Creation of new promoters for plant＇s root growth： its application for the syntheses of vulcanine and borreline，and for combating desertification at gobi desert in inner mongolia 1\＃

メタデータ	言語：eng
	出版者：
	公開日：2017－10－04
	キーワード（Ja）：
	キーワード（En）：
	作成者：
	メールアドレス：
	所属：
hRLp：／／hdl．handle．net／2297／19322	

CREATION OF NEW PROMOTERS FOR PLANT'S ROOT GROWTH: ITS APPLICATION FOR THE SYNTHESES OF VULCANINE AND BORRELINE, AND FOR COMBATING DESERTIFICATION AT GOBI DESERT IN INNER MONGOLIA ${ }^{\text {I\# }}$

Masanori Somei,*² Shinsuke Sayama, Katsumi Naka, Kotaro Shinmoto, and Fumio Yamada

Division of Pharmaceutical Sciences, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan Corresponding author: e-mail address: syamoji_usa@r9.dion.ne.jp

Abstract

Various new 2-substituted indole-3-carbaldehydes are prepared. Structurally related alkaloids, vulcanine and borreline, are synthesized as well. Among the compounds, 2-haloindole-3-carbaldehydes are found to be potent promoters of plant's root growth. Its successful preliminary application is reported for making Gobi desert in Inner Mongolia full of plant.

We have conceived an idea ${ }^{3}$ that the metabolites of tryptophan have each own function in vivo and are promising targets for developing new drugs. In our project for discovering biologically active compounds among the metabolites, we have focused on the derivatives ${ }^{4}$ of indole-3-carbaldehyde and indole-3-carboxylic acid, involving the corresponding 1-hydroxy- and 1-alkoxyindole derivatives, on the basis of our 1-hydroxyindole hypothesis. ${ }^{3}$ During the study for about 25 years, we have found various types of plant growth regulators. ${ }^{5}$ Other groups have found daikon ${ }^{6}$ (Raphanus sativus, 1a, Scheme 1) and wasabi (Eutrema japonicum) phytoalexins ${ }^{7}$ (1b) which are good examples for the biologically active derivatives of indole-3-carbaldehyde and indole-3-carboxylic acid.

On the other hand, as for a starting material in a synthetic study, we make it a rule to utilize a bulk chemical. ${ }^{8}$ Because when the target compound shows the expected biological activity, if it is needed widely by the ultimate customers, it should be manufactured in the factory and supplied in a large quantity. This is the reason why we have employed 2,3-dihydroindole (2) as a starting material throughout our study.
\#dedicated to Prof. Dr. Ivar Ugi.

With an aim to discover plant's root promoter, we chose 2-haloindole-3-carbaldehydes ($\mathbf{3 a - j}$) and their derivatives (4, 5, 7, 8, 11-13, 15-17) as target compounds. Part of this work was published as a preliminary communication. ${ }^{1 \mathrm{~b}}$ In this paper, we describe their syntheses from 2 and the application for the synthesis of closely related alkaloids, vulcanine ${ }^{9}$ (4) and borreline ${ }^{10}$ (5c). In addition, we have succeeded in creating potent activators for plant's root growth. With these compounds in hand, we are now challenging to make Gobi desert in Inner Mongolia full of plant for preventing bai (yellow sand) from generation and for stopping global warming.

Scheme 1

a) $\mathrm{R}=\mathrm{H} ;$ b) $\left.\mathrm{R}=\mathrm{CO}_{2} \mathrm{Me} ; \mathbf{c}\right) \mathrm{R}=\mathrm{Me}$

I. Creation of New Promoters for Plant's Root Growth

According to our synthetic method ${ }^{3}$ for 1-hydroxyindole (6a) and its derivatives, 1-methoxyindole (6b) and 1-tosyloxyindole ($\mathbf{6 c}$) were prepared from $\mathbf{2}$ in 70 and 23% yields, respectively. ${ }^{3}$ We then tried the synthesis of $\mathbf{3 a}$ by the treatment of $\mathbf{6 c}$ with POBr_{3} based on the finding that $\mathbf{3 \mathbf { b } ^ { 1 1 }}$ was produced by the
reaction of $\mathbf{6 c}$ with POCl_{3} in 67% yield. In fact, however, $\mathbf{3 a}$ was not obtained under various examined reaction conditions.

In order to obtain 3a, we next attempted to utilize 1-methoxy and 1-hydroxy derivatives, because we found the treatment of 1-hydroxy-6-nitroindole-3-carbaldehyde ${ }^{12}$ (7a) with POBr_{3} gave an 82% yield of 2-bromo-6-nitroindole-3-carbaldehyde (8) together with 6-nitroindole-3-carbaldehyde (7b, 11\%). Therefore, $\mathbf{6} \mathbf{b}$ was converted to $\mathbf{1 a}$ in 90% yield as reported previously ${ }^{3}$ by Vilsmeier-Haack reaction.
The desired 1-hydroxyindole-3-carbaldehyde (1c) was obtained by treating 1a with KI in DMF- $\mathrm{H}_{2} \mathrm{O}$ (3:1, v / v) at $160^{\circ} \mathrm{C}$ in 55% yield together with indole-3-carbaldehyde (1d) and unreacted 1a in 3 and 33% yields, respectively. Quantitative production of $\mathbf{1 c}$ was realized by the reaction of $\mathbf{1 a}$ with DABCO (10 mol eq.) in DMF- $\mathrm{H}_{2} \mathrm{O}(3: 1, \mathrm{v} / \mathrm{v})$ at $100^{\circ} \mathrm{C}$. Interestingly, when the same reaction was carried out in DMF without a proton source, major product (61\%) was 1-[2-(4-methylpiperazin-1-yl)ethoxy]indole-3-carbaldehyde (1e), and 1c became a minor product (28\%). The mechanism of the formation of $\mathbf{1 e}$ was discussed in the previous paper. ${ }^{4 \mathrm{a}}$ These new ether cleavage reactions were also applicable to 1-methoxy-6-nitroindole-3-carbaldehyde (7c). Thus, the former KI method gave 7a, 7b, and 7c in 58, 4, and 22\% yields, respectively, while the latter DABCO method ${ }^{4 a}$ provided 7a in 90% yield.
Although bromination of $\mathbf{1 a}$ with Br_{2} in AcOH at $100^{\circ} \mathrm{C}$ afforded poor yield of 2-bromo-1-methoxyindole-3-carbaldehyde (3c, 15\%) with a mixture of inseparable 5- and 6-bromocompounds, reaction of $\mathbf{1 c}$ with POBr_{3} in THF proceeded as expected and $\mathbf{3 a}$ was obtained in 33% yield together with a 21% yield of 1d.
In order to improve the yield of $\mathbf{3 a}$, alternative route ${ }^{13 a}$ was explored from $\mathbf{6 b}$. Bromination of $\mathbf{6} \mathbf{b}$ with NBS in t-BuOH resulted in the formation of 3,3-dibromo-1-methoxy-2-oxindole ${ }^{13 \mathrm{a}}$ (9) in 50% yield. Reductive debromination of 9 to 1-methoxy-2-oxindole ${ }^{13 a-c}(\mathbf{1 0})$ was carried out with $\mathrm{Zn}-\mathrm{AcOH}$ at room temperature in 91% yield. Then, 1-methoxy group was removed by catalytic hydrogenation with 10% Pd/C and atmospheric hydrogen to afford 2-oxindole (11) in 95\% yield, which is commercially available but an expensive chemical. Subsequent Vilsmeier reaction of $\mathbf{1 1}$ with POBr_{3}-DMF afforded 3a in 77% yield. ${ }^{1 \mathrm{~b}}$ Application of the same reaction conditions to 10 provided (3c) in 84% yield.

2-Iodoindole-3-carbaldehyde (3d) was prepared in 62% yield by heating 3 a with CuI and KI in DMF though its separation from the unreacted $\mathbf{3 a}$ was difficult. Preparation of 2-iodo-1-methoxyindole-3-carbaldehyde (3e) was carried out in 70\% yield by the Vilsmeier reaction of 2-iodo-1-methoxyindole ($\mathbf{6 d}$), which was obtained according to our reported procedures from $2 .{ }^{14}$

Treatment of 3 c with BBr_{3} in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $0^{\circ} \mathrm{C}$ provided 2-bromo-1-hydroxyindole-3carbaldehyde (3f) in 14% yield in addition to 2,6-dibromoindole-3-carbaldehyde (12) and unreacted 3c in 16 and 32% yields, respectively. Interestingly, the same reaction at reflux condition resulted in the predominant formation of $\mathbf{1 2}$ in 61% yield. The structure of $\mathbf{1 2}$ was determined by comparison of the
${ }^{1} \mathrm{H}$-NMR spectrum with that of 2,6-dibromoindol-3-ylmethanol (13), which was produced by the reduction of $\mathbf{1 2}$ with NaBH_{4} in 67% yield. The proton signal at the 4 -position of $\mathbf{1 3}$ appeared at $\delta 7.55(\mathrm{~d}$, $J=8.5 \mathrm{~Hz}$), while the corresponding proton of 12 appeared at $\delta 8.19$ (d, $J=8.5 \mathrm{~Hz}$). The observed anisotropy effect of the formyl group on $\mathbf{1 2}$ clearly proved their structures as shown in Scheme 1.
1-Substituted 2-bromoindole-3-carbaldehydes were easily prepared as follows. Thus, the reactions of $\mathbf{3 a}$ with MeI, 3-methyl-2-butenyl bromide, propargyl bromide, and allyl bromide in the presence of $n-\mathrm{Bu}_{4} \mathrm{NBr}$ and $\mathrm{K}_{2} \mathrm{CO}_{3}$ as a base provided 1-methyl- (3g), 1-(3-methyl-2-butenyl)- (3h), 1-propargyl- (3i), and 1-allyl-2-bromoindole-3-carbaldehydes ($\mathbf{3 j}$) in 98, 92, 91, and 98% yields, respectively.

