ol (16) from 10 — An ether solution of MeMgI was prepared with Mg ribbon (373.7 mg, 15.4 mmol) and MeI (0.9 mL, 14.6 mmol) in anhydrous Et_2O (5 mL) under argon atmosphere. To the resulting solution was added a solution of 10 (96.4 mg, 0.48 mmol) in anhydrous THF (20 mL) and the mixture was stirred at rt for 2 h under argon atmosphere. After cooling to 0°C, brine was added and the whole was extracted with CH_2Cl_2 –MeOH (95:5, v/v). The organic layer was washed with brine, dried over Na_2SO_4 , and evaporated under reduced pressure to leave an oil, which was subjected to p-TLC on Al_2O_3 with CH_2Cl_2 as a developing solvent. Extraction of the band having an

Rf value of 0.47—0.78 with CH₂Cl₂–MeOH (95:5, v/v) gave **16** (85.4 mg, 89%). **16**: mp 98—99°C (colorless prisms, recrystallized from benzene). IR (KBr): 3530, 3240 cm⁻¹. ¹H-NMR (CD₃OD) δ : 1.45 (6H, s), 6.47 (1H, d, *J*=16.1 Hz), 6.65 (1H, dd, *J*=3.2, 0.8 Hz), 6.92—7.34 (3H, m), 6.95 (1H, d, *J*=16.1 Hz), 7.23 (1H, d, *J*=3.2 Hz). MS *m/z*: 201 (M⁺). *Anal*. Calcd for C₁₃H₁₅NO: C, 77.58; H, 7.51; N, 6.96. Found: C, 77.71; H, 7.68; N, 6.69.

(*E*)-1-(3-Dimethylaminomethylindol-4-yl)-3-methyl-1-buten-3-ol (17) from 16 – *N,N*-Dimethyl(methylene)ammonium chloride (233.9 mg, 2.50 mmol) was added to a solution of 16 (412.8 mg, 2.05 mmol) in anhydrous MeCN (4 mL) and the mixture was stirred at rt for 10 min. After addition of 10% NaOH, the whole was extracted with CH₂Cl₂–MeOH (95:5, v/v). The organic layer was washed with brine, dried over Na₂SO₄, and evaporated under reduced pressure to leave an oil, which was column-chromatographed on Al₂O₃ with CH₂Cl₂ to give 17 (372.7 mg, 70%). 17: mp 132–134°C (colorless needles, recrystallized from benzene). IR (KBr): 3570, 3140 cm⁻¹. ¹H-NMR (CDCl₃) δ : 1.44 (6H, s), 2.16 (1H, br s, disappeared on addition of D₂O), 2.23 (6H, s), 3.52 (2H, s), 6.20 (1H, d, *J*=16.0 Hz), 6.87–7.28 (4H, m), 7.60 (1H, d, *J*=16.0 Hz), 8.10 (1H, br s, disappeared on addition of D₂O). MS *m/z*: 258 (M⁺). *Anal*. Calcd for C₁₆H₂₂N₂O: C, 74.38; H, 8.58; N, 10.84. Found: C, 74.65; H, 8.63; N, 10.62.

(*E*)-1-[3-(2-Nitroethyl)indol-4-yl]-3-methyl-1-buten-3-ol (18) from 17 — n-Bu₃P²⁴ (54.2 mg, 0.27 mmol) was added to a solution of 17 (148.6 mg, 0.58 mmol) in MeNO₂ (3 mL) and MeCN (3 mL), and the mixture was refluxed for 2 h with stirring under argon atmosphere. The solvent was evaporated under reduced pressure to leave an oil, which was subjected to p-TLC on SiO₂ with CH₂Cl₂–MeOH (97:3, v/v) as a developing solvent. Extraction of the band having an *Rf* value of 0.23—0.41 with CH₂Cl₂–MeOH (95:5, v/v) gave 18 (132.2 mg, 84%). 18: mp 106—107°C (pale yellow prisms, recrystallized from MeOH). IR (KBr): 3450, 3310, 3230, 1562, 1537, 1382, 1370, 1344 cm^{-1.} ¹H-NMR (CDCl₃) δ : 1.45 (6H, s), 1.91 (1H, br s, disappeared on addition of D₂O), 3.51 (2H, t, *J*=7.5 Hz), 4.55 (2H, t, *J*=7.5 Hz), 6.16 (1H, d, *J*=15.2 Hz), 6.74—7.24 (4H, m), 7.16 (1H, d, *J*=15.2 Hz), 8.06 (1H, br s, disappeared on addition of D₂O). MS *m/z*: 274 (M⁺). *Anal.* Calcd for C₁₅H₁₈N₂O₃: C, 65.67; H, 6.61; N, 10.24. Found: C, 65.83; H, 6.75; N, 10.09.

4,5-*trans*-5-(2-Methyl-1-propen-1-yl)-4-nitro-1,3,4,5-tetrahydrobenz[*cd*]indole (19) and (*E*)-4-(3methyl-1,3-butadien-1-yl)-3-(2-nitroethyl)indole (20) from 18 – [Entry 1] – A solution of 18 (50.8 mg, 0.19 mmol), ZnCl₂ (379.0 mg, 2.78 mmol), and Et₃N (181.6 mg, 1.79 mmol) in THF (4 mL) was refluxed for 4 h with stirring. MeOH was added to the resulting solution. After evaporation of the solvent, CH_2Cl_2 -MeOH (95:5, v/v) was added and insoluble precipitates were filtered off through SiO₂. The filtrate was washed with brine, dried over Na₂SO₄, and evaporated under reduced pressure to leave an oil, which was subjected to p-TLC on SiO₂ with Et₂O-hexane (1:1, v/v) as a developing solvent. Extraction of the band having an *Rf* value of 0.44–0.51 with CH₂Cl₂–MeOH (95:5, v/v) gave **19** (12.4 mg, 26%). **19**: mp 164—165°C (pale yellow prisms, recrystallized from MeOH). IR (KBr): 3420, 1540, 1342 cm⁻¹. ¹H-NMR (CDCl₃) δ : 1.78 (3H, d, *J*=1.4 Hz), 1.84 (3H, d, *J*=1.4 Hz), 3.51 (2H, dd, *J*=7.1, 1.0 Hz), 4.51 (1H, t, *J*=9.5 Hz), 4.75 (1H, dt, *J*=9.5, 7.1 Hz), 5.14 (1H, br d, *J*=9.5 Hz), 6.70—6.85 (1H, m), 6.90 (1H, dt, *J*=2.0, 1.0 Hz), 6.98—7.26 (2H, m), 7.98 (1H, br s). MS *m/z*: 256 (M⁺). *Anal*. Calcd for C₁₅H₁₆N₂O₂: C, 70.29; H, 6.29; N, 10.93. Found: C, 70.06; H, 6.15; N, 11.08. Extraction of the band having an *Rf* value of 0.28—0.44 with CH₂Cl₂–MeOH (95:5, v/v) gave **20** (7.6 mg, 16%) as an unstable colorless oil. **20**: IR (film): 3410, 1546, 1380 cm⁻¹. ¹H-NMR (20% CD₃OD in CDCl₃) δ : 2.00 (3H, d, *J*=0.8 Hz), 3.54 (2H, t, *J*=7.0 Hz), 4.55 (2H, t, *J*=7.0 Hz), 5.01 (2H, br s), 6.48—7.48 (6H, m). High-resolution MS *m/z*: Calcd for C₁₅H₁₆N₂O₂: 256.1211. Found: 256.1211. Extraction of the band having an *Rf* value of 0.13—0.24 with CH₂Cl₂–MeOH (95:5, v/v) gave **18** (3.3 mg, 7%).

