Novel synthesis of 3-aminopropionitriles by ring opening of 2-oxazolidinones with cyanide ion

メタデータ	言語: eng
	出版者:
	公開日: 2017-10-04
	キーワード (Ja):
	キーワード (En):
	作成者:
	メールアドレス:
	所属:
URL	https://doi.org/10.24517/00015269

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 International License.

Novel Synthesis of 3-Aminopropionitriles by Ring Opening of 2-Oxazolidinones with Cyanide Ion

Tsuyoshi Taniguchi, Naoya Goto, and Hiroyuki Ishibashi*

School of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan

isibasi@p.kanazawa-u.ac.jp

ABSTRACT

Nucleophilic attack of cyanide ion on the 5-position of 2-oxazolidinones in the presence of 18-crown-6 gave 3-aminopropionitriles.

3-Aminopropionitriles **2** are versatile intermediates in organic synthesis, because the nitrile group can easily be converted into a carboxylic acid or aminomethyl group.¹ Reaction of acrylonitrile with ammonium hydroxide seemed to be the most convenient reaction for the synthesis of non-substituted 3-aminopropionitrile (**2b**),² but this method also afforded bis(3-cyanoethyl)amine as a by-product. 3-Aminopropionitrile (**2b**) was

also obtained from 3-chloropropionitrile and liquid ammonia.³ Many methods for the synthesis of *N*-substituted 3-aminopropionitrile using Michael addition to acrylonitrile have been reported.⁴ Herein we report a novel synthesis of 3-aminopropionitriles **2** by ring opening reaction of 2-oxazolidinones **1** with cyanide ion in the presence of 18-crown-6 (Scheme 1). The synthesis of optically active 3-aminopropionitriles is also presented.

Scheme 1. Formation of **2** by Ring Opening of **1** with Cyanide Ion

$$R^{1} \stackrel{O}{\underset{R^{2}}{\bigvee}} O + CN \xrightarrow{18-crown-6} R^{1} \stackrel{H}{\underset{R^{2}}{\bigvee}} CN$$

Treatment of 3-phenyl-2-oxazolidinone ($\mathbf{1a}$) ($\mathbf{R}^1 = \mathrm{Ph}$, $\mathbf{R}^2 = \mathrm{H}$ in Scheme 1) with KCN (2 equiv) in DMF gave no reaction product after 24 h of heating at 100 °C (Table 1, entry 1). However, the addition of a catalytic amount (0.1 equiv) of 18-crown-6 in the reaction media gave the desired 3-aminopropionitrile $\mathbf{2a}$ in 34% yield (entry 2). Treatment of $\mathbf{1a}$ with trimethylsilylcyanide in the presence of tetrabutylammonium fluoride (TBAF) (2.0 equiv) also afforded $\mathbf{2a}$ in 32% yield (entry 3). Acetone cyanohydrin in the presence of triethylamine gave no desired compound $\mathbf{2a}$ (entry 4).

Table 1. Reactions of **1a** under Various Conditions

entry	[CN]	additive (equiv)	yield (%) ^a	
Citiy	[ON]	additive (equiv)	<u> 2a 1a</u>	
1	KCN	none	no reaction	
2	KCN	18-crown-6 (0.1)	34 59	
3	TMSCN	TBAF (2.0)	32 20	
4	HOCN	Et ₃ N (2.0)	no reaction	
^a Isola	ated yield.			

Table 2 shows the results of reactions of **1a** with KCN (2 equiv) in the presence of 18-crown-6 in various conditions. The use of DMSO or MeNO₂ as a solvent did not improve the yield of **2a** compared with that when DMF was used (entries 2 and 3). We found, however, that the yield of **2a** was dramatically improved without using a solvent (entry 4). When an excess (1 or 2 equiv) of 18-crown-6 was used, reaction time was greatly shortened and the yield of **2a** was improved (entries 5 and 6). However, the reaction at a lower temperature (80 °C) took a long time (entry 7), and only a trace amount of product **2a** was obtained when the reaction was carried out at 60 °C (entry 8).

Table 2. Formation of **2a** from **1a** and KCN in the Presence of 18-Crown-6

entry	18-crown-6 (equiv)	solvent	toma (0C)	time (h)	yield (_ yield (%) ^a _	
			temp. (°C)		2a	1a	
1 b	0.1	DMF	100	24	34	59	
2	0.1	DMSO	100	24	32	13	
3	0.1	MeNO ₂	100	24	5	61	
4	0.1	neat	100	24	64	17	
5	1	neat	100	10	82	2	
6	2	neat	100	3	78	19	
7	1	neat	80	24	77	9	
8	1	neat	60	24	1	97	

^a Isolated yield. ^b Table 1, Entry 2.