II. Syntheses of Vulcanine and Borreline

In order to introduce a carbon side chain directly into the 2-position of 3a, improved Heck reaction ${ }^{15 a, b}$ seemed to be promising among various palladium catalyzed cross coupling reactions. ${ }^{15 a-d}$ In fact, the Heck reaction of 3a with 2-methyl-3-buten-2-ol gave the desired 2-(3-hydroxy-3-methyl-1-butenyl)3 -indolecarboxaldehyde (15a) in $0 \sim 15 \%$ yield under various examined reaction conditions: changes in concentrations of reactants and catalyst, reaction time, temperature.
On the other hand, modified Stille reaction ${ }^{15 c}$ was found to meet our end. Thus, 15a was obtained in 87% yield upon treatment of $\mathbf{3 a}$ with tributyl(3-hydroxy-3-methyl-1-butenyl)tin (14a) in the presence of $n-\mathrm{Bu}_{4} \mathrm{NCl}$ and a catalytic amount of $\mathrm{Pd}(\mathrm{OAc})_{2}$. Under similar reaction conditions, the reactions of $\mathbf{3 a}$ with tin reagents, such as $\mathbf{1 4 b}-\mathbf{f}$, afforded the corresponding $\mathbf{1 5 b}-\mathbf{f}$ in $67,68,38,39$, and 5% yields, respectively.
We next converted 15a into (E, E)-2-methyl-4-[3-(2-nitrovinyl)indol-2-yl]-3-buten-2-ol (16) in 93\% yield by the nitroaldol reaction with $\mathrm{CH}_{3} \mathrm{NO}_{2}$ and $\mathrm{NH}_{4} \mathrm{OAc}$ as a catalyst. Subsequent reduction of $\mathbf{1 6}$ with NaBH_{4} in MeOH afforded (E)-2-methyl-4-[3-(2-nitroethyl)indol-2-yl]-3-buten-2-ol (17) in 96\% yield. With the desired 17 in hand, we next employed our reductive aminocyclization reaction. ${ }^{16}$ Thus, the reaction of 17 with zinc in refluxing methanolic hydrochloric acid resulted in the formation of 1-(2-methyl-1-propenyl)-1,2,3,4-tetrahydro- β-carboline (5a) in 50% yield. Subsequent treatment of $\mathbf{5 a}$ with t - BuOCl in THF generated vulcanine ${ }^{9}$ (4) in 51% yield. On the other hand, the reaction of 5 a with ClCOOMe and $\mathrm{Et}_{3} \mathrm{~N}$ gave an 85% yield of 2-methoxycarbonyl-1-(2-methyl-1-propenyl)-1,2,3,4-tetrahy-dro- β-carboline (5b), which finally led to borrerine ${ }^{10}$ (5c) in 70% yield by the reduction with LiAlH_{4} in anhydrous THF.
Spectral data of $\mathbf{4}$ and $\mathbf{5 c}$ are identical with those reported by Hesse and co-workers ${ }^{9}$ and by Sakai and co-workers, ${ }^{10}$ respectively.

III. Biological Evaluation for the Plant's Root Growth

Typical results, obtained after culturing the germinated seeds of rice (Nihonbare) and cucumber (Sagamihanpaku) at $25^{\circ} \mathrm{C}$ for 6 days, are shown in Table 1. In the case of aq. 3 ppm solution of 3a, the average root length of the rice is 68% longer than that of the control (100%), while the average root length of cucumber is 113%. On the other hand, the effect of a 50 ppm aq. solution of $\mathbf{1 6}$ on the rice seeds was 168%. In the case of cucumber, a 3 ppm aq. solution of 16 promoted the root length up to 190%. Thus, almost all compounds described in this paper (3-5, 7, 8, 11-13, 15-17) showed various degree of activity for plant's root promotion and we named them SOMRE compounds. Among them, SOMRE No. 1 (3a) and No. 4 (3d) have most potent activity. The detailed results will be reported elsewhere in due course.

Table 1. Average Root Length of Rice and Cucumber

IV. Combating Desertification at Gobi Desert in Inner Mongolia

With new root growth encouragers (SOMRE compounds) in hand, we applied them to the wild plant Calligonum alaschanicum (a kind of sand jujube) and Hedysarum scoparium Fisch et C.A. Mey at Gobi desert in Inner Mongolia for combating desertification. After several trials in the desert, we have disclosed that the 2-bromo compounds (3a, 3c: SOMRE No. 1, No. 3) have high germination rate and are
suitable for any tested wild plant. 2-Iodocompounds (3d, 3e: SOMRE No. 4, No. 5) have lower germination rate, but they are found to be more effective than the 2-bromo compounds as for the root growth.

On the other experiment at Gobi desert, seeds of Calligonum alaschanicum were divided into 5 groups and each group was dipped for 30 min into a 1, 3, 10 ppm aq. solution of 3a, a 2 ppm aq. solution of indole-3-acetic acid (IAA, the reference), and $\mathrm{H}_{2} \mathrm{O}$ (the control), respectively. Experiment farmland was divided into 5 parts as well. Seeds of each group were separately sprinkled to the divided farmlands on ditches of 5 cm depth and they were covered with sand. They were brought up for 73 days (from August 2 to October 14, 2005) under natural environment of the desert except for watering every one week. We then dug grown young plants and compared the average root length. The results are summarized in Table 2. As is evident from Table 2, the solutions of 3a showed a remarkable effect on the plant's root growth. Especially, a 1 ppm aq. solution of 3a encouraged the plant's root about 2 times longer and 8-15 times heavier than those of the reference and the control.

Table 2. Plant Growth for 73 Days at Gobi Desert in Inner Mongolia

Planting FAugust 2, 2005. Digging FOctober 14, 2005

Soomple Root	Control	IAA $(2 \mathrm{ppm}$, Reference $)$	3 a 10 ppm	3 a 3 ppm	3 a 1 ppm
Root Length (L cm)	18.0	21.0	22.5	36.0	42.5
Width $(\mathrm{D} \mathrm{mm})$	1.5	1.2	1.5	2.0	6.0
$\mathbf{D}_{1 / 2}$ $(\mathrm{~mm})$	1.0	1.0	0.8	$\mathbf{2 . 0}$	4.0
Weight (mg)	620	310	$\mathbf{3 6 0}$	$\mathbf{1 , 3 9 0}$	$\mathbf{4 , 9 8 0}$

It is well known the plants grown from the seeds usually freeze to death during the severe cold winter at Gobi desert. In between May, 2006 and April, 2007, we have confirmed that the plants from the seeds treated with SOMRE No. 1 have not frozen to death, because they have three times longer root (53.2 cm) than the control (19.1 cm) and can survive through a year. In April, 2007, we dipped young plant's roots of 2,700 sand jujubes into the 1 ppm aq. solution of SOMRE No. 1 for 30 min and planted them at Gobi
desert of about 2 hectares. Under natural environment without artificial watering we observed their growth. Two months later, their survival rate is 87.9%, much better than 78.3% of the control group.
With these successful results in hand, we are now continuing preliminary field experiment to make Gobi desert green. Our compounds (SOMRE No. 1, No. 4, related compounds) make the wild plant's roots longer enough to reach to the ground water. They would change Gobi desert again to the area with full of plants as it was 300 years ago. They would be useful for preventing disastrous global warming and for production of more food as a new technology. We believe SOMRE compounds become "the medicine for the earth."