[Entry 2] — A solution of **18** (32.0 mg, 0.12 mmol), $ZnCl_2$ (245.4 mg, 1.80 mmol), and Et_3N (116.7 mg, 1.15 mmol) in CHCl₃ (4 mL) was refluxed for 2 h with stirring. After the same work-up and separation as described in entry 1, **19** (10.5 mg, 35%), **20** (7.0 mg, 23%), and **18** (4.5 mg, 14%) were obtained.

[Entry 3] — A solution of **18** (31.4 mg, 0.12 mmol), $ZnCl_2$ (243.4 mg, 1.79 mmol), and Et_3N (117.0 mg, 1.15 mmol) in dimethoxyethane (4 mL) was refluxed for 2 h with stirring. After the same work-up and separation as described in entry 1, **19** (10.3 mg, 35%) and **20** (4.8 mg, 16%) were obtained.

[Entry 4] — A solution of 18 (31.6 mg, 0.12 mmol), $ZnCl_2$ (240.8 mg, 1.77 mmol), and Et_3N (119.6 mg, 1.18 mmol) in 1,2-dichloroethane (4 mL) was refluxed for 2 h with stirring. After the same work-up and separation as described in entry 1, 19 (12.0 mg, 41%), 20 (2.5 mg, 9%), and 18 (1.2 mg, 4%) were obtained.

[Entry 5] – A solution of 18 (29.8 mg, 0.11 mmol), $ZnBr_2$ (377.6 mg, 1.68 mmol), and Et_3N (118.7 mg, 1.17 mmol) in 1,2-dichloroethane (4 mL) was refluxed for 45 min with stirring. After the same work-up and separation as described in entry 1, 19 (6.4 mg, 23%), 20 (3.3 mg, 12%), and 18 (3.0 mg, 10%) were obtained.

[Entry 6] — A solution of 18 (30.0 mg, 0.11 mmol), $Zn(OAc)_2$ (362.1 mg, 1.97 mmol), and Et_3N (108.4 mg, 1.07 mmol) in 1,2-dichloroethane (4 mL) was refluxed for 47 h with stirring. After the same work-up and separation as described in entry 1, 19 (5.5 mg, 20%), 20 (17.4 mg, 62%), and 18 (2.2 mg, 7%) were obtained.

[Entry 7] — See reference 25.

4,5-*cis*- (21a) and 4,5-*trans*-4-(*N*-Hydroxy-*N*-methyl)amino-5-(2-methyl-1-propen-1-yl)-1,3,4,5tetrahydrobenz[*cd*]indole (21b) from 19 — An ether solution of MeMgI was prepared with Mg ribbon (364.9 mg, 15.0 mmol) and MeI (1921.3 mg, 13.5 mmol) in anhydrous Et_2O (8 mL) under argon atmosphere. To the resulting solution was added a solution of 19 (76.3 mg, 0.30 mmol) in anhydrous THF (4 mL) and the mixture was stirred at rt for 0.5 h under argon atmosphere. After cooling to 0°C, 20% NH₄Cl was added and the whole was extracted with CH₂Cl₂–MeOH (95:5, v/v). The organic layer was washed with brine, dried over Na₂SO₄, and evaporated under reduced pressure to leave an oil, which was subjected to p-TLC on SiO₂ with CHCl₃–MeOH–28% NH₄OH (46:5:0.5, v/v) as a developing solvent. Extraction of the band having an *Rf* value of 0.54–0.66 with CHCl₃–MeOH–28% NH₄OH (46:5:0.5, v/v) gave **21a** (14.5 mg, 19%) as a colorless oil. **21a**: IR (KBr): 3400, 1619 cm⁻¹. ¹H-NMR (CDCl₃) δ : 1.67 (3H, d, *J*=1.5 Hz), 1.93 (3H, d, *J*=1.5 Hz), 2.75–3.49 (3H, m), 2.77 (3H, s), 4.28 (1H, dd, *J*=10.0, 2.0 Hz), 5.01 (1H, br s, disappeared on addition of D₂O). High-resolution MS *m*/*z*: Calcd for C₁₆H₂₀N₂O: 256.1575. Found: 256.1614. Extraction of the band having an *Rf* value of 0.47–0.54 with CHCl₃–MeOH–28% NH₄OH (46:5:0.5, v/v) gave **21b** (15.3 mg, 20%). **21b**: mp 147–149°C (decomp., colorless prisms, recrystallized from benzene). IR (KBr): 3400, 3310, 1603 cm⁻¹. ¹H-NMR (CDCl₃) δ : 1.82 (6H, d, *J*=1.5 Hz), 2.68 (3H, s), 2.86–3.40 (3H, m), 3.90–4.24 (1H, m), 7.83 (1H, br s). High-resolution MS *m*/*z*: Calcd for C₁₆H₂₀N₂O: 256.1575. Found: 256.1575. Found: 256.1616.