Formation of **2a** was explained in terms of a ring opening of oxazolidinone **1a** at the 5-position with cyanide ion followed by a decarboxylation of the resulting carbamate **3a** (Scheme 2).

Scheme 2. Plausible Mechanism for the Formation of 2a from 1a

An attack of nucleophiles such as aromatic amines⁵ or thiolate ions⁶ on the 5-position of 2-oxazolidinones **1** has been reported, but, to the best of our knowledge, no example of the use of a carbon nucleophile such as cyanide ion has been reported.

Table 3 shows the results of reactions of other 2-oxazolidinones **1** with KCN (2 equiv) in the presence of 18-crown-6 (1 equiv) without using a solvent.

Table 3. Formation of **2** from **1**

12

11

-CH2-CH2-CH2-

65^f

21

The reaction of non-substituted 2-oxazolidinone (**1b**) afforded 3-aminopropionitrile (**2b**) in low yield (entry 2), whereas alkyl-substituted 2-oxazolidinones **1c** and **1d** led to corresponding 3-aminopropionitriles **2c** and **2d** in moderate to good yields, respectively (entries 3 and 4). The reactions of aryl-substituted 2-oxazolidinones **1e-g** with an electron-donating group or a halogen atom provided desired 3-aminopropionitriles **2e-g** in good yields (entries 5-7). *p*-Nitrophenyl-substituted 2-oxazolidinone (**1h**), however, afforded the desired product **2h** in very low yield (entry 8). Ring opening of optically

^a Isolated yield. ^b Table 2, entry 5. ^c At 70 °C. ^d 8 Equiv of KCN was used. ^e 4 Equiv of KCN and 2 equiv of 18-crown-6 were used. ^f Determined by ¹H NMR analysis.

active 2-oxazolidinones gave the first synthesis of optically active 3-aminopropionitriles. Thus, compounds **1i-l** gave the corresponding 3-aminopropionitriles **2i-l** in moderate to good yields, respectively (entries 9-12).

In conclusion, treatment of 2-oxazolidinones **1** with KCN in the presence of 18-crown-6 resulted in a ring opening reaction to give 3-aminopropionitriles **2**. This reaction proceeds under non-solvent conditions and the experimental procedure is very simple. Further studies directed toward applications to reactions with other carbon nucleophiles are underway in our laboratory.

Acknowledgement. This work was supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

Supporting Information Available: Experimental procedure for the synthesis of **2a-l**; ¹H and ¹³C NMR spectra of **2i-l**. This material is available free of charge via the Internet at http://pubs.acs.org.

References and notes

- (1) For example, 3-aminopropionitrile (**2b**) was converted to β-alanine by hydrolysis of the nitrile group, see: Ford, J. H. *Org. Synth.* **1947**, 27, 1.
- (2) Buc, S. R. Org. Synth. 1947, 27, 3.
- (3) Bauer, O. W.; Teter. J. W. U. S. patent 2,443,292 [Chem. Abstr. 1948, 42, 7322.].
- (4) For recent examples, see: (a) de Souza, R. O. M. A.; Matos, L. M. C.; Gonçalves, K. M.; Costa, I. C. R.; Babics, I.; Leite, S. G. F.; Oestreicher, E. G.; Antunes, O. A. C.

Tetrahedron Lett. 2009, 50, 2017. (b) Munro-Leighton, C.; Delp, S. A.; Blue, E. D.; Gunnoe, T. B. Organometallics, 2007, 26, 1483. (c) Yadav, J. S.; Reddy, A. Ramesh; Rao, Y. Gopal; Narsaiah, A. V.; Reddy, B. V. S. Synthesis 2007, 3447. (d) Hussain, S.; Bharadwai, S. K.; Chaudhuri, M. K.; Kalita, H. Eur. J. Org. Chem. 2007, 374. (e) Hashemi, M. M.; Eftekhari-S. B.; Abdollahifar, A.; Khalili, B. Tetrahedron 2006, 62, 672. (f) Munro-Leighton, C.; Blue, E. D.; Gunnoe, T. B. J. Am. Chem. Soc. 2006, 128, 1446.

- (5) Poindexter, G. S.; Owens. D. A. Dolan, P. L.; Woo, E. J. Org. Chem. 1992, 57. 6257.
 See also: Altmann, E.; Renaud, J.; Green, J.; Earley, D.; Cutting, B.; Jahnke, W. J.
 Med. Chem. 2002, 45, 2352.
- (6) Ishibashi, H.; Uegaki, M.; Sakai, M.; Takeda, Y. Tetrahedron 2001, 57, 2115.