EXPERIMENTAL

Melting points were determined on a Yanagimoto micro melting point apparatus and are uncorrected. IR spectra were determined with Shimadzu IR-420 and Horiba FT-720 spectrophotometers, UV spectra with a Shimadzu UV 2400 PC spectrophotometer, and ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra with JEOL FX-100, JEOL EX 270, and JEOL GSX 500 spectrometers, with tetramethylsilane as an internal standard. MS were recorded on Hitachi M-80 and JEOL JMS-SX 102A spectrometer. Preparative thin-layer chromatography (p-TLC) was performed on Merck Kiesel-gel GF $_{245}$ (Type 60) (SiO_{2}). Column chromatography was performed on silica gel ($\mathrm{SiO}_{2}, 100-200$ mesh, from Kanto Chemical Co., Inc.) throughout the present study.
1-Hydroxyindole-3-carbaldehyde (1c) and 1-[2-(4-methylpiperazin-1-yl)ethoxy]indole-3-carbaldehyde (1e) from 1-Methoxyindole-3-carbaldehyde (1a) - i) Method A: DABCO (1.05 g, 9.36 mmol) was added to a solution of $\mathbf{1 a}{ }^{3,17}(159.8 \mathrm{mg}, 0.91 \mathrm{mmol})$ in DMF (5 mL) and the mixture was heated at $100^{\circ} \mathrm{C}$ for 21 h with stirring. After addition of $\mathrm{H}_{2} \mathrm{O}$, the solution was made acidic $(\mathrm{pH} 4)$ with $6 \% \mathrm{HCl}$, and the whole was extracted with AcOEt. The organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated under reduced pressure to leave a brown solid, which was column-chromatographed on SiO_{2} with $\mathrm{CHCl}_{3}-\mathrm{MeOH}(97: 3, \mathrm{v} / \mathrm{v})$ to give 1c ($41.4 \mathrm{mg}, 28 \%$). The aqueous layer was made basic (pH 10) with $8 \% \mathrm{NaOH}$ and the whole was extracted with AcOEt. The organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated under reduced pressure to leave an oil, which was column-chromatographed on SiO_{2} with $\mathrm{CHCl}_{3}-\mathrm{MeOH}$ ($95: 5, \mathrm{v} / \mathrm{v}$) to give $\mathbf{1 e}$ ($159.8 \mathrm{mg}, 61 \%$). 1c and $\mathbf{1 e}$ were identical with the samples prepared according to our previous paper. ${ }^{4 \mathrm{a}} \mathbf{1 e} \cdot 2 \mathrm{HCl}: \mathrm{mp} 220 — 230^{\circ} \mathrm{C}$ (decomp., pink powder, recrystallized from MeOH). IR (KBr): $1660 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{DMSO}-d_{6}: \mathrm{D}_{2} \mathrm{O}=5: 1\right.$, v/v) $\delta: 2.90(3 \mathrm{H}, \mathrm{s}), 3.41(2 \mathrm{H}, \mathrm{t}, J=4.9 \mathrm{~Hz}), 3.48(8 \mathrm{H}, \mathrm{br} \mathrm{s}), 4.68(2 \mathrm{H}, \mathrm{t}, J=4.9 \mathrm{~Hz}), 7.37(1 \mathrm{H}, \mathrm{dd}, J=7.8$, $7.1 \mathrm{~Hz}), 7.45(1 \mathrm{H}, \mathrm{dd}, J=7.8,7.1 \mathrm{~Hz}), 7.71(1 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}), 8.17(1 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}), 8.66(1 \mathrm{H}, \mathrm{s}), 9.89$ (1H, s). Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{2} \cdot 2 \mathrm{HCl}$: C, 53.34; H, 6.43; N, 11.66. Found: C, 53.08; H, 6.41; N, 11.53.
ii) Method B: DABCO ($386.3 \mathrm{mg}, 3.45 \mathrm{mmol}$) was added to a solution of $\mathbf{1 a}(61.2 \mathrm{mg}, 0.35 \mathrm{mmol})$ in DMF- $\mathrm{H}_{2} \mathrm{O}(3: 1, \mathrm{v} / \mathrm{v}, 2 \mathrm{~mL})$ and the mixture was heated at $100^{\circ} \mathrm{C}$ for 21 h with stirring. After addition of $\mathrm{H}_{2} \mathrm{O}$, the whole was made acidic (pH 4) with $6 \% \mathrm{HCl}$ and extracted with AcOEt. The organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated under reduced pressure to leave a brown solid, which was column-chromatographed on SiO_{2} with $\mathrm{CHCl}_{3}-\mathrm{MeOH}(97: 3, \mathrm{v} / \mathrm{v}$) to give $\mathbf{1 c}$ ($55.0 \mathrm{mg}, 98 \%$).
iii) Method C: KI ($2.753 \mathrm{~g}, 16.6 \mathrm{mmol}$) was added to a solution of $\mathbf{1 a}(32.3 \mathrm{mg}, 0.19 \mathrm{mmol})$ in DMF $-\mathrm{H}_{2} \mathrm{O}(3: 1, \mathrm{v} / \mathrm{v}, 4 \mathrm{~mL})$ and the mixture was heated at $160^{\circ} \mathrm{C}$ for 24 h with stirring. After the same work-up as described in the method B, unreacted 1a ($10.5 \mathrm{mg}, 33 \%$), 1d ($0.7 \mathrm{mg}, 3 \%$), and 1c (16.3 mg , $55 \%)$ were obtained in the order of elution.
2-Bromoindole-3-carbaldehyde (3a) from 1-Hydroxyindole-3-carbaldehyde (1c) — A solution of 1c ($27.6 \mathrm{mg}, 0.17 \mathrm{mmol}$) in anhydrous THF (3 mL) was added to $\mathrm{POBr}_{3}(310.0 \mathrm{mg}, 1.08 \mathrm{mmol})$ and the mixture was stirred at rt for 15 h . After addition of $\mathrm{H}_{2} \mathrm{O}$, the whole was extracted with $\mathrm{CHCl}_{3}-\mathrm{MeOH}$ (95:5, v/v). The organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated under reduced pressure to leave an oil, which was column-chromatographed on SiO_{2} with AcOEt-hexane (1:1, v/v) to give $\mathbf{3 a}\left(12.6 \mathrm{mg}, 33 \%\right.$) and $\mathbf{1 d}(5.3 \mathrm{mg}, 21 \%)$ in the order of elution. $\mathbf{3 a}: \mathrm{mp} 209-210.5^{\circ} \mathrm{C}^{\mathbf{1 b}}$ (decomp., colorless needles, recrystallized from MeOH , lit. ${ }^{18} \mathrm{mp} 196-198^{\circ} \mathrm{C}$). IR (KBr): 3100, 1645 $\mathrm{cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{DMSO}-d_{6}\right) \delta: 6.96-7.54(3 \mathrm{H}, \mathrm{m}), 8.14-8.88(1 \mathrm{H}, \mathrm{m}), 9.82(1 \mathrm{H}, \mathrm{s}) . \mathrm{MS} \mathrm{m} / \mathrm{z}: 223$ and $225\left(\mathrm{M}^{+},{ }^{79} \mathrm{Br}\right.$ and $\left.{ }^{81} \mathrm{Br}\right)$.
2-Bromoindole-3-carbaldehyde (3a) from 2-Oxindole (11) - A solution of POBr_{3} ($8 \mathrm{~mL}, 0.08 \mathrm{~mol}$) in anhydrous $\mathrm{CHCl}_{3}(20 \mathrm{~mL})$ was added to anhydrous DMF ($30 \mathrm{~mL}, 0.39 \mathrm{~mol}$), and the mixture was stirred at rt for 25 min . To the resulting viscous solution was added a solution of $\mathbf{1 1}$ ($4.06 \mathrm{~g}, 0.03 \mathrm{~mol}$) in anhydrous $\mathrm{CHCl}_{3}(60 \mathrm{~mL})$, and then the mixture was stirred at rt for 13 h . During the above procedures, when magnetic stirring became difficult because of the increase in viscosity, supersonic wave generator was employed as an assistant. After cooling to $0^{\circ} \mathrm{C}$, the whole was made basic by adding 40% aqueous NaOH and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}(9: 1, \mathrm{v} / \mathrm{v})$. The organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated under reduced pressure to leave a crystalline solid, which was recrystallized from MeOH to give $\mathbf{3 a}$ ($5.281 \mathrm{~g}, 77 \%$).
2-Chloroindole-3-carbaldehyde (3b) from 1-Tosyloxyindole (6c) - A solution of Vilsmeier reagent ($460.9 \mathrm{mg}, 1.68 \mathrm{mmol}$), prepared from $\mathrm{POCl}_{3}(767.6 \mathrm{mg}, 5.01 \mathrm{mmol})$ and DMF ($581.6 \mathrm{mg}, 7.96 \mathrm{mmol}$), in DMF (0.5 mL) was added to a solution of $\mathbf{6 c}(48.1 \mathrm{mg}, 0.17 \mathrm{mmol})$ in $\mathrm{DMF}(1 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ and the mixture was stirred at rt for 5.5 h . The whole was made basic with 8% aqueous NaOH and extracted with AcOEt. The organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated under reduced pressure to leave a solid, which was column-chromatographed on SiO_{2} with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to give $\mathbf{3 b}$ (20.1 mg , $67 \%)$. Physical data were identical with those of the authentic sample. ${ }^{11}$

2-Bromo-1-methoxyindole-3-carbaldehyde (3c) from 1-Methoxy-2-oxindole (10) ${ }^{4}$ - Anhydrous DMF $(9 \mathrm{~mL})$ was added to a solution of $\mathrm{POBr}_{3}(0.2 \mathrm{~mL})$ in anhydrous $\mathrm{CHCl}_{3}(6 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ and stirring was continued at rt for 15 min . To the resulting solution was added a solution of $\mathbf{1 0}^{13}$ ($236.3 \mathrm{mg}, 1.45$ mmol) in DMF (5 mL) at $0^{\circ} \mathrm{C}$ and the mixture was stirred at rt for 12 h . The whole was made basic with 8% aqueous NaOH and extracted with AcOEt. The organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated under reduced pressure to leave a solid, which was column-chromatographed on SiO_{2} with AcOEt-hexane (1:3, v/v) to give 3c ($307.5 \mathrm{mg}, 84 \%$). 3c: mp $97-98^{\circ} \mathrm{C}$ (colorless needles, recrystallized from MeOH). IR (KBr): $1653 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 4.19(3 \mathrm{H}, \mathrm{s}), 7.31(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=7.6$, $7.3,1.2 \mathrm{~Hz}$), 7.36 ($1 \mathrm{H}, \mathrm{ddd}, J=7.8,7.3,1.2 \mathrm{~Hz}$), $7.45(1 \mathrm{H}, \mathrm{dd}, J=7.8,1.2 \mathrm{~Hz}$), $8.32(1 \mathrm{H}, \mathrm{dd}, J=7.6,1.2$ $\mathrm{Hz}), 9.98(1 \mathrm{H}, \mathrm{s})$. MS m/z: 253 and $255\left(\mathrm{M}^{+},{ }^{79} \mathrm{Br}\right.$ and $\left.{ }^{81} \mathrm{Br}\right)$. Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{BrNO}: \mathrm{C}, 47.27 ; \mathrm{H}$, 3.17; N, 5.51. Found: C, 47.02; H, 3.22; N, 5.33.

2-Iodoindole-3-carbaldehyde (3d) from 3a-KI ($1.144 \mathrm{~g}, 6.89 \mathrm{mmol}$) and CuI ($659.5 \mathrm{mg}, 3.46 \mathrm{mmol}$) were added to a solution of $\mathbf{3 a}(152.8 \mathrm{mg}, 0.68 \mathrm{mmol})$ in DMF $(15 \mathrm{~mL})$ and the mixture was heated at $120^{\circ} \mathrm{C}$ for 48 h . After evaporation of the solvent under reduced pressure, $\mathrm{H}_{2} \mathrm{O}$ was added to the residue. The whole was extracted with AcOEt. The organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated under reduced pressure to leave an oil, which was column-chromatographed on SiO_{2} with AcOEt-hexane ($1: 1, \mathrm{v} / \mathrm{v}$) to give an inseparable mixture (151.9 mg) of $\mathbf{3 a}$ and $\mathbf{3 d}$ in a ratio of 1:3.1 (${ }^{1} \mathrm{H}-\mathrm{NMR}$ analysis). The yields of $\mathbf{3 a}$ and $\mathbf{3 d}$ were calculated to be 29.8 mg (20\%) and 122.1 mg (62%), respectively. To obtain 2 mg of pure 3d, repeated HPLC and column-chromatography were required. 3d: mp 224-226 ${ }^{\circ} \mathrm{C}$ (colorless needles, recrystallized from MeOH). IR (KBr): 3138, $1639 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}$ (DMSO- d_{6}) $\delta: 7.19(1 \mathrm{H}, \mathrm{td}, J=7.5,1.2 \mathrm{~Hz}), 7.22(1 \mathrm{H}, \mathrm{td}, J=7.5,1.2 \mathrm{~Hz}), 7.42(1 \mathrm{H}, \mathrm{dd}, J=7.5,1.2 \mathrm{~Hz})$, $8.09(1 \mathrm{H}, \mathrm{dd}, J=7.5,1.2 \mathrm{~Hz}), 9.72(1 \mathrm{H}, \mathrm{s}), 12.81(1 \mathrm{H}, \mathrm{br} \mathrm{s})$. High-resolution MS m/z: Calcd for $\mathrm{C}_{9} \mathrm{H}_{6}$ INO: 270.9494. Found: 270.9478.