(±)-5-*epi*-6,7-Secoagroclavine (22) from 21a — A TiCl₃ solution (16%, 0.2 mL, 0.31 mmol) was added to a solution of 21a (14.5 mg, 0.06 mmol) and NH₄OAc (100.7 mg, 1.31 mmol) in MeOH (2 mL) and the mixture was stirred at rt for 7 min. The resulting solution was made basic with 8% NaOH and the whole was extracted with CH₂Cl₂–MeOH (95:5, v/v). The organic layer was washed with brine, dried over Na₂SO₄, and evaporated under reduced pressure to leave an oil, which was subjected to p-TLC on Al₂O₃ with Et₂O–AcOEt–CH₂Cl₂ (5:2:8, v/v) as a developing solvent. Extraction of the band having an *Rf* value of 0.31–0.41 with CH₂Cl₂–MeOH (95:5, v/v) gave 22 (6.0 mg, 44%). 22: mp 177–178°C (colorless prisms, recrystallized from MeOH–H₂O). IR (KBr): 3140, 3090, 3050, 2860, 1661, 1616, 1603, 1437, 1092 cm⁻¹. ¹H-NMR (CDCl₃) δ : 1.57 (1H, s, disappeared on addition of D₂O), 1.73 (3H, d, *J*=1.2 Hz), 1.89 (3H, d, *J*=1.2 Hz), 2.51 (3H, s), 2.77 (1H, ddd, *J*=15.4, 10.3, 1.5 Hz), 2.93–3.22 (2H, m), 4.14 (1H, dd, *J*=10.3, 3.7 Hz), 5.21 (1H, br d, *J*=10.3 Hz), 6.69–6.87 (1H, m), 6.81 (1H, br s), 6.91–7.15 (2H, m), 8.01 (1H, br s, disappeared on addition of D₂O). MS *m/z*: 240 (M⁺). *Anal.* Calcd for C₁₆H₂₀N₂: C, 79.95; H, 8.39; N, 11.66. Found: C, 79.99; H, 8.51; N, 11.60.

(±)-6,7-Secoagroclavine (1) from 21b — A TiCl₃ solution (16%, 0.2 mL, 0.31 mmol) was added to a solution of 21b (12.6 mg, 0.05 mmol) and NH₄OAc (96.6 mg, 1.29 mmol) in MeOH (2 mL) and the mixture was stirred at rt for 7 min. After the same work-up and separation as described above, 1 (3.2 mg, 27%) was obtained. 1: mp 202–203°C (lit.,³ mp 202–205°C) (colorless prisms, recrystallized from MeOH). IR (KBr): 3300, 3150, 2950, 2900, 1609, 1440, 1350, 1340, 1329, 1140, 1091, 1030 cm⁻¹. ¹H-NMR (CDCl₃) δ : 1.58 (1H, s), 1.84 (3H, d, *J*=1.5 Hz), 1.88 (3H, d, *J*=1.5 Hz), 2.51 (3H, s), 2.51–3.05 (2H, m), 3.05–3.44 (1H, m), 3.86 (br dd, *J*=10.0, 8.0 Hz and d, *J*=10.0 Hz, total 1H), 5.13 (1H, br d,

J=10.0 Hz), 6.72 (1H, ddd, *J*=5.0, 3.0, 1.0 Hz), 6.90 (1H, d, *J*=1.0 Hz), 6.98-7.27 (2H, m), 7.95 (1H, br s). MS *m/z*: 240 (M⁺).

Direct Synthesis of 1 from 19 — An ether solution of MeMgI was prepared with Mg ribbon (1113.3 mg, 45.8 mmol) and MeI (2.5 mL, 40.2 mmol) in anhydrous Et_2O (20 mL) under argon atmosphere. To the resulting solution was added a solution of **19** (499.1 mg, 1.95 mmol) in anhydrous THF (20 mL) and the mixture was stirred at rt for 1 h under argon atmosphere. After cooling to 0°C, 20% NH₄Cl was added and the whole was extracted with CH_2Cl_2 –MeOH (95:5, v/v). The organic layer was washed with brine, dried over Na₂SO₄, and evaporated under reduced pressure to leave an oil, which was dissolved in MeOH (80 mL). The resulting solution was added to a suspension of Zn (3998.7 mg, 61.2 mmol) in 6% HCl (25 mL) and the mixture was refluxed for 12 h with stirring. Unreacted Zn was filtered off. The filtrate was concentrated and made basic with 8% NaOH, and the whole was extracted with CH_2Cl_2 –MeOH (95:5, v/v). The organic layer was washed with brine, dried over Na₂SO₄, and evaporated under reduced pressure to leave a solid, which was recrystallized from MeOH to give **1** (207 mg) as colorless prisms. The mother liquor was subjected to HPLC [column, CPS-223L-1 (*i.d.* 22x100 mm); solvent, AcOEt–Et₂O–Et₃N (100:10:1, v/v); flow rate, 1.0 mL/min; detection, UV 303 nm]. **22** (40.4 mg, 9%) and additional **1** (102.7 mg) were obtained in the order of elution. The total yield of **1** was 309.9 mg (66%).

(E)-4-Iodo-3-(2-nitrovinyl)indole (23) from 4-Iodo-3-indolecarbaldehyde (9) — NH₄OAc (108.5 mg, 1.41 mmol) was added to a solution of 9 (103.1 mg, 0.38 mmol) in MeNO₂ (5 mL) and the mixture was refluxed for 1 h with stirring. After evaporation of the solvent, brine was added and the whole was extracted with CH₂Cl₂-MeOH (95:5, v/v). The organic layer was washed with brine, dried over Na₂SO₄, and evaporated under reduced pressure to leave a solid, which was recrystallized from AcOEt to give 23 (114.7 mg, 96%). 23: mp 255-265°C (decomp., orange needles, recrystallized from MeOH-CHCl₃). IR (KBr): 3230, 1597, 1478 cm⁻¹. ¹H-NMR (pyridine- d_5) δ : 6.83 (1H, dd, J=8.0, 7.2 Hz), 7.42 (1H, dd, J=8.0, 1.0 Hz), 7.67 (1H, dd, J=7.2, 1.0 Hz), 7.75 (1H, s), 8.07 (1H, d, J=13.2 Hz), 9.65 (1H, d, J=13.2 Hz). MS *m/z*: 314 (M⁺). *Anal*. Calcd for C₁₀H₇IN₂O₂: C, 38.24; H, 2.25; N, 8.92. Found: C, 38.34; H, 2.20; N, 8.69. 4-Iodo-3-(2-nitroethyl)indole (24) from 23 – NaBH₄ (45.8 mg, 1.28 mmol) was added to a suspension of 23 (95.2 mg, 0.30 mmol) and SiO₂ (1213.8 mg) in CHCl₃ (10 mL) and *i*-PrOH (2 mL), and the mixture was stirred at rt for 1 h. The resulting solution was made acidic by adding 1% HCl and extracted with CH₂Cl₂-MeOH (95:5, v/v). The organic layer was washed with brine, dried over Na₂SO₄, and evaporated under reduced pressure to leave an oil, which was subjected to p-TLC on SiO₂ with CH₂Cl₂-MeOH (95:5, v/v) as a developing solvent. Extraction of the band having an Rf value of 0.69-0.85 with CH₂Cl₂-MeOH (95:5, v/v) gave 24 (80.5 mg, 84%). 24: mp 97-98°C (yellow prisms, recrystallized from MeOH-H₂O). IR (KBr): 3320, 1604, 1539 cm⁻¹. ¹H-NMR (CDCl₃) & 3.63 (2H, t, *J*=6.8 Hz), 4.67 (2H, t, J=6.8 Hz), 6.74 (1H, dd, J=8.0, 7.2 Hz), 6.96 (1H, d, J=2.5 Hz), 7.21 (1H, dd, J=8.0, 1.2 Hz), 7.47 (1H,

