Synthesis of（－）－trachelanthamidine using a single electron transfer reaction in

1，4－dimethylpiperazine

メタデータ	言語：eng
	出版者：
	公開日：2017－10－04
	キーワード（Ja）：
	キーワード（En）：
	作成者：
	メールアドレス：
	所属：
hRL	https：／／doi．org／10．24517／00015291

This work is licensed under a Creative Commons Attribution－NonCommercial－ShareAlike 3.0
International License．

Synthesis of (-)-trachelanthamidine using a single electron transfer reaction in 1,4-dimethylpiperazine

Hiroyuki Ishibashi*, Masamichi Sasaki, Tsuyoshi Taniguchi
Division of Pharmaceutical Sciences, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan

Abstract

Synthesis of (-)-trachelanthamidine, one of pyrrolizidine alkaloids, has been achieved by using a single electron transfer reaction of 2-(2-acetoxyethenyl)- N-(trichloroacetyl)pyrrolidine in boiling 1,4-dimethylpiperazine as the key step.

[^0]
1. Introduction

We previously reported that N-allylic trichloroacetamides $\mathbf{1}$ underwent radical cyclization in boiling 1,4-dimethylpiperazine to give 5-membered lactams 3 in good yields. ${ }^{1}$ This cyclization can be explained as proceeding via a single electron transfer (SET) reaction from the nitrogen atom of 1,4-dimethylpiperazine used as a solvent to the substrates $\mathbf{1}$ followed by an elimination of chloride anion to give radical 2. This method is highly promising for the following reasons: 1) the reaction is completed in a very short time (usually within 15 min), 2) 1,4-dimethylpiperazine used as a solvent can be easily removed by an evaporator, and 3) a combination of a radical initiator such as azobis(isobutyronitrile) (AIBN) and a hydrogen atom source such as $\mathrm{Bu}_{3} \mathrm{SnH}$ is not required for this radical cyclization.

Scheme 1. Radacal cyclization of $\mathbf{1}$ in 1,4-dimethylpiperazine to give 3.

We applied this method to the synthesis of (-)-trachelanthamidine (14), ${ }^{2}$ one of the pyrrolizidine alkaloids, ${ }^{3}$ from L-prolinol [(S)-(+)-2-pyrrolidinemethanol]. We report herein the results of work in this area.

2. Results and discussion

2.1. Attempt to cyclize \boldsymbol{N}-trichloroacetyl derivative 9 in boiling $\mathbf{1 , 4}$-dimethylpiperazine

We initiated our investigation by examining the cyclization of trichloroacetamide 9 . Synthesis of 9 was begun by Julia olefination between aldehyde 5, prepared by Swern oxidation of $\mathbf{4}$, and α-benzyloxy sulfone $\mathbf{6}^{4}$ to give alkene 7. N-Deprotection of compound $\mathbf{7}$ followed by N-trichloroacetylation of the resultant $\mathbf{8}$ gave $9 .{ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{9}$ showed it to be a mixture of E and Z isomers in a ratio of ca. 1:2.

Scheme 2. Preparation and attempted radical cyclization of 9.

Heating of compound $\mathbf{9}$ in boiling 1,4-dimethylpiperazine, however, gave no cyclization product after 72 h of heating. This result is particularly surprising in view of the previous result that compound $\mathbf{1}$ gave cyclization product $\mathbf{3}$ in good yield. We then turned our attention to
compound 11.

2.2. Synthesis of (-)-trachelanthamidine using a single electron transfer reaction of N -trichloroacetyl derivative 11 in boiling 1,4-dimethylpiperazine

Compound $\mathbf{1 1}$ having an acetoxy alkene was easily prepared by acid hydrolysis of compound $\mathbf{9}$ followed by treatment of the resulting aldehyde $\mathbf{1 0}$ with acetic anhydride. ${ }^{5}{ }^{1} \mathrm{H}$ NMR spectra of 11 showed it to be a mixture of E and Z isomers in a ratio of ca. 1:1.