2-Iodo-1-methoxyindole-3-carbaldehyde (3e) from 2-Iodo-1-methoxyindole (6d) - POCl_{3} (0.2 mL , $2.15 \mathrm{mmol})$ was added to $\mathrm{DMF}(2 \mathrm{~mL}, 25.8 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$ and the stirring was continued at rt for 15 min . To the solution was added a solution of $\mathbf{6 d ^ { 1 4 }}(137.1 \mathrm{mg}, 0.50 \mathrm{mmol})$ in DMF $(2 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ and the mixture was stirred at rt for 2 h . The whole was made basic with 8% aqueous NaOH and extracted with AcOEt. The organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated under the reduced pressure to leave a solid, which was column-chromatographed on SiO_{2} with $\mathrm{AcOEt-hexane}(1: 5, \mathrm{v} / \mathrm{v})$ to give 3 e ($105.6 \mathrm{mg}, 70 \%$). $\mathbf{3 e}$: mp $132 — 134^{\circ} \mathrm{C}$ (colorless needles, recrystallized from MeOH). IR (KBr): $1645 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta: 4.18(3 \mathrm{H}, \mathrm{s}), 7.29(1 \mathrm{H}, \mathrm{t}, J=7.3 \mathrm{~Hz}), 7.33(1 \mathrm{H}, \mathrm{t}, J=7.3 \mathrm{~Hz}), 7.46(1 \mathrm{H}, \mathrm{d}$, $J=7.3 \mathrm{~Hz}), 8.33(1 \mathrm{H}, \mathrm{d}, J=7.3 \mathrm{~Hz}), 9.79(1 \mathrm{H}, \mathrm{s}) . \mathrm{MS} \mathrm{m} / \mathrm{z}: 301\left(\mathrm{M}^{+}\right)$. Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{INO}_{2}: \mathrm{C}$, 39.89; H, 2.68; N, 4.65. Found: C, 40.33; H, 2.87; 4.47.

2,6-Dibromoindole-3-carbaldehyde (12) with/without 2-Bromo-1-hydroxyindole-3-carbaldehyde
(3f) from 2-Bromo-1-methoxyindole-3-carbaldehyde (3c) - i) Method A: $\mathrm{BBr}_{3}(2 \mathrm{~mL}, 21.2 \mathrm{mmol})$ was added to a solution of $3 \mathbf{c}(50.0 \mathrm{mg}, 0.20 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ and the mixture was refluxed for 21 h with stirring. The mixture was poured into an ice water and the whole was extracted with AcOEt. The organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated under reduced pressure to leave an oil, which was column-chromatographed on SiO_{2} with $\mathrm{CHCl}_{3}-\mathrm{MeOH}$ (95:5, v/v) to give 12 ($36.3 \mathrm{mg}, 61 \%$). 12: mp 269- $270^{\circ} \mathrm{C}$ (decomp., colorless prisms, recrystallized from MeOH). IR (KBr): 3082, $1631 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}\right) \delta: 7.35(1 \mathrm{H}, \mathrm{dd}, J=8.5,1.8 \mathrm{~Hz}), 7.56(1 \mathrm{H}$, d, $J=1.8 \mathrm{~Hz}), 8.04(1 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}), 9.91(1 \mathrm{H}, \mathrm{s}) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta: 7.41(1 \mathrm{H}, \mathrm{dd}, J=8.5,1.2 \mathrm{~Hz})$, $7.51(1 \mathrm{H}, \mathrm{d}, J=1.2 \mathrm{~Hz}), 8.17(1 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}), 8.76(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 10.01(1 \mathrm{H}, \mathrm{s}) . \mathrm{MS} \mathrm{m} / \mathrm{z}: 301,303$, and 305 $\left(\mathrm{M}^{+79} \mathrm{Br}_{2},{ }^{79} \mathrm{Br}^{81} \mathrm{Br}\right.$, and ${ }^{81} \mathrm{Br}_{2}$). Anal. Calcd for $\mathrm{C}_{9} \mathrm{H}_{5} \mathrm{Br}_{2} \mathrm{NO}: \mathrm{C}, 35.68$; H, 1.66; N, 4.62. Found: C, 35.64; H, 1.72; N, 4.57.
ii) Method B: $\mathrm{BBr}_{3}(4.0 \mathrm{~mL}, 42.3 \mathrm{mmol})$ was added to a solution of $\mathbf{3 c}(97.0 \mathrm{mg}, 0.33 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ and the mixture was stirred at rt for 24 h . After the same work-up as described in the Method A, the crude product was column-chromatographed on SiO_{2} with CHCl_{3} to give unreacted 3c ($30.8 \mathrm{mg}, 32 \%$), $\mathbf{1 2}$ ($18.2 \mathrm{mg}, 16 \%$), and $\mathbf{3 f}(12.7 \mathrm{mg}, 14 \%)$ in the order of elution. $\mathbf{3 f}: \mathrm{mp}$ $192-194^{\circ} \mathrm{C}$ (decomp., colorless needles, recrystallized from AcOEt-hexane). IR (KBr): $1630 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}\right) \delta: 7.27(1 \mathrm{H}, \mathrm{dd}, J=7.8,7.3 \mathrm{~Hz}), 7.34(1 \mathrm{H}, J=7.8,7.3 \mathrm{~Hz}), 7.50(1 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz})$, $8.16(1 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}), 9.86(1 \mathrm{H}, \mathrm{s})$. High-resolution MS m/z: Calcd for $\mathrm{C}_{9} \mathrm{H}_{6}{ }^{79} \mathrm{BrNO}_{2}$: 238.9582. Found: 238.9579. Calcd for $\mathrm{C}_{9} \mathrm{H}_{6}{ }^{81} \mathrm{BrNO}_{2}$: 240.9561. Found: 240.9556.

2-Bromo-1-methylindole-3-carbaldehyde (3 g) from 3a-A solution of MeI ($969.2 \mathrm{mg}, 6.83 \mathrm{mmol}$) in THF (10 mL) was added to a mixture of $\mathbf{3 a}(1.07 \mathrm{~g}, 4.75 \mathrm{mmol}), \mathrm{Bu} 4_{4} \mathrm{NBr}(306.9 \mathrm{mg}, 0.952 \mathrm{mmol})$, and $\mathrm{K}_{2} \mathrm{CO}_{3}$ ($3.55 \mathrm{~g}, 25.7 \mathrm{mmol}$) in THF (60 mL), and the mixture was stirred at rt for 5 h . After addition of brine, the whole was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}(95: 5, \mathrm{v} / \mathrm{v})$. The organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated under reduced pressure to leave an oil, which was column-chromatographed on SiO_{2} with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to give $3 \mathrm{~g}(1.11 \mathrm{~g}, 98 \%) .3 \mathrm{~g}: \mathrm{mp} 118-118.5^{\circ} \mathrm{C}$ (colorless prisms, recrystallized from hexane). IR (KBr): $1638 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta: 3.84(3 \mathrm{H}, \mathrm{s})$, $7.14-7.36(3 \mathrm{H}, \mathrm{m}), 8.14-8.36(1 \mathrm{H}, \mathrm{m}), 9.98(1 \mathrm{H}, \mathrm{s}) . \mathrm{MS} m / \mathrm{z}$: 237 and $239\left(\mathrm{M}^{+},{ }^{79} \mathrm{Br}\right.$ and $\left.{ }^{81} \mathrm{Br}\right)$. Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{BrNO}: ~ \mathrm{C}, 50.45$; H, 3.39; N, 5.88. Found: C, 50.44 ; H, 3.35; N, 6.09.

2-Bromo-1-(3-methyl-2-buten-1-yl)indole-3-carbaldehyde (3h) from 3a - A solution of prenyl bromide ($1.06 \mathrm{~g}, 7.17 \mathrm{mmol}$) in THF (10 mL) was added to a mixture of $\mathbf{3 a}(1.02 \mathrm{~g}, 4.54 \mathrm{mmol})$, $\mathrm{Bu}_{4} \mathrm{NBr}$ ($300.8 \mathrm{mg}, 0.933 \mathrm{mmol}$), and $\mathrm{K}_{2} \mathrm{CO}_{3}(3.57 \mathrm{~g}, 25.8 \mathrm{mmol})$ in THF (60 mL), and the mixture was stirred at rt for 6 h . After the same work-up as described in the preparation of $\mathbf{3 g}, 1.22 \mathrm{~g}(92 \%)$ of $\mathbf{3 h}$ was obtained. 3h: $78.5-79^{\circ} \mathrm{C}$ (colorless needles, recrystallized from hexane). IR (KBr): $1650 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right)$ $\delta: 1.75$ (3H, d, $J=1.2 \mathrm{~Hz}), 1.92(3 \mathrm{H}, \mathrm{d}, J=1.2 \mathrm{~Hz}), 4.83(2 \mathrm{H}, \mathrm{d}, J=7.0 \mathrm{~Hz}), 5.18(1 \mathrm{H}, \mathrm{th}, J=7.0,1.2 \mathrm{~Hz})$,
7.11-7.35 (3H, m), 8.15-8.39 (1H, m). $10.00(1 \mathrm{H}, \mathrm{s}) . \mathrm{MS} \mathrm{m} / \mathrm{z}: 291$ and $293\left(\mathrm{M}^{+},{ }^{79} \mathrm{Br}\right.$ and $\left.{ }^{81} \mathrm{Br}\right)$. Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{BrNO}: ~ \mathrm{C}, 57.55$; H, 4.83; N, 4.79. Found: C, 57.58; H, 4.84; N, 4.80.
2-Bromo-1-propargylindole-3-carbaldehyde (3i) from 3a - A solution of propargyl bromide (826.6 $\mathrm{mg}, 6.95 \mathrm{mmol})$ in THF (10 mL) was added to a mixture of $\mathbf{3 a}(1.00 \mathrm{~g}, 4.50 \mathrm{mmol}), \mathrm{Bu}_{4} \mathrm{NBr}(280.1 \mathrm{mg}$, 0.88 mmol), and $\mathrm{K}_{2} \mathrm{CO}_{3}(3.19 \mathrm{~g}, 23.1 \mathrm{mmol})$ in THF (40 mL), and the mixture was stirred at rt for 22 h . After addition of brine, the whole was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}(95: 5, \mathrm{v} / \mathrm{v})$. The organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated under reduced pressure to leave a crystalline solid, which was recrystallized from MeOH to give $3 \mathbf{i}(1.01 \mathrm{~g})$ as colorless flakes. The mother liquor was subjected to p-TLC on SiO_{2} with $\mathrm{CH}_{2} \mathrm{Cl}_{2}-$ hexane ($3: 2 \mathrm{v} / \mathrm{v}$) as a developing solvent. Extraction of the band having an $R f$ value of $0.35-0.43$ with $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}(95: 5, \mathrm{v} / \mathrm{v})$ gave $3 \mathbf{i}(60.9 \mathrm{mg})$. Total yield of $3 \mathbf{i}$ was $1.07 \mathrm{~g}(91 \%)$. $3 \mathbf{i}: \mathrm{mp} 151.5-152.5^{\circ} \mathrm{C}$. IR (KBr): $1636 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta: 2.37(1 \mathrm{H}, \mathrm{t}$, $J=2.5 \mathrm{~Hz}), 5.00(2 \mathrm{H}, \mathrm{d}, J=2.5 \mathrm{~Hz}), 7.14-7.54(3 \mathrm{H}, \mathrm{m}), 8.14-8.39(1 \mathrm{H}, \mathrm{m}), 10.00(1 \mathrm{H}, \mathrm{s}) . \mathrm{MS} \mathrm{m} / \mathrm{z}: 261$ and $263\left(\mathrm{M}^{+},{ }^{79} \mathrm{Br}\right.$ and $\left.{ }^{81} \mathrm{Br}\right)$. Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{BrNO}$: C, 54.98; H, 3.08; N, 5.34. Found: C, 54.82; H , 2.98; N, 5.47.