dd, *J*=7.2, 1.2 Hz), 8.04 (1H, br s). MS *m*/*z*: 316 (M⁺). *Anal*. Calcd for C₁₀H₉IN₂O₂: C, 38.00; H, 2.87; N, 8.86. Found: C, 37.75; H, 2.64; N, 8.90.

(E)-4,5-trans-5-(2-Formyl-1-propen-1-yl)- (26a) and (E)-4,5-trans-5-(2-Hydroxymethyl-1-propen-1yl)-4-nitro-1,3,4,5-tetrahydrobenz[cd]indole (25a) from 19 — SeO₂ (143.8 mg, 1.30 mmol) was added to a solution of 19 (57.2 mg, 0.22 mmol) in 1,4-dioxane (8 mL) and H₂O (2 mL), and the mixture was refluxed for 12 h with stirring. After evaporation of the solvent, brine was added and the whole was extracted with CH₂Cl₂-MeOH (95:5, v/v). The organic layer was washed with brine, dried over Na₂SO₄, and evaporated under reduced pressure to leave an oil, which was subjected to p-TLC on SiO₂ with CH₂Cl₂-MeOH (98:2, v/v) as a developing solvent. Extraction of the band having an Rf value of 0.64–0.72 with CH₂Cl₂–MeOH (95:5, v/v) gave **19** (18.3 mg, 32%). Extraction of the band having an *Rf* value of 0.53-0.64 with CH₂Cl₂-MeOH (95:5, v/v) gave 26a (11.5 mg, 19%). 26a: mp 186-188°C (decomp., colorless prisms, recrystallized from MeOH). IR (KBr): 3400, 1677, 1542, 1341 cm⁻¹. ¹H-NMR (10% CD₃OD in CDCl₃) δ: 1.95 (3H, d, J=1.5 Hz), 3.47-3.75 (2H, m), 4.75-5.10 (2H, m), 6.48 (1H, br d, J=8.3 Hz), 6.65 (1H, d, J=6.8 Hz), 7.03 (1H, br s), 7.14 (1H, dd, J=8.3, 6.8 Hz), 7.30 (1H, d, J=8.3 Hz), 9.51 (1H, s). MS m/z: 270 (M⁺). Anal. Calcd for C₁₅H₁₄N₂O₃: C, 66.65; H, 5.22; N, 10.37. Found: C, 66.76; H, 5.20; N, 10.54. Extraction of the band having an Rf value of 0.16-0.23 with CH₂Cl₂-MeOH (95:5, v/v) gave 25a (21.6 mg, 36%). 25a: mp 156-156.5°C (colorless prisms, recrystallized from CH₂Cl₂-hexane). IR (KBr): 3520, 3250, 1540, 1345 cm⁻¹. ¹H-NMR (10% CD₃OD in CDCl₃) δ: 1.81 (3H, d, J=1.5 Hz), 3.53 (2H, d, J=7.4 Hz), 4.09 (2H, s), 4.60 (1H, dd, J=9.7, 9.5 Hz), 4.81 (1H, dt, J=9.7, 7.4 Hz), 5.48 (1H, dq, J=9.5, 1.5 Hz), 6.76 (1H, d, J=6.8 Hz), 6.96 (1H, br s), 7.00-7.34 (2H, m), 9.16 (1H, br s). MS m/z: 272 (M⁺). Anal. Calcd for C₁₅H₁₆N₂O₃: C, 66.16; H, 5.92; N, 10.29. Found: C, 65.97; H, 5.86; N, 10.04.

Oxidation of 25a with PCC to 26a — A solution of **25a** (55.8 mg, 0.21 mmol) in CH_2Cl_2 (10 mL) was added to a solution of PCC (67.9 mg, 0.32 mmol) in CH_2Cl_2 (5 mL) and the mixture was stirred at rt for 1.5 h. *i*-PrOH (0.1 mL) was added and the resulting solution was stirred at rt for 0.5 h. After addition of CH_2Cl_2 –MeOH (95:5, v/v), insoluble precipitates were filtered off through SiO₂. The filtrate was evaporated under reduced pressure to leave an oil, which was column-chromatographed on SiO₂ with CH_2Cl_2 to give **26a** (30.5 mg, 55%).

Reduction of 26a with NaBH₄ to 25a — NaBH₄ (4.3 mg, 0.11 mmol) was added to a solution of 26a (24.1 mg, 0.09 mmol) in MeOH (10 mL) and the mixture was stirred at rt for 0.5 h. The resulting solution was made acidic by adding 3% HCl and the whole was extracted with AcOEt. The organic layer was washed with brine, dried over Na₂SO₄, and evaporated under reduced pressure to leave an oil, which was subjected to p-TLC on SiO₂ with CH₂Cl₂–MeOH (98:2, v/v) as a developing solvent. Extraction of the band having an *Rf* value of 0.20–0.32 with CH₂Cl₂–MeOH (95:5, v/v) gave 25a (22.6 mg, 93%).