We were delighted to find that compound $\mathbf{1 1}$ gave the desired cyclization product $\mathbf{1 2}$ in 52% yield by heating in 1,4-dimethylpiperazine for 15 min . ${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{1 2}$ showed it to be a single stereoisomer.

Scheme 3. Synthesis of (-)-trachelanthamidine (14) using radical cyclization of $\mathbf{1 1 .}$

Dichlorine atoms of compound $\mathbf{1 2}$ were removed by catalytic hydrogenolysis, quantitatively.

Finally, reduction of both the acetoxy group and the carbonyl group of lactam $\mathbf{1 3}$ by LiAlH_{4} furnished (-)-trachelanthamidine (14) in 86% yield: $[\alpha]_{D}-13.2$ (c 0.72, EtOH), ${ }^{6}$ lit. ${ }^{7}[\alpha]_{D}-13.8$ (c 1.28, EtOH), lit. ${ }^{8}[\alpha]_{D}-13.5$ (c 2.0, EtOH).

3. Conclusion

We have achieved a short synthesis of (-)-trachelanthamidine (14) from L-prolinol by using single electron transfer (SET) reaction of compound $\mathbf{1 1}$ in boiling 1,4-dimethylpiperazine. It is still obscure why no radical cyclization product can be obtained by reaction of trichloroacetyl derivative $\mathbf{9}$ in boiling 1,4-dimethylpiperazine. The benzyloxy group in $\mathbf{9}$ is apparently more electron-rich than is an acetoxy group in 11. It can therefore be presumed that the electron density of the alkenic bond plays an important role in effecting the single electron transfer (SET) reaction in 1,4-dimethylpiperazine. Elucidation of the mechanism of this SET reaction must await further experiments.

4. Experimental

4.1. General

Infrared (IR) spectra were recorded on a Shimadzu FTIR-8100 spectrophotometer for solutions in CHCl_{3}. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were measured on a JEOL EX 500 (500 MHz) or a JEOL JNM-EX $270(270 \mathrm{MHz})$ spectrometer. Chemical shifts (δ) quoted are
relative to tetramethylsilane. High-resolution mass spectra (HRMS) were obtained with a JEOL JMS-SX-102A mass spectrometer. Column chromatography was carried out on silica gel 60N (Kanto Kagaku Co., Ltd., spherical, neutral, 63-210 $\mu \mathrm{m}$) or on alumina 90 (Merck, neutral, 63-200 $\mu \mathrm{m}$) under pressure.

4.2. 2-(2-Benzyloxyethenyl)-N-(tert-butoxycarbonyl)pyrrolidine (7)

To a mixture of $5(966 \mathrm{mg}, 5.00 \mathrm{mmol})$, prepared by Swern oxidation of $4,{ }^{9}$ and α-benzyloxy sulfone $6(1.74 \mathrm{~g}, 5.46 \mathrm{mmol})$ in THF (50 mL) was added a 1.05 M solution of LiHMDS in THF ($10.4 \mathrm{~mL}, 10.9 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$ over a period of 5 min , and the mixture was stirred at room temperature for 30 min . The reaction mixture was poured into a saturated aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with AcOEt. The organic phase was washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated. The residue was chromatographed on silica gel (hexane/AcOEt, 19:1) to give $7(918 \mathrm{mg}, 61 \%, E: Z=1: 2)$ as a pale yellow oil. $[\alpha]_{\mathrm{D}}{ }^{24}+17.2\left(c 0.39, \mathrm{CHCl}_{3}\right) ; \operatorname{IR}\left(\mathrm{CHCl}_{3}\right) v$ 1660, $1680 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.43(9 \mathrm{H}, \mathrm{s}) .1 .66-2.13(4 \mathrm{H}, \mathrm{m}), 3.37(2 \mathrm{H}, \mathrm{br} \mathrm{s})$, 4.19, 4.44 (total 1 H , both br s), 4.70-4.85 (1H, m), 4.72, 4.77 (total 2H, both s), 5.99, 6.45 (total 1 H , both br s), $7.30-7.38$ ($5 \mathrm{H} . \mathrm{m}$); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 28.51,28.52,52.6,71.2,73.8$, 78.8, 78.9, 127.3, 127.5, 127.8, 127.9, 128.4, 128.5, 137.0, 147.7; HRMS calcd for $\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{NO}_{3}$: 303.1835. Found: 303.1823