1-Allyl-2-bromolindole-3-carbaldehyde (3j) from 3a - A solution of allyl bromide ($108.0 \mathrm{mg}, 0.89$ mmol) in THF (2 mL) was added to a mixture of $3 \mathbf{a}\left(100.3 \mathrm{mg}, 0.45 \mathrm{mmol}\right.$), $\mathrm{Bu}_{4} \mathrm{NBr}(29.3 \mathrm{mg}, 0.09$ mmol), and $\mathrm{K}_{2} \mathrm{CO}_{3}$ ($307.8 \mathrm{mg}, 2.23 \mathrm{mmol}$) in THF (6 mL), and the mixture was stirred at rt for 1 h . After the same work-up as described in the preparation of $\mathbf{3 g}, 115.3 \mathrm{mg}(98 \%)$ of $\mathbf{3 j}$ was obtained. $\mathbf{3 j}$: mp $87-88^{\circ} \mathrm{C}$ (colorless prisms, recrystallized from $\left.\mathrm{CHCl}_{3}\right)$. IR $(\mathrm{KBr}): 1652 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta: 4.90$ (2H, ddd, J=5.0, 1.8, 1.2 Hz), 5.23 (1H, dt, $J=17.0,1.8 \mathrm{~Hz}$), 5.26 ($1 \mathrm{H}, \mathrm{dt}, J=10.5,1.2 \mathrm{~Hz}$), 5.94 (1 H , ddt, $J=17.0,10.5,5.0 \mathrm{~Hz}$), $7.26-7.33(3 \mathrm{H}, \mathrm{m}), 8.31-8.34(1 \mathrm{H}, \mathrm{m}), 10.06(1 \mathrm{H}, \mathrm{s}) . \mathrm{MS} \mathrm{m} / \mathrm{z}: 263$ and $265\left(\mathrm{M}^{+}\right.$, ${ }^{79} \mathrm{Br}$ and ${ }^{81} \mathrm{Br}$). Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{BrNO} \cdot 1 / 4 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 53.65 ; \mathrm{H}, 3.94 ; \mathrm{N}, 5.21$. Found: C, $53.84 ; \mathrm{H}$, 3.73; N, 5.21.

1- Hydroxy-6-nitroindole-3-carbaldehyde (7a) from 1-Methoxy-6-nitroindole-3-carbaldehyde (7c)

- i) Method A: The formation of $7 \mathbf{a}$ in 90% yield by the reaction of $7 \mathbf{c}$ with DABCO was reported in the preceding paper. ${ }^{12}$
ii) Method B: A solution of KI ($960.0 \mathrm{mg}, 5.78 \mathrm{mmol}$) in $\mathrm{H}_{2} \mathrm{O}(1 \mathrm{~mL})$ was added to a solution of $7 \mathbf{c}$ ($32.8 \mathrm{mg}, 0.15 \mathrm{mmol}$) in DMF (3 mL), and the mixture was heated at $120^{\circ} \mathrm{C}$ for 36 h with stirring. After evaporation of the solvent under reduced pressure, AcOEt was added to the residue. The same work-up of the organic layer as described in the Method A gave unreacted 7c (7.3 mg, 22\%), 7b ($1.1 \mathrm{mg}, 4 \%$), and $7 \mathbf{7 a}(17.9 \mathrm{mg}, 58 \%)$ in the order of elution. $7 \mathbf{a}$ is identical with the authentic sample. ${ }^{12}$

2-Bromo-6-nitroindole-3-carbaldehyde (8) from $7 \mathbf{a}$ - $\mathrm{POBr}_{3}(529.4 \mathrm{mg}, 1.85 \mathrm{mmol})$ was added to a solution of $7 \mathrm{a}(60.9 \mathrm{mg}, 0.30 \mathrm{mmol})$ in anhydrous THF (4 mL) and the mixture was stirred at rt for 5 h . After evaporation of the solvent, $\mathrm{H}_{2} \mathrm{O}$ was added to the residue, and the whole was extracted with
$\mathrm{CHCl}_{3}-\mathrm{MeOH}(95: 5, \mathrm{v} / \mathrm{v})$. The organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated under reduced pressure to leave an oil, which was column-chromatographed on SiO_{2} with AcOEt-hexane ($1: 1, \mathrm{v} / \mathrm{v}$) to give $\mathbf{8}(65.3 \mathrm{mg}, 82 \%)$ and $\mathbf{7 b}(6.2 \mathrm{mg}, 11 \%)$ in the order of elution. 8: mp 296-298 ${ }^{\circ} \mathrm{C}$ (decomp., colorless prisms, recrystallized from AcOEt). IR (KBr): $1631 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}$ (DMSO-d ${ }_{6}$) $\delta: 8.12(1 \mathrm{H}, \mathrm{dd}, J=8.8,1.6 \mathrm{~Hz}), 8.24(1 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}), 8.27$ ($1 \mathrm{H}, \mathrm{d}, J=1.6 \mathrm{~Hz}$), $9.95(1 \mathrm{H}, \mathrm{s})$. The proton at the 1-position did not appear. MS m/z: 268 and $270\left(\mathrm{M}^{+},{ }^{79} \mathrm{Br}\right.$ and $\left.{ }^{81} \mathrm{Br}\right)$. Anal. Calcd for $\mathrm{C}_{9} \mathrm{H}_{5} \mathrm{BrN}_{2} \mathrm{O}_{3}$: C, 40.18; H, 1.87; N, 10.41. Found: C, 40.16; H, 1.93; N, 10.47.
3,3-Dibromo-1-methoxy-2-oxindole (9) from 1-methoxyindole (6b) - NBS ($3.637 \mathrm{~g}, 20.43 \mathrm{mmol}$) was added to a solution of $\mathbf{6 b}(1.001 \mathrm{~g}, 6.81 \mathrm{mmol})$ in $t-\mathrm{BuOH}(70 \mathrm{~mL})$ and the mixture was stirred at rt for 30 min . After evaporation of the solvent, $\mathrm{H}_{2} \mathrm{O}$ was added to the residue. The whole was extracted with benzene. The organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated under reduced pressure to leave a yellow solid, which was column-chromatographed on SiO_{2} with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexane (2:1, v/v) to give 9 ($1.281 \mathrm{~g}, 59 \%$). 9: mp $73-75^{\circ} \mathrm{C}$ (pale yellow prisms, recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexane). IR (KBr): $1745 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta: 4.06(3 \mathrm{H}, \mathrm{s}), 6.95 \quad(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=7.7$, 1.5 Hz), 7.15 ($1 \mathrm{H}, \mathrm{br} \mathrm{dt}, J=1.5,7.7 \mathrm{~Hz}$), 7.34 ($1 \mathrm{H}, \mathrm{br} \mathrm{dt}, J=1.5,7.7 \mathrm{~Hz}$), 7.56 ($1 \mathrm{H}, \mathrm{dd}, J=7.8,1.5 \mathrm{~Hz}$). MS m / z : 319, 321, and $323\left(\mathrm{M}^{+},{ }^{79} \mathrm{Br}\right.$ and $\left.{ }^{81} \mathrm{Br}\right)$. Anal. Calcd for $\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{Br}_{2} \mathrm{NO}_{2}$: C, 33.64; H, 2.18; N, 4.36. Found: C, 33.51; H, 2.09; N, 4.51.

1- Methoxy-2-oxindole (10) from 9 — Zink powder ($103.2 \mathrm{mg}, 1.6 \mathrm{mmol}$) was added to a solution of 9 ($50.5 \mathrm{mg}, 0.16 \mathrm{mmol}$) in $\mathrm{AcOH}(5 \mathrm{~mL}$) and the mixture was stirred at rt for 1.5 h . Unreacted Zn was filtered off and washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}(95: 5, \mathrm{v} / \mathrm{v}) . \mathrm{H}_{2} \mathrm{O}$ was added to the combined washing and the filtrate. The organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated under reduced pressure to leave an oil, which was column-chromatographed on SiO_{2} with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to give $\mathbf{1 0}$ (16.6 mg , 65%). Spectral data are identical with the authentic sample prepared according to our previous procedures. ${ }^{13 \mathrm{a}, \mathrm{b}}$
2-Oxindole (11) from 10 - A solution of 10 ($155.3 \mathrm{mg}, 0.95 \mathrm{mmol}$) in $\mathrm{MeOH}(10 \mathrm{~mL})$ was hydrogenated in the presence of $10 \% \mathrm{Pd} / \mathrm{C}(50 \mathrm{mg})$ at rt and 1 atm for 1 h . Catalyst was filtered off and the filtrate was evaporated under reduced pressure to leave a crystalline solid, which was column-chromatographed on SiO_{2} with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to give $\mathbf{1 1}$ ($120.4 \mathrm{mg}, 95 \%$), whose physical data were identical with the commercially available sample.

2,6-Dibromoindol-3-ylmethanol (13) from $12-\mathrm{NaBH}_{4}(150.0 \mathrm{mg}, 3.95 \mathrm{mmol})$ was added to a solution of $12(65.2 \mathrm{mg}, 0.22 \mathrm{mmol})$ in $\mathrm{MeOH}(10 \mathrm{~mL})$, and the mixture was stirred at rt for 1 h . After evaporation of the solvent under reduced pressure, AcOEt was added to the residue. The whole was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated under reduced pressure to leave an oil, which was column-chromatographed on SiO_{2} with $\mathrm{CHCl}_{3}-\mathrm{MeOH}(95: 5, \mathrm{v} / \mathrm{v}$) to give $\mathbf{1 3}$ ($44.2 \mathrm{mg}, 67 \%$). $\mathbf{1 3}$:
colorless oil. IR (film): 3398, 3213, $1614 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta: 1.48(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 4.80(2 \mathrm{H}, \mathrm{s}), 7.26$ ($1 \mathrm{H}, \mathrm{dd}, J=8.5,1.7 \mathrm{~Hz}$), $7.43(1 \mathrm{H}, \mathrm{d}, J=1.7 \mathrm{~Hz}), 7.55(1 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}), 8.18(1 \mathrm{H}, \mathrm{br}$ s). High-resolution MS m/z: Calcd for $\mathrm{C}_{9} \mathrm{H}_{7}{ }^{79} \mathrm{Br}_{2} \mathrm{NO}$: 302.8895. Found: 302.8915. Calcd for $\mathrm{C}_{9} \mathrm{H}_{7}{ }^{79} \mathrm{Br}^{81} \mathrm{BrNO}$: 304.8874. Found: 304.8852. Calcd for $\mathrm{C}_{9} \mathrm{H}_{7}{ }^{81} \mathrm{Br}_{2} \mathrm{NO}$: 306.8854. Found: 306.8829.