(±)-Norchanoclavine-I (27a) from 25a — A solution of 25a (50.8 mg, 0.19 mmol) in MeOH (12 mL) and 6% HCl (4 mL) was added to Zn(Hg), prepared from Zn powder (353.0 mg, 5.40 mmol) and HgCl₂ (54.2 mg, 0.20 mmol) in 6% HCl (4 mL), and the mixture was refluxed for 2 h with stirring. Unreacted Zn(Hg) was filtered off and the filtrate was evaporated under reduced pressure. The residue was made basic by adding 8% NaOH and the whole was extracted with CH_2Cl_2 . The organic layer was washed with brine, dried over Na₂SO₄, and evaporated under reduced pressure to leave a solid, which was recrystallized from MeOH– CH_2Cl_2 to give 27a (44.5 mg, 98%) as colorless prisms. 27a: mp 184–185°C. IR (KBr): 3230, 3050–3150 cm⁻¹. ¹H-NMR (pyridine- d_5) δ : 2.03 (3H, d, *J*=1.2 Hz), 2.95 (1H, dd, *J*=15.4, 10.3 Hz), 3.18–3.50 (2H, m), 4.00 (1H, dd, *J*=9.8, 6.5 Hz), 4.45 (2H, s), 5.85 (1H, br d, *J*=9.8 Hz), 6.98 (1H, d, *J*=6.6 Hz), 7.06–7.48 (3H, m), 11.50 (1H, br s). MS *m/z*: 242 (M⁺). *Anal.* Calcd for $C_{15}H_{18}N_2O\cdot1/8H_2O$: C, 73.66; H, 7.52; N, 11.46. Found: C, 73.67; H, 7.51; N, 11.42.

(E)-4,5-trans-5-(2-Hydroxymethyl-1-propen-1-yl)-4-methoxycarbonylamino-1,3,4,5-

tetrahydrobenz[*cd*]indole (28a) from 27a — CICO₂Me (0.07 mL, 0.88 mmol) was added to a solution of 27a (51.0 mg, 0.21 mmol) and Et₃N (0.15 mL, 1.08 mmol) in THF (3 mL), and the mixture was stirred at rt for 1 h. Brine was added and the whole was extracted with CH₂Cl₂–MeOH (95:5, v/v). The organic layer was washed with brine, dried over Na₂SO₄, and evaporated under reduced pressure to leave an oil, which was subjected to p-TLC on SiO₂ with CHCl₃–MeOH–28% NH₄OH (46:5:0.5, v/v) as a developing solvent. Extraction of the band having an *Rf* value of 0.35–0.53 with CH₂Cl₂–MeOH (95:5, v/v) gave 28a (58.4 mg, 92%) as a colorless oil. 28a: IR (KBr): 3380, 1690 cm⁻¹. ¹H-NMR (CDCl₃) δ : 1.63 (1H, s), 1.92 (3H, d, *J*=1.4 Hz), 2.84 (1H, dd, *J*=15.7, 5.4Hz), 3.25 (1H, ddd, *J*=15.7, 3.9, 1.2 Hz), 3.62 (3H, s), 3.85–4.37 (2H, m), 4.03 (2H, s), 4.75 (1H, br d, *J*=8.0 Hz), 5.38 (1H, dq, *J*=9.2, 1.4 Hz), 6.80 (1H, dd, *J*=5.9, 2.0 Hz), 6.90 (1H, s), 7.02–7.28 (2H, m), 8.02 (1H, br s). High-resolution MS *m/z*: Calcd for C₁₇H₂₀N₂O₃: 300.1472. Found: 300.1464.

(±)-Chanoclavine-I (2) from 28a — LiAlH₄ (542.8 mg, 14.3 mmol) was added to a solution of 28a (353.2 mg, 1.18 mmol) in anhydrous THF (15 mL) and the mixture was refluxed for 1 h with stirring. To the resulting solution, MeOH was added at 0°C to decompose excess LiAlH₄. After addition of 20% potassium sodium tartrate, the whole was extracted with CH_2Cl_2 . The organic layer was washed with brine, dried over Na₂SO₄, and evaporated under reduced pressure to leave a solid, which was recrystallized from MeOH–H₂O to give 2 (288.2 mg, 96%) as colorless prisms. 2: mp 194—195°C (lit.,²⁰ mp 185—186°C). IR (KBr): 3230, 1600, 1435, 1034, 743 cm⁻¹. ¹H-NMR (pyridine- d_5) δ : 2.02 (3H, d, *J*=1.5 Hz), 2.40 (3H, s), 2.70—3.15 (2H, m), 3.41 (1H, dd, *J*=18.8, 8.3 Hz), 4.03—4.29 (1H, m), 4.41 (2H, s), 5.85 (1H, dq, *J*=10.0, 1.5 Hz), 6.42 (1H, br s, disappeared on addition of D₂O), 6.97 (1H, d, *J*=6.6 Hz), 7.06—7.47 (3H, m), 11.49 (1H, br s). MS *m/z*: 256 (M⁺). *Anal.* Calcd for C₁₆H₂₀N₂O: C, 74.96; H, 7.86; N, 10.93. Found: C, 74.91; H, 7.99; N, 10.96.

(*E*)-4,5-*cis*-5-(2-Methyl-1-propen-1-yl)-4-nitro-1,3,4,5-tetrahydrobenz[*cd*]indole (29) from 19 — NaOMe (3757.9 mg, 69.6 mmol) was added to a solution of 19 (3015.8 mg, 11.8 mmol) in anhydrous MeOH (300 mL) and the mixture was refluxed for 5 h with stirring. After evaporation of the solvent, the residue was made acidic (pH 4) by adding 10% AcOH and the whole was extracted with AcOEt. The organic layer was washed with brine, dried over Na₂SO₄, and evaporated under reduced pressure to leave an oil, which was column-chromatographed on SiO₂ with CH₂Cl₂-hexane (1:1, v/v) and recrystallized from MeOH to give 29 (2035.1 mg) as colorless prisms. The mother liquor was a mixture of 19 and 29 in the ratio of 1:2.3 by ¹H-NMR analysis. Therefore, the yields of 19 and 29 were 8 and 85%, respectively. 29: mp 147–148°C. IR (KBr): 3380, 1526, 1378 cm⁻¹. ¹H-NMR (CDCl₃) δ : 1.67 (3H, d, *J*=1.2 Hz), 1.83 (3H, d, *J*=1.2 Hz), 3.33 (1H, dd, *J*=15.4, 5.3 Hz), 3.59 (1H, ddd, *J*=15.4, 10.0, 1.5 Hz), 4.73 (1H, dd, *J*=10.3, 4.4 Hz), 4.96 (1H, ddd, *J*=10.0, 5.3, 4.4 Hz), 5.13 (1H, br d, *J*=10.3 Hz), 6.75–6.98 (1H, m), 6.92 (1H, br s), 7.00–7.25 (2H, m), 7.98 (1H, br s). MS *m/z*: 256 (M⁺). *Anal.* Calcd for C₁₅H₁₆N₂O₂:1/6H₂O: C, 69.48; H, 6.35; N, 10.93. Found: C, 69.38; H, 6.14; N, 10.89.