4.3. 2-(2-Benzyloxyethenyl)pyrrolidine (8)

To a solution of $7(300 \mathrm{mg}, 0.989 \mathrm{mmol})$ and 2,6-lutidine ($318 \mathrm{mg}, 2.97 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$
$(10 \mathrm{~mL})$ was added trimethylsilyl trifluoromethanesulfonate ($242 \mathrm{mg}, 1.09 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$, and the mixture was stirred at the same temperature for 10 min . The reaction mixture was diluted with water and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic phase was washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated. The residue was chromatographed on silica gel $\left(\mathrm{CHCl}_{3} / \mathrm{MeOH} / \mathrm{Et}_{3} \mathrm{~N}, 20: 1: 1\right)$ to give $8(184 \mathrm{mg}, 92 \%, E: Z=1: 2)$ as a pale yellow oil. $[\alpha]_{\mathrm{D}}{ }^{25}$ $-7.4\left(c 0.39, \mathrm{CHCl}_{3}\right) ; \operatorname{IR}\left(\mathrm{CHCl}_{3}\right) v 1655,1665 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.32-1.46$, 1.70-1.85, 1.87-1.98 (total 5H, all m), 2.82-2.88 (1H, m), 3.00-3.06 (1H, m), $3.44(1 / 3 H, q, J=$ $7.9 \mathrm{~Hz}), 4.00(2 / 3 \mathrm{H}, \mathrm{d}, J=7.9 \mathrm{~Hz}), 4.74(2 / 3 \mathrm{H}, \mathrm{dd}, J=7.9,6.7 \mathrm{~Hz}), 4.72(1 / 3 \times 2 \mathrm{H}, \mathrm{s}), 4.79(2 / 3$ $\times 2 \mathrm{H}, \mathrm{s}), 4.91(1 / 3 \mathrm{H}, \mathrm{dd}, J=12.2,7.9 \mathrm{~Hz}), 6.04(2 / 3 \mathrm{H}, \mathrm{d}, J=6.7 \mathrm{~Hz}), 6.50(1 / 3 \mathrm{H}, \mathrm{d}, 12.2 \mathrm{~Hz})$, 7.28 ($5 \mathrm{H}, \mathrm{m}$); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 25.2,25.3,32.6,33.1,46.2,53.3,57.6,71.1,73.8$, 107.6, 110.8, 127.3, 127.6, 127.9, 128.4, 136.9, 137.4, 145.3, 146.9 ; HRMS calcd for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{NO}: 203.1310$. Found: 203.1308.

4.4. 2-(2-Benzyloxyethenyl)- N -(trichloroacetyl)pyrrolidine (9)

To a solution of $\mathbf{8}(1.34 \mathrm{~g}, 6.59 \mathrm{mmol})$ and triethylamine ($1.00 \mathrm{~g}, 9.89 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(65$ mL) was added trichloroacetyl chloride ($1.44 \mathrm{~g}, 7.91 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$, and the mixture was stirred at the same temperature for 10 min . The reaction mixture was diluted with water and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic phase was washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated. The residue was chromatographed on silica gel (hexane/AcOEt, 13:1) to give 9 ($2.19 \mathrm{mg}, 95 \%$) as a pale yellow oil. $[\alpha]_{\mathrm{D}}{ }^{25}+2.7\left(c \quad 0.8, \mathrm{CHCl}_{3}\right)$; IR $\left(\mathrm{CHCl}_{3}\right) v 1665 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 1.71-2.20(4 \mathrm{H}, \mathrm{m}), 3.78-3.83(1 \mathrm{H}, \mathrm{m}), 3.98-4.03(1 \mathrm{H}, \mathrm{m}), 4.44(2 / 3 \mathrm{H}, \mathrm{t}, J=7.3 \mathrm{~Hz})$,
$4.64(1 / 3 \mathrm{H}, \mathrm{br} \mathrm{s}), 4.74(1 / 3 \mathrm{H} \times 2 \mathrm{H}, \mathrm{s}), 4.76-4.78(1 / 3 \mathrm{H}, \mathrm{m}), 4.84(2 / 3 \times 2 \mathrm{H}, \mathrm{AB}$ q, $J=12.2 \mathrm{~Hz})$, $5.00(2 / 3 \mathrm{H}, \mathrm{dd}, J=13.4,7.3 \mathrm{~Hz}), 6.10(2 / 3 \mathrm{H}, \mathrm{d}, J=6.7 \mathrm{~Hz}), 6.67(1 / 3 \mathrm{H}, \mathrm{d}, J=12.8 \mathrm{~Hz})$, 7.30-7.38 (5H, m); ${ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}) $\delta 25.1,25.7,31.2,31.4,49.0,49.5,56.8,59.6$, 71.5, 74.1, 94.0, 102.9, 107.1, 127.3, 127.6, 127.85, 127.90, 128.4, 136.7, 137.3, 145.7, 149.9, 158.2, 158.3; HRMS calcd for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{Cl}_{3} \mathrm{NO}_{2}$: 347.0247. Found: 347.0241.