E-2-(3-Hydroxy-3-methyl-1-butenyl)indole-3-carbaldehyde (15a) from 3a - General Procedure: A solution of 3a ($405.4 \mathrm{mg}, 1.81 \mathrm{mmol}$), (3-hydroxy-3-methyl-1-butenyl)tributyltin (14a, $1.00 \mathrm{~g}, 2.81$ $\mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2}(42.3 \mathrm{mg}, 0.19 \mathrm{mmol})$, and $\mathrm{Bu}_{4} \mathrm{NCl}(1.00 \mathrm{~g}, 3.61 \mathrm{mmol})$ in DMF (6 mL) was heated at $115-120^{\circ} \mathrm{C}$ for 3 h with stirring. After evaporation of the solvent under reduced pressure, brine was added, and the whole was extracted with AcOEt-MeOH (95:5, v/v). The organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated under reduced pressure to leave an oil, which was column-chromatographed on SiO_{2} with AcOEt-hexane ($2: 1, \mathrm{v} / \mathrm{v}$) to give $\mathbf{1 5 a}$ ($362.1 \mathrm{mg}, 87 \%$). 15a: mp 194- $195^{\circ} \mathrm{C}$ (colorless prisms, recrystallized from MeOH). IR (KBr): 3165, 2975, $1614 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(\mathrm{CD}_{3} \mathrm{OD}\right) \delta: 1.47(6 \mathrm{H}, \mathrm{s}), 6.75(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=16.0 \mathrm{~Hz}), 7.02-7.48(3 \mathrm{H}, \mathrm{m}), 7.20(1 \mathrm{H}, \mathrm{d}, J=16.0 \mathrm{~Hz})$, 7.99-8.23 (1H, m), $10.18(1 \mathrm{H}, \mathrm{s})$. MS m/z: $229\left(\mathrm{M}^{+}\right)$. Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{NO}_{2}$: C, 73.34; H, 6.59; N, 6.11. Found: C, 73.17; H, 6.60; N, 6.32.

Methyl (E)-3-(3-Formylindol-2-yl)acrylate (15b) from 3a - In the general procedure for 15a, 3a ($102.2 \mathrm{mg}, 0.46 \mathrm{mmol}$), 2-(methoxycarbonyl)vinyltributyltin (14b, $254.2 \mathrm{mg}, 0.68 \mathrm{mmol}$), $\mathrm{Pd}(\mathrm{OAc})_{2}$ ($12.1 \mathrm{mg}, 0.05 \mathrm{mmol}$), and $\mathrm{Bu}_{4} \mathrm{NCl}(248.6 \mathrm{mg}, 0.90 \mathrm{mmol}$) were used. After the same work-up as described in the preparation of 15a, 70.2 mg (67%) of $\mathbf{1 5 b}$ was obtained. 15b: mp $261-262^{\circ} \mathrm{C}$. IR (KBr): 3050, 1703, $1628 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}$ (pyridine- d_{5}) $\delta: 3.72(3 \mathrm{H}, \mathrm{s}), 6.95(1 \mathrm{H}, \mathrm{d}, J=16.0 \mathrm{~Hz}$), 7.25-7.49 (3H, m), $8.50(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=16.0 \mathrm{~Hz}), 8.59-8.77(1 \mathrm{H}, \mathrm{m}), 10.71(1 \mathrm{H}, \mathrm{s})$. The NH proton signal was not observed. MS m/z: $229\left(\mathrm{M}^{+}\right)$. Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{NO}_{3}$: C, 68.11; H, 4.84; N, 6.11. Found: C, 67.89; H, 4.76; N, 6.04.

2-Phenylindole-3-carbaldehyde (15c) from 3a - In the general procedure for 15a, 3a (41.1 mg, 0.18 mmol), tetraphenyltin ($\mathbf{1 4 c}, 117.3 \mathrm{mg}, 0.27 \mathrm{mmol}$), $\mathrm{Pd}(\mathrm{OAc})_{2}(4.3 \mathrm{mg}, 0.02 \mathrm{mmol})$, and $\mathrm{Bu}{ }_{4} \mathrm{NCl}(97.7$ $\mathrm{mg}, 0.35 \mathrm{mmol}$) were used. After the same work-up and column-chromatgraphy as described in the preparation of $\mathbf{1 5 a}$, 15c ($27.7 \mathrm{mg}, 68 \%$) and $\mathbf{3 a}(3.9 \mathrm{mg}, 10 \%)$ were obtained in the order of elution. $\mathbf{1 5 c}$: mp 260.5-263 ${ }^{\circ} \mathrm{C}$ (colorless prisms, recrystallized from MeOH). IR (KBr): 3120, $1628 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}$ (pyridine- d_{5}) $\delta: 7.18-7.90(8 \mathrm{H}, \mathrm{m}), 8.53-8.91(1 \mathrm{H}, \mathrm{m}), 10.25(1 \mathrm{H}, \mathrm{s}) . \mathrm{MS} m / \mathrm{z}: 221\left(\mathrm{M}^{+}\right)$. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{NO}: \mathrm{C}, 81.43$; H, 5.01; N, 6.33. Found: C, 81.51; H, 4.92; N, 6.35 .

2-(3-Pyridyl)indole-3-carbaldehyde (15d) from 3a - In the general procedure for 15a, 3a (103.1 mg, 0.46 mmol), (3-pyridyl)trimethyltin (14d, $221.0 \mathrm{mg}, 0.91 \mathrm{mmol}$), $\mathrm{Pd}(\mathrm{OAc})_{2}(9.7 \mathrm{mg}, 0.04 \mathrm{mmol})$, and $\mathrm{Bu}_{4} \mathrm{NCl}(261.3 \mathrm{mg}, 0.94 \mathrm{mmol})$ were used. After the same work-up and column-chromatgraphy as described in the preparation of $\mathbf{1 5 a}, \mathbf{1 5 d}(39.1 \mathrm{mg}, 38 \%)$, 15e ($10.9 \mathrm{mg}, 15 \%$), and $\mathbf{1 d}(5.5 \mathrm{mg}, 8 \%)$ were
obtained in the order of elution. 15d: mp $246-246.5^{\circ} \mathrm{C}$ (colorless needles, recrystallized from MeOH). IR (KBr): 3430, 3130, $1628 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}$ (pyridine- d_{5}) $\delta: 7.28-7.70(4 \mathrm{H}, \mathrm{m}), 8.14(1 \mathrm{H}$, ddd, $J=8.0$, 2.2, 1.8 Hz), $8.75-8.96(2 \mathrm{H}, \mathrm{m}), 9.27(1 \mathrm{H}, \mathrm{dd}, J=2.2,0.8 \mathrm{~Hz}), 10.41(1 \mathrm{H}, \mathrm{s}) . \mathrm{MS} \mathrm{m} / \mathrm{z}: 222\left(\mathrm{M}^{+}\right)$. Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}$: C, 75.65; H, 4.54; N, 12.61. Found: C, 75.48; H, 4.77; N, 12.50.

2-Methylindole-3-carbaldehyde (15e) from 3a - In the general procedure for 15a, $\mathbf{3 a}$ ($467.8 \mathrm{mg}, 2.09$ $\mathrm{mmol})$, tetramethyltin ($\mathbf{1 4 e}, 562.2 \mathrm{mg}, 3.12 \mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2}(42.7 \mathrm{mg}, 0.19 \mathrm{mmol})$, and $\mathrm{Bu}_{4} \mathrm{NCl}(1.34 \mathrm{~g}$, 4.84 mmol) were used. After the same work-up and column-chromatgraphy as described in the preparation of 15a, 15e ($130.0 \mathrm{mg}, 39 \%$) and $\mathbf{1 d}(18.1 \mathrm{mg}, 6 \%)$ were obtained in the order of elution. 15e: mp 204-205 ${ }^{\circ} \mathrm{C}$ (colorless needles, recrystallized from MeOH). IR (KBr): 3250, $1635 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}\right) \delta: 2.63(3 \mathrm{H}, \mathrm{s}), 6.89 — 7.39(3 \mathrm{H}, \mathrm{m}), 7.79-8.12(1 \mathrm{H}, \mathrm{m}), 9.82(1 \mathrm{H}, \mathrm{s}) . \mathrm{MS}$ m/z: 159 $\left(\mathrm{M}^{+}\right)$. Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{NO}: ~ \mathrm{C}, 75.45$; H, 5.70; N, 8.80. Found: C, 75.50; H, 5.62; N, 8.82. 2-(2-Pyridyl)indole-3-carbaldehyde (15f) from 3a - In the general procedure for 15a, 3a (100.5 mg, $0.45 \mathrm{mmol})$, $\mathbf{1 4 f}(1.07 \mathrm{~g}, 4.43 \mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2}(10.9 \mathrm{mg}, 0.05 \mathrm{mmol})$, and $\mathrm{Bu}_{4} \mathrm{NCl}(246.1 \mathrm{mg}, 0.89$ mmol) were used. After the same work-up and column-chromatgraphy as described in the preparation of 15a, unreacted 3a ($21.4 \mathrm{mg}, 21 \%$), $\mathbf{1 5 f}(5.0 \mathrm{mg}, 5 \%)$, $\mathbf{1 5 e}(0.5 \mathrm{mg}, 1 \%)$, and $\mathbf{1 d}(2.4 \mathrm{mg}, 4 \%)$ were obtained in the order of elution. 15f: mp $225.5-226.5^{\circ} \mathrm{C}$ (colorless needles, recrystallized from MeOH). IR (KBr): 3060, $1619 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\right.$ pyridine- $\left.d_{5}\right) \delta: 7.12-7.70(4 \mathrm{H}, \mathrm{m}), 7.75(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=7.5,2.0 \mathrm{~Hz}$), $8.70(1 \mathrm{H}, \mathrm{dt}, J=8.0,1.0 \mathrm{~Hz}), 8.65-8.78(1 \mathrm{H}, \mathrm{m}), 8.78-8.98(1 \mathrm{H}, \mathrm{m}), 11.04(1 \mathrm{H}, \mathrm{s}) . \mathrm{MS} \mathrm{m} / \mathrm{z}: 222\left(\mathrm{M}^{+}\right)$. Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}$: C, 75.65; H, 4.54; N, 12.61. Found: C, 75.42; H, 4.38; N, 12.83.
(E,E)-2-Methyl-4-[3-(2-nitrovinyl)indol-2-yl]-3-buten-2-ol (16) from 15a — $\mathrm{NH}_{4} \mathrm{OAc}$ (736.1 mg, 9.50 mmol) was added to a solution of $\mathbf{1 5 a}(435.7 \mathrm{mg}, 1.90 \mathrm{mmol})$ in $\mathrm{MeNO}_{2}(26 \mathrm{~mL})$ and the mixture was heated at $90^{\circ} \mathrm{C}$ for 4 h with stirring. After cooling to rt , the resulting precipitates (16, 406.1 mg) were collected by filtration and washed with MeOH . The filtrate and washings were combined and $\mathrm{H}_{2} \mathrm{O}$ was added. The whole was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}$ ($95: 5, \mathrm{v} / \mathrm{v}$). The organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated under reduced pressure to leave a crystalline solid, which was column-chromatographed on SiO_{2} with $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}(95: 5, \mathrm{v} / \mathrm{v})$ to give $\mathbf{1 6}(75.7 \mathrm{mg})$. Total yield of 16 was 481.8 mg (93%). 16: $\mathrm{mp} 246.5-247^{\circ} \mathrm{C}$ (decomp., red needles, recrystallized from MeOH). IR (KBr): 3250, 1578, $1360 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (pyridine- d_{5}) $\delta: 1.55(6 \mathrm{H}, \mathrm{s}), 7.02(1 \mathrm{H}, \mathrm{d}, J=16.0 \mathrm{~Hz}$), $7.26-7.59(4 \mathrm{H}, \mathrm{m}), 7.85-8.05$ ($1 \mathrm{H}, \mathrm{m}$), 8.52 ($1 \mathrm{H}, \mathrm{d}, J=13.2 \mathrm{~Hz}$), 8.77 ($1 \mathrm{H}, \mathrm{d}, J=13.2 \mathrm{~Hz}$). MS m/z: 272 $\left(\mathrm{M}^{+}\right)$. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{3}$: C, 66.16; H, 5.92; N, 10.29. Found: C, 65.97; H, 5.89; N, 10.46.
(E)-2-Methyl-4-[3-(2-nitroethyl)indol-2-yl]-3-buten-2-ol (17) from 16 - NaBH_{4} (173.5 mg, 4.59 $\mathrm{mmol})$ was added to a solution of $\mathbf{1 6}(206.0 \mathrm{mg}, 0.76 \mathrm{mmol})$ in $\mathrm{MeOH}(30 \mathrm{~mL})$ and the mixture was stirred at rt for 1 h . After addition of AcOEt, the whole was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated under reduced pressure to leave an oil, which was column-chromatographed on SiO_{2} with