(E)-4,5-cis-5-(2-Formyl-1-propen-1-yl)- (26b) and (E)-4,5-cis-5-(2-Hydroxymethyl-1-propen-1-yl)-4nitro-1,3,4,5-tetrahydrobenz[cd]indole (25b) from 29 - SeO₂ (89.4 mg, 0.81 mmol) was added to a solution of 29 (57.2 mg, 0.22 mmol) in 1,4-dioxane-H₂O (4:1, v/v, 8 mL) and the mixture was refluxed for 4 h with stirring. After evaporation of the solvent, brine was added and the whole was extracted with CH₂Cl₂-MeOH (95:5, v/v). The organic layer was washed with brine, dried over Na₂SO₄, and evaporated under reduced pressure to leave an oil, which was subjected to p-TLC on SiO₂ with CH₂Cl₂ as a developing solvent. Extraction of the band having an Rf value of 0.76-0.86 with CH₂Cl₂-MeOH (95:5, v/v) gave 29 (30.3 mg, 62%). Extraction of the band having an Rf value of 0.36-0.46 with CH₂Cl₂-MeOH (95:5, v/v) gave 26b (2.0 mg, 4%) as a colorless oil. 26b: IR (KBr): 3400, 1676, 1636, 1544, 1362 cm⁻¹. ¹H-NMR (CDCl₃) δ : 1.96 (3H, d, J=1.5 Hz), 3.32–3.84 (2H, m), 4.89–5.21 (2H, m), 6.41 (1H, br d, J=10.2 Hz), 6.83 (1H, dd, J=6.2, 1.5 Hz), 7.01 (1H, br s), 7.12 (1H, dd, J=8.2, 6.2 Hz), 7.25 (1H, dd, J=8.2, 1.5 Hz), 8.15 (1H, br s), 9.51 (1H, s). High-resolution MS m/z: Calcd for C₁₅H₁₄N₂O₃: 270.1003. Found: 270.1008. Extraction of the band having an Rf value of 0.11-0.20 with CH₂Cl₂-MeOH (95:5, v/v) gave 25b (16.0 mg, 31%). 25b: mp 134-135°C (colorless prisms, recrystallized from CH₂Cl₂-hexane). IR (KBr): 3490, 3240, 1532, 1366 cm⁻¹. ¹H-NMR (CDCl₃) δ: 1.56 (1H, s), 1.86 (3H, d, J=1.5 Hz), 3.36 (2H, dd, J=15.5, 5.5 Hz), 3.61 (1H, ddd, J=15.5, 10.0, 1.5 Hz), 3.92 (2H, s), 4.81 (1H, dd, J=10.4, 4.4 Hz), 5.01 (1H, ddd, J=10.0, 5.5, 4.4 Hz), 5.43 (1H, br d, J=10.4 Hz), 6.83 (1H, dd, J=5.8, 2.4 Hz), 6.94 (1H, br s), 7.00-7.27 (2H, m), 8.03 (1H, br s). MS m/z: 272 (M⁺). Anal. Calcd for C₁₅H₁₆N₂O₃: C, 66.16; H, 5.92; N, 10.29. Found: C, 66.05; H, 5.91; N, 10.08.

(±)-Norchanoclavine-II (27b) from 25b — A solution of 25b (52.3 mg, 0.19 mmol) in MeOH (12 mL) and 6% HCl (4 mL) was added to Zn(Hg), prepared from Zn powder (358.6 mg, 5.49 mmol) and HgCl₂

(53.4 mg, 0.20 mmol) in 6% HCl (4 mL), and the mixture was refluxed for 1.5 h with stirring. Unreacted Zn(Hg) was filtered off and the filtrate was evaporated under reduced pressure. The residue was made basic by adding 8% NaOH and the whole was extracted with CH₂Cl₂–MeOH (95:5, v/v). The organic layer was washed with brine, dried over Na₂SO₄, and evaporated under reduced pressure to leave a solid, which was recrystallized from AcOEt to give **27b** (39.4 mg) as colorless prisms. The mother liquor was subjected to p-TLC on SiO₂ with CHCl₃–MeOH–28% NH₄OH (46:5:0.5, v/v) as a developing solvent. Extraction of the band having an *Rf* value of 0.24–0.32 with CHCl₃–MeOH–28% NH₄OH (46:5:0.5, v/v) gave additional **27b** (4.6 mg). The total yield of **27b** was 44.0 mg (95%). **27b**: mp 208–210°C (decomp.). IR (KBr): 3360, 3150 cm⁻¹. ¹H-NMR (pyridine-*d*₅) δ : 2.06 (3H, d, *J*=1.0 Hz), 2.98 (1H, dd, *J*=15.3, 7.3 Hz), 3.19 (1H, dd, *J*=15.3, 3.9 Hz), 3.50–3.77 (1H, m), 4.28 (1H, dd, *J*=9.8, 3.9 Hz), 4.34 (2H, s), 6.05 (1H, br d, *J*=9.8 Hz), 7.01 (1H, d, *J*=6.8 Hz), 7.09–7.46 (3H, m), 11.55 (1H, br s). MS *m/z*: 242 (M⁺). *Anal.* Calcd for C₁₅H₁₈N₂O·1/8H₂O: C, 73.66; H, 7.52; N, 11.46. Found: C, 73.88; H, 7.49; N, 11.33.

(E)-4,5-cis-5-(2-Hydroxymethyl-1-propen-1-yl)-4-methoxycarbonylamino-1,3,4,5-

tetrahydrobenz[*cd*]indole (28b) from 27b — A solution of ClCO₂Me (16.9 mg, 0.18 mmol) in THF (0.5 mL) was added to a solution of 27b (10.1 mg, 0.04 mmol) and Et₃N (0.03 mL, 0.22 mmol) in THF (1 mL), and the mixture was stirred at rt for 0.5 h. H₂O was added and the whole was extracted with CH₂Cl₂. The organic layer was washed with brine, dried over Na₂SO₄, and evaporated under reduced pressure to leave an oil, which was subjected to p-TLC on SiO₂ with CH₂Cl₂–MeOH (95:5, v/v) as a developing solvent. Extraction of the band having an *Rf* value of 0.47—0.55 with CH₂Cl₂–MeOH (95:5, v/v) gave **28b** (12.3 mg, 98%) as a colorless oil. **28b**: IR (KBr): 3350, 1695 cm⁻¹. ¹H-NMR (CDCl₃) δ : 1.86 (3H, d, *J*=1.2 Hz), 2.91 (1H, dd, *J*=15.5, 6.3 Hz), 3.14 (1H, dd, *J*=15.5, 4.5 Hz), 3.60 (3H, s), 4.07 (2H, s), 4.14 (1H, dd, *J*=9.8, 3.7 Hz), 4.20—4.57 (1H, m), 4.89 (1H, br d, *J*=9.5 Hz), 5.56 (1H, br d, *J*=9.8 Hz), 6.64—6.96 (2H, m), 6.96—7.31 (2H, m), 8.07 (1H, br s). High-resolution MS *m/z*: Calcd for C₁₇H₂₀N₂O₃: 300.1472. Found: 300.1521.