AcOEt-hexane (1:1, v/v) to give 17 (199.5 mg, 96\%). 17: mp $122.5-123^{\circ} \mathrm{C}$ (colorless prisms, recrystallized from benzene). IR (KBr): 3520, 3310, 1554, $1380 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}\right) \delta: 1.23(6 \mathrm{H}, \mathrm{s})$, $3.48(2 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}), 4.62(2 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}), 6.31(1 \mathrm{H}, \mathrm{d}, J=16.0 \mathrm{~Hz}), 6.71(1 \mathrm{H}, \mathrm{d}, J=16.0 \mathrm{~Hz})$, 6.83-7.52 (4H, m). MS m/z: $274\left(\mathrm{M}^{+}\right)$. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{3}$: C, 65.67; H, 6.61; N, 10.21. Found: C, 65.89; H, 6.58; N, 10.23.

1-(2-Methyl-1-propenyl)-1,2,3,4-tetrahydro- β-carboline (5a) from 17 - A solution of $\mathbf{1 7}$ (174.9 mg , 0.64 mmol) in THF (19.5 mL) was added to a mixture of Zn powder ($897.2 \mathrm{mg}, 13.7 \mathrm{mmol}$) [washed with $6 \% \mathrm{HCl}(4 \mathrm{~mL})]$ in $6 \% \mathrm{HCl}(6.5 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ and the mixture was refluxed for 5 min with stirring. Unreacted Zn was filtered off and the filtrate was evaporated under reduced pressure. The residue was made basic by adding 8% aqueous NaOH and the whole was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}$ (95:5, v/v). The organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated under reduced pressure to leave an oil, which was column-chromatographed on SiO_{2} with $\mathrm{CHCl}_{3}-\mathrm{MeOH}-28 \%$ aq. $\mathrm{NH}_{3}(46: 2: 0.2$, v / v) to give $\mathbf{5 a}$ ($22.5 \mathrm{mg}, 50 \%$). 5a: mp $160-161^{\circ} \mathrm{C}$ (colorless prisms, recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, lit., ${ }^{10}$ mp 158—159 ${ }^{\circ} \mathrm{C}$). IR (KBr): 3400, $1092 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta: 1.82(3 \mathrm{H}, \mathrm{d}, J=1.2 \mathrm{~Hz}), 1.88(3 \mathrm{H}, \mathrm{d}$, $J=1.2 \mathrm{~Hz}$), 2.65-2.89 (2H, m), 2.89-3.55 (2H, m), 4.83 ($1 \mathrm{H}, \mathrm{br} \mathrm{d}, J=9.5 \mathrm{~Hz}$), 5.26 ($1 \mathrm{H}, \mathrm{dt}, J=9.5,1.2$ $\mathrm{Hz}), 6.92-7.33(3 \mathrm{H}, \mathrm{m}), 7.33-7.53(1 \mathrm{H}, \mathrm{m}), 7.64(1 \mathrm{H}, \mathrm{br} \mathrm{s}) . \mathrm{MS} \mathrm{m} / \mathrm{z}: 226\left(\mathrm{M}^{+}\right)$. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{~N}_{2} \cdot 1 / 4 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 78.05 ; \mathrm{H}, 8.07$; $\mathrm{N}, 12.13$. Found: C, 78.47; H, 8.09; N, 11.84.

2-Methoxycarbonyl-1-(2-methyl-1-propenyl)-1,2,3,4-tetrahydro- β-carboline (5b) from 5a - A solution of $\mathrm{ClCO}_{2} \mathrm{Me}(38.6 \mathrm{mg}, 0.41 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ was added to a solution of $\mathbf{5 a}(54.0 \mathrm{mg}$, $0.24 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(80.0 \mathrm{mg}, 0.79 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ and the mixture was stirred at rt for 2 h . Saturated NaHCO_{3} was added and the whole was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}(95: 5, \mathrm{v} / \mathrm{v})$. The organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated under reduced pressure to leave an oil, which was recrystallized from MeOH to give $\mathbf{5 b}(47.5 \mathrm{mg})$ as colorless prisms. The mother liquor was subjected to p-TLC on SiO_{2} with $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}(95: 5, \mathrm{v} / \mathrm{v})$ as a developing solvent. Extraction from the band having an $R f$ value of $0.93-1.00$ with $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}(95: 5, \mathrm{v} / \mathrm{v})$ gave $\mathbf{5 b}(10.3 \mathrm{mg})$. Total yield of $\mathbf{5 b}$ was 58.7 mg (85%). $\mathbf{5 b}$: mp 186— $189^{\circ} \mathrm{C}$ (lit., ${ }^{10} \mathrm{mp} 180 — 181^{\circ} \mathrm{C}$). IR (KBr): 3400, 3040, $1092 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 1.77(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=1.4 \mathrm{~Hz}), 1.98(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=1.4 \mathrm{~Hz}), 2.64-2.88(2 \mathrm{H}, \mathrm{m}), 2.88-3.37$ $(1 \mathrm{H}, \mathrm{m}), 3.73(3 \mathrm{H}, \mathrm{s}), 4.39(1 \mathrm{H}, \mathrm{d}, J=12.5 \mathrm{~Hz}), 5.30(1 \mathrm{H}, \mathrm{d}, J=10.0 \mathrm{~Hz}), 5.88(1 \mathrm{H}, \mathrm{d}, J=10.0 \mathrm{~Hz})$, $6.91-7.32(3 \mathrm{H}, \mathrm{m}), 7.36-7.52(1 \mathrm{H}, \mathrm{m}), 7.59(1 \mathrm{H}, \mathrm{br} \mathrm{s})$. High-resolution MS m/z: Calcd for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{2}$: 284.1524. Found: 284.1526.
Borrerine (5c) from $\mathbf{5 b}$ - $\mathrm{LiAlH}_{4}(98.6 \mathrm{mg}, 2.60 \mathrm{mmol})$ was added to a solution of $\mathbf{5 b}(46.3 \mathrm{mg}, 0.16$ $\mathrm{mmol})$ in THF (8 mL) at $0^{\circ} \mathrm{C}$ and the mixture was refluxed for 5 h with stirring. After addition of MeOH and 10% aqueous Rochelle salt under ice cooling, the whole was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}$ (95:5, $\mathrm{v} / \mathrm{v})$. The organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated under reduced
pressure to leave an oil, which was subjected to p-TLC on SiO_{2} with $\mathrm{CHCl}_{3}-\mathrm{MeOH}-28 \%$ aq. NH_{3} (46:5:0.5, v/v) as a developing solvent. Extraction from the band having an $R f$ value of $0.74-0.90$ with $\mathrm{CHCl}_{3}-\mathrm{MeOH}-28 \%$ aq. $\mathrm{NH}_{3}\left(46: 5: 0.5\right.$, v/v) gave 5 c ($28.2 \mathrm{mg}, 70 \%$). 5 c : mp $105-106^{\circ} \mathrm{C}$ (colorless prisms, recrystallized from hexane, lit., $\left.{ }^{10} \mathrm{mp} 102 — 103^{\circ} \mathrm{C}\right)$. IR (KBr): $3200 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta$: 1.86 (3H, d, $J=1.2 \mathrm{~Hz}$), 1.88 (3H, d, $J=1.2 \mathrm{~Hz}$), 2.48-3.29 (4H, m), 4.05 ($1 \mathrm{H}, \mathrm{dt}, J=9.5,1.2 \mathrm{~Hz}$), 5.18 (1 H , br d, $J=9.5 \mathrm{~Hz}$), 6.92-7.34 (3H, m), 7.34-7.63 ($2 \mathrm{H}, \mathrm{m}$). High-resolution MS m/z: Calcd for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{~N}_{2}: 240.1625$. Found: 240.1630 .

Vulcanine (4) from $5 \mathbf{a}$ - A solution of $t-\mathrm{BuOCl}(42.4 \mathrm{mg}, 0.39 \mathrm{mmol})$ in THF (1 mL) was added to a suspension of $5 \mathbf{a}(37.0 \mathrm{mg}, 0.16 \mathrm{mmol})$ and powdered $\mathrm{NaOH}(32.1 \mathrm{mg}, 0.80 \mathrm{mmol})$ in THF $(4 \mathrm{~mL})$ and the mixture was stirred at rt for $64 \mathrm{~h} . \mathrm{H}_{2} \mathrm{O}$ was added and the whole was extracted with AcOEt. The organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated under reduced pressure to leave an oil, which was subjected to p-TLC on SiO_{2} with $\mathrm{AcOEt-hexane}(1: 1, \mathrm{v} / \mathrm{v})$ as a developing solvent. Extraction from the band having an $R f$ value of $0.47-0.65$ with AcOEt gave 4 ($18.5 \mathrm{mg}, 51 \%$). 4: pale yellow oil. IR $\left(\mathrm{CHCl}_{3}\right): 1645,1623,1567,1492,1452,1420,1380,1316,1235 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right)$ §: 2.00 (3H, d, $J=1.2 \mathrm{~Hz}$), 2.01 (3H, d, $J=1.2 \mathrm{~Hz}$), 6.60 ($1 \mathrm{H}, \mathrm{t}, J=1.2 \mathrm{~Hz}$), 7.28 (1 H , ddd, $J=8.1,6.4,1.7$ Hz), 7.51 (1H, ddd, $J=8.1,1.7,1.0 \mathrm{~Hz}$), 7.53 (1H, ddd, $J=8.1,6.4,1.0 \mathrm{~Hz}$), 7.82 (1H, d, $J=5.4 \mathrm{~Hz}$), 8.11 $(1 \mathrm{H}, \mathrm{d}, J=8.1 \mathrm{~Hz}), 8.46(1 \mathrm{H}, \mathrm{d}, J=5.4 \mathrm{~Hz}), 8.57\left(1 \mathrm{H}, \mathrm{br}\right.$ s, disappeared on addition of $\left.\mathrm{D}_{2} \mathrm{O}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}\right) \delta: 20.5,26.7,111.9,113.0,119.0,120.3,121.6,121.8,128.8,129.5,134.0,136.8,140.7,140.8$, 143.8. UV $\lambda \max (\mathrm{MeOH}) \mathrm{nm}(\log \varepsilon): 214$ (4.36), 239 (4.49), 260 (sh, 4.23), 292 (4.14), 356 (3.79). MS $m / z: 222\left(\mathrm{M}^{+}\right)$, 207, 182, 103. High-resolution MS m/z: Calcd for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{~N}_{2}$: 222.1157. Found: 222.1154. $4 \cdot \mathrm{HCl}$: mp $189-192^{\circ} \mathrm{C}$ (yellow needles, recrystallized from $\mathrm{Et}_{2} \mathrm{O}-\mathrm{MeOH}$, lit., ${ }^{9} \mathrm{mp} 103^{\circ} \mathrm{C}$). IR (KBr): 3340, 1640, 1599, 1442, $761 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}\right) \delta: 1.93$ (3H, d, $J=1.2 \mathrm{~Hz}$), 2.22 (3H, d, J=1.2 Hz), $6.74(1 \mathrm{H}, \mathrm{t}, J=1.2 \mathrm{~Hz}), 7.47(1 \mathrm{H}, \mathrm{ddd}, J=8.1,6.8,1.0 \mathrm{~Hz}), 7.76(1 \mathrm{H}, \mathrm{dt}, J=8.3,1.0 \mathrm{~Hz}), 7.80(1 \mathrm{H}, \mathrm{ddd}$, $J=8.3,6.8,1.0 \mathrm{~Hz}), 8.35(1 \mathrm{H}, \mathrm{d}, J=6.4 \mathrm{~Hz}), 8.41(1 \mathrm{H}, \mathrm{dt}, J=8.1,1.0 \mathrm{~Hz}), 8.55(1 \mathrm{H}, \mathrm{d}, J=6.4 \mathrm{~Hz})$. ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}\right) \delta: 20.9,26.6,113.9,114.2,116.6,121.5,123.0,124.1,129.5,133.1,134.8,135.2$, 137.4, 145.4, 152.5. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{~N}_{2} \cdot \mathrm{HCl} \cdot 1 / 4 \mathrm{H}_{2} \mathrm{O}$: C, 68.44 ; H, 5.93 ; $\mathrm{N}, 10.64$. Found: C, 68.51; H, 5.83; N, 10.68.

ACKNOWLEDGMENTS

The authors express their cordial gratitude to Dr. Y. Kamuro (Nissan Chemical Ind. Ltd.) for the biological test (rice and cucumber). They are deeply indebted to Mr. T. Minamide, a member of "The NPO Juridical Person for Making the World Desert Green" for observing the root growth for 73 days in the hottest season at Gobi desert in Inner Mongolia.

REFERENCES AND NOTES

1. a) This report is part 131 of a series entitled "The Chemistry of Indoles". b) Part of this work was reported as a preliminary communication: M. Somei, S. Sayama, K. Naka, and F. Yamada, Heterocycles, 1988, 27, 1585. c) Part 130: M. Somei, F. Yamada, Y. Makita, and M. Somei, ibid., 2007, 72, 599.
2. Professor Emeritus of Kanazawa University. Present address: 2-40-3 Sodani, Hakusan-shi, Ishikawa, Japan 920-2101.
3. M. Somei, Topics in Heterocyclic Chemistry, Vol. 6, ed. by S. Eguchi, Springer-Verlag, Berlin, 2006, pp. 77-111; M. Somei, Advances in Heterocyclic Chemistry, Vol. 82, ed. by A. R. Katritzky, Elsevier Science, USA, 2002, pp. 101—155; M. Somei, Heterocycles, 1999, 50, 1157; M. Somei, J. Synth. Org. Chem., 1991, 49, 205; M. Somei and T. Kawasaki, Heterocycles, 1989, 29, 1251.
4. a) K. Yamada, S. Tomioka, N. Tanizawa, and M. Somei, Heterocycles, 2004, 63, 1601 and references cited therein. b) K. Yamada, Y. Kanbayashi, S. Tomioka, and M. Somei, ibid., 2002, 57, 1627 and references cited therein. c) The first report of the project: M. Somei, T. Hasegawa, and C. Kaneko, ibid., 1983, 20, 1983.
5. M. Somei, K. Kizu, M. Kunimoto, and F. Yamada, Chem. Pharm. Bull., 1985, 33, 3696; M. Somei, F. Yamada, M. Kunimoto, and C. Kaneko, Heterocycles, 1984, 22, 797. See also reference 3.
6. M. Takasugi, K. Monde, N. Katsui, and A. Shirota, Symposium Papers, The 29th Symposium on The Chemistry of Natural Products, Sapporo, Aug. 1987, p. 629; M. Somei, H. Ohnishi, and Y. Shoken, Chem. Pharm. Bull., 1986, 34, 677; M. Somei and T. Shoda, Heterocycles, 1981, 16, 1523.
7. F. Yamada, K. Yamada, H. Takeda, and M. Somei, Heterocycles, 2001, 55, 2361; M. Somei, A. Tanimoto, H. Orita, F. Yamada, and T. Ohta, ibid., 2001, 54, 425; M. S. C. Pedras and J. L. Sorensen, Phytochemistry, 1998, 49, 1959; these authors did not cite us in spite of using our original 1-methoxyindole synthetic method. ${ }^{3}$ See also reference 4b.
8. M. Somei, Chemistry, 2007, 62, 16.
9. T. Gozler, B. Gozler, A. Linden, and M. Hesse, Phytochemistry, 1996, 43, 1425.
10. E. Yamanaka, N. Shibata, and S. Sakai, Heterocycles, 1984, 22, 271; M. Doe de Maindreville, J. Levy, F. Tillequin, and M. Koch, J. Nat. Prod., 1983, 46, 310; J. L. Pousset, J. Kerharo, G. Maynart, X. Monseur, A. Cave, and R. Goutarel, Phytochemistry, 1973, 12, 2308.
11. K. E. Schulte, J. Reisch, and U. Stoess, Arch. Pharmaz., 1972, 305, 523.
12. K. Yamada, S. Tomioka, N. Tanizawa, and M. Somei, Heterocycles, 2004, 63, 1601.
13. a) T. Kawasaki, A. Kodama, T. Nishida, K. Shimizu, and M. Somei, Heterocycles, 1991, 32, 221. b) M. Somei, F. Yamada, T. Kurauchi, Y. Nagahama, M. Hasegawa, K. Yamada, S. Teranishi, H. Sato, and C. Kaneko, Chem. Pharm. Bull., 2001, 49, 87. c) W. B. Wright Jr. and K. H. Collins, J. Am.

Chem. Soc., 1956, 78, 221.
14. M. Somei and A. Kodama, Heterocycles, 1992, 34, 1285.
15. a) R. F. Heck, Palladium Reagents in Organic Synthesis, Academic Press Inc. (London) Ltd., 1985. b) M. Somei, T. Hasegawa, T. Suzuki, and M. Wakida, Abstracts of Papers, The $105^{\text {th }}$ Annual Meeting of Pharmaceutical Society of Japan, Kanazawa, April 1985, p. 679; T. Jeffery, J. Chem. Soc., Chem. Commun., 1984, 1287. c) J. K. Stille, Angew. Chem., Int. Ed. Engl., 1986, 25, 508. d) M. Somei, F. Yamada, and K. Naka, Chem. Pharm. Bull., 1987, 35, 1322; M. Somei, H. Amari, and Y. Makita, ibid., 1986, 34, 3971; M. Somei, T. Hasegawa, and C. Kaneko, Heterocycles, 1983, 20, 1983.
16. F. Yamada, T. Hasegawa, M. Wakita, M. Sugiyama, and M. Somei, Heterocycles, 1986, 24, 1223.
17. R. M. Acheson, "New Trends in Heterocyclic Chemistry," ed. by R. B. Mitra, N. R. Ayyangar, V. N. Gogte, R. M. Acheson, and N. Cromwell, Elsevier Scientific Pub. Co. New York, 1979, pp. 1—33; R. M. Acheson, P. G. Hunt, D. M. Littlewood, B. A. Murrer, and H. E. Rosenberg, J. Chem. Soc., Perkin Trans. 1, 1978, 1117.
18. T. L. Gilchrist and P. D. Kemmitt, Tetrahedron, 1997, 53, 4447; H. von Dobeneck, D. Wolkenstein, and G. Blankenstein, Chem. Ber., 1969, 102, 1347.