(±)-Chanoclavine-II (3) from 28b — LiAlH₄ (379.8 mg, 10.0 mmol) was added to a solution of 28b (95.2 mg, 0.32 mmol) in anhydrous THF (6 mL) and the mixture was refluxed for 1 h with stirring. To the resulting solution, MeOH was added at 0°C to decompose excess LiAlH₄. After addition of 20% potassium sodium tartrate, the whole was extracted with CH_2Cl_2 -MeOH (95:5, v/v). The organic layer was washed with brine, dried over Na₂SO₄, and evaporated under reduced pressure to leave an oil, which was subjected to p-TLC on SiO₂ with CHCl₃-MeOH-28% NH₄OH (46:5:0.5, v/v) as a developing solvent. Extraction of the band having an *Rf* value of 0.18 – 0.32 with CHCl₃-MeOH-28% NH₄OH (46:5:0.5, v/v) gave **3** (69.5 mg, 86%). **3**: mp 153.5 – 154°C (colorless prisms, recrystallized from acetone). IR (KBr): 3220, 1617, 1604, 1440, 1335, 1068, 746 cm⁻¹. ¹H-NMR (pyridine-*d*₅) δ : 2.12 (3H, d, *J*=1.2 Hz), 2.47 (3H, s), 2.96 (1H, dd, *J*=15.0, 9.5 Hz), 3.06 – 3.39 (2H, m), 4.29 (2H, s), 4.44 (1H, dd, *J*=10.2, 3.5 Hz), 6.03

(1H, d, *J*=10.2 Hz), 6.26 (1H, br s, disappeared on addition of D₂O), 7.04 (1H, d, *J*=6.5 Hz), 7.11-7.34 (2H, m), 7.40 (1H, dd, *J*=8.0, 1.2 Hz), 11.53 (1H, br s, disappeared on addition of D₂O). MS *m/z*: 256 (M⁺). *Anal*. Calcd for C₁₆H₂₀N₂O: C, 74.96; H, 7.86; N, 10.93. Found: C, 74.73; H, 7.90; N, 10.80.

(Z)-4,5-cis-5-(2-Hydroxymethyl-1-propen-1-yl)-4-methylamino-1,3,4,5-tetrahydrobenz[cd]indole

(30) from 22 — SeO₂ (16.5 mg, 0.15 mmol) was added to a solution of 22 (30.5 mg, 0.13 mmol) and Et₃N (84.3 mg, 0.83 mmol) in 1,4-dioxane (3 mL), and the mixture was heated at 90°C for 4 h with stirring. The resulting solution was made basic by adding 8% NaOH and the whole was extracted with CH₂Cl₂–MeOH (95:5, v/v). The organic layer was washed with brine, dried over Na₂SO₄, and evaporated under reduced pressure to leave an oil, which was subjected to p-TLC on SiO₂ with CHCl₃–MeOH–28% NH₄OH (46:5:0.5, v/v) as a developing solvent. Extraction of the band having an *Rf* value of 0.33–0.43 with CHCl₃–MeOH–28% NH₄OH (46:5:0.5, v/v) gave 22 (14.0 mg, 46%). Extraction of the band having an *Rf* value of 0.24–0.33 with CHCl₃–MeOH–28% NH₄OH (46:5:0.5, v/v) gave 30 (11.0 mg, 34%). 30: mp 179–182°C (decomp., colorless prisms, recrystallized from acetone). IR (KBr): 3190, 1620, 1470, 1438, 1101, 1038, 1011, 745 cm⁻¹. ¹H-NMR (CDCl₃) δ : 1.79 (3H, d, *J*=1.2 Hz), 2.39–3.39 (3H, m), 2.55 (3H, s), 2.87 (2H, br s), 3.83 (1H, d, *J*=12.0 Hz), 4.21 (1H, dd, *J*=10.5, 4.2 Hz), 4.55 (1H, dd, *J*=12.0, 1.0 Hz), 5.19 (1H, br d, *J*=10.5 Hz), 6.75 (1H, dd, *J*=5.4, 2.4 Hz), 6.84 (1H, br s), 7.06 (1H, dd, *J*=8.1, 5.4 Hz), 7.15 (1H, dd, *J*=8.1, 2.4 Hz), 7.98 (1H, br s). MS *m/z*: 256 (M⁺). *Anal.* Calcd for C₁₆H₂₀N₂O: C, 74.96; H, 7.86; N, 10.93. Found: C, 74.95; H, 7.90; N, 10.95.

(±)-Agroclavine-I (4) from 30 — A solution of POCl₃ (134.5 mg, 0.88 mmol) in CH₃CN (0.5 mL) was added to a suspension of 30 (7.4 mg, 0.03 mmol) and K₂CO₃ (55.5 mg, 0.40 mmol) in CH₃CN (1 mL) at 0°C, and the mixture was stirred at 0°C for 1 h and at rt for an additional 3 h. After cooling to 0°C, the resulting solution was made basic by adding 8% NaOH and the whole was extracted with CH₂Cl₂–MeOH (95:5, v/v). The organic layer was washed with brine, dried over Na₂SO₄, and evaporated under reduced pressure to leave an oil, which was subjected to p-TLC on SiO₂ with CHCl₃–MeOH–28% NH₄OH (46:5:0.5, v/v) as a developing solvent. Extraction of the band having an *Rf* value of 0.45–0.55 with CHCl₃–MeOH–28% NH₄OH (46:5:0.5, v/v) gave 4 (6.0 mg, 87%). 4: mp 157–158°C (colorless prisms, recrystallized from acetone). IR (KBr): 3400, 3100, 2860, 1618, 1607, 1444 cm⁻¹. ¹H-NMR (CDCl₃) δ : 1.63 (3H, br s), 2.56 (3H, s), 2.78 (1H, ddd, *J*=15.0, 10.0, 1.5 Hz), 2.98 (1H, dd, *J*=15.0, 4.5 Hz), 3.07 (2H, br s), 3.24–3.49 (1H, m,), 3.78–4.08 (1H, m), 5.48 (1H, br s), 6.74–6.98 (1H, m), 6.79 (1H, br s), 6.98–7.18 (2H, m), 7.87 (1H, br s). High-resolution MS *m/z*: Calcd for C₁₆H₁₈N₂: 238.1468. Found: 238.1467.

4,5-*cis*-5-(2-Methyl-1-propen-1-yl)-4-amino-1,3,4,5-tetrahydrobenz[*cd*]indole (31) from 29 — A solution of 29 (129.6 mg, 0.51 mmol) in MeOH (30 mL) and 6% HCl (10 mL) was added to Zn (Hg), prepared from Zn powder (997.8 mg, 15.3 mmol) and HgCl₂ (154.2 mg, 0.57 mmol) in 6% HCl (10 mL),

REFERENCES AND NOTES

- a) This report is Part 130 of a series entitled "The Chemistry of Indoles". Part 129: M. Somei, K. Noguchi, K. Yoshino, K. Mori, M. Asada, F. Yamada, Y. Tanaka, K. Shigenobu, and K. Koike, *Heterocycles*, 2006, **69**, 259–269.
- M. Somei, Y. Yokoyama, Y. Murakami, I. Ninomiya, T. Kiguchi, and T. Naito, "Recent Synthetic Studies on the Ergot Alkaloids and Related Compounds", The Alkaloids, Vol. 54, eds. by G. A. Cordell, Academic Press, 2000, pp. 191-257.
- 3. D. C. Horwell and J. P. Verge, *Phytochemistry*, 1979, 18, 519.
- 4. M. Natsume and H. Muratake, *Heterocycles*, 1980, 14, 1101–1105.
- 5. W. Oppolzer, J. I. Grayson, H. Wegmann, and M. Urrea, *Tetrahedron*, 1983, **39**, 3695-3706.
- 6. N. Hatanaka, O. Ozaki, and M. Matsumoto, *Tetrahedron Lett.*, 1986, 27, 3169–3172.
- 7. M. Somei, T. Iwaki, F. Yamada, Y. Tanaka, K. Shigenobu, K. Koike, N. Suzuki, and A. Hattori, *Heterocycles*, 2006, **68**, 1565–1569.
- 8. D. Stauffacher and H. Tscherter, Helv. Chim. Acta, 1964, 47, 2186–2194.
- 9. V. G. Sakharovsky and A. G. Kozlovsky, Tetrahedron Lett., 1984, 25, 109-112.
- 10. F. Yamada and M. Somei, Heterocycles, 1987, 26, 1173-1176.
- 11. M. Somei, T. Hasegawa, and C. Kaneko, Heterocycles, 1983, 20, 1983-1985.
- 12. M. Somei, F. Yamada, M. Kunimoto, and C. Kaneko, Heterocycles, 1984, 22, 797-801.
- 13. M. Somei, F. Yamada, Y. Karasawa, and C. Kaneko, Chemistry Lett., 1981, 615-618.
- 14. M. Somei and M. Tsuchiya, Chem. Pharm. Bull., 1981, 29, 3145-3157.
- 15. F. Yamada, Y. Makita, T. Suzuki, and M. Somei, Chem. Pharm. Bull., 1985, 33, 2162-2163.
- 16. M. Somei, Y. Makita, and F. Yamada, Chem. Pharm. Bull., 1986, 34, 948-950.
- 17. M. Somei, Y. Fumio, and Y. Makita, *Heterocycles*, 1987, 26, 895-898.
- 18. M. Somei, F. Yamada, H. Ohnishi, Y. Makita, and M. Kuriki, *Heterocycles*, 1987, 26, 2823-2828.
- 19. B. S. Bal, W. E. Childers, Jr., and H. W. Pinnick, Tetrahedron, 1981, 37, 2091-2096.
- 20. W. Oppolzer and J. I. Grayson, *Helv. Chim. Acta*, 1980, **63**, 1706–1710.
- 21. J. Beward, Chem. Ber., 1907, 40, 3065-3083.
- 22. F. Klages, R. Heinle, H. Sitz, and E. Specht, Chem. Ber., 1963, 96, 2387-2393.
- 23. A. P. Kozikowski and H. Ishida, *Heterocycles*, 1980, 14, 55–58.
- 24. M. Somei, Y. Karasawa, and C. Kaneko, *Heterocycles*, 1981, 16, 941-949.
- 25. M. Somei and F. Yamada, Chem. Pharm. Bull., 1984, 32, 5064-5065.
- 26. M. Somei, K. Kato, and S. Inoue, Chem. Pharm. Bull., 1980, 28, 2515-2516.
- 27. A. K. Sinhababu and R. T. Borchardt, Tetrahedron Lett., 1983, 24, 227-230.
- 28. T. Jeffery, J. Chem. Soc., Chem. Commun., 1984, 1287-1289.
- 29. Synthesis of ergot alkaloid without using any protective groups: ref. 25 and F. Yamada, Y. Makita, T. Suzuki, and M. Somei, *Chem. Pharm. Bull.*, 1985, **33**, 2162–2163.
- 30. H. Plieninger and D. Schmalz, Chem. Ber, 1976, 109, 2140-2147.
- 31. A. P. Kozikowski and H. Ishida, J. Am. Chem. Soc., 1980, 102, 4265-4267.

- 32. M. Natsume and H. Muratake, *Heterocycles*, 1981, 16, 375-379.
- 33. A. P. Kozikowski and P. D. Stein, J. Am. Chem. Soc., 1985, 107, 2569-2571.
- 34. T. Kiguchi, C. Hashimoto, and I. Ninomiya, *Heterocycles*, 1985, **23**, 2891–2893.
- 35. W. J. Wheeler, Tetrahedron Lett., 1986, 27, 3469-3470.
- 36. K. B. Sharpless and R. F. Lauer, J. Am. Chem. Soc., 1972, 94, 7154-7155.
- 37. H. P. Jensen and K. B. Sharpless, J. Org. Chem., 1975, 40, 264-265.
- 38. D. Arigoni, A. Vasella, K. B. Sharpless, and H. P. Jensen, J. Am. Chem. Soc., 1973, 95, 7917-7919.
- 39. H. Ishii, I. -S. Chen, S. Ueki, M. Akaike, and T. Ishikawa, *Chem. Pharm. Bull.*, 1987, **35**, 2717–2725.
- Synthesis of optically active 6,7-secoagroclavine: K. Nakagawa and M. Somei, *Heterocycles*, 1991, 32, 873-878.
- 41. Synthesis of (±)-1-methoxy-6,7-secoagroclavine: M. Somei, H. Ohnishi, and Y. Shoken, *Chem. Pharm. Bull.*, 1986, **34**, 677-681.