4.5. 2-N-(Trichloroacetyl)pyrrolidineacetaldehyde (10)

To a solution of $9(450 \mathrm{mg}, 1.29 \mathrm{mmol})$ in THF $(26 \mathrm{~mL})$ was added $1 \% \mathrm{HCl}(30 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$, and the mixture was stirred at room temperature for 36 h . The mixture was basified by adding a saturated aqueous solution of NaHCO_{3} and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic phase was washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated. The residue was chromatographed on silica gel (hexane/AcOEt, 5:1) to give 10 ($321 \mathrm{mg}, 96 \%$) as a pale yellow oil. $[\alpha]_{D}{ }^{25}-31.5\left(c 2.1, \mathrm{CHCl}_{3}\right) ; \operatorname{IR}\left(\mathrm{CHCl}_{3}\right) v 1665,1725 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $1.67-1.74(1 \mathrm{H}, \mathrm{m}), 1.90-2.08(2 \mathrm{H}, \mathrm{m}), 2.21-2.28(1 \mathrm{H}, \mathrm{m}), 2.64(1 \mathrm{H}, \mathrm{ddd}, J=17.1,7.9,1.2 \mathrm{~Hz})$, 3.08 ($1 \mathrm{H}, \mathrm{ddd}, J=17.1,4.3,1.8$), 3.78-3.82 ($1 \mathrm{H}, \mathrm{m}$), 4.06-4.10 ($1 \mathrm{H}, \mathrm{m}$), 4.51-4.56 (1H, m), $9.79(1 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 25.3,30.1,47.0,49.8,56.3,93.4,159.1,199.5$; HRMS calcd for $\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{Cl}_{3} \mathrm{NO}_{2}$: 256.9778. Found: 256.9772.

4.6. 2-(2-Acetoxyethenyl)- N-(trichloroacetyl)pyrrolidine

A mixture of $\mathbf{1 0}$ ($40.0 \mathrm{mg}, 0.155 \mathrm{mmol}$), triethylamine ($31.0 \mathrm{mg}, 0.309 \mathrm{mmol}$), potassium
acetate ($1.5 \mathrm{mg}, 0.0155 \mathrm{mmol}$) and acetic anhydride ($324 \mathrm{mg}, 3.17 \mathrm{mmol}$) was heated at $120^{\circ} \mathrm{C}$ for 1 h . After cooling to room temperature, the reaction mixture was diluted with water and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic phase was washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated. The residue was chromatographed on silica gel (hexane/AcOEt, 8:1) to give $\mathbf{1 1}$ (27.6 mg, 59\%) as a colorless oil. IR $\left(\mathrm{CHCl}_{3}\right) v 1660,1755 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($270 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.72-1.83(1 \mathrm{H}, \mathrm{m}), 1.95-2.23(3 \mathrm{H}, \mathrm{m}), 2.11,2.19$ (total 3 H , both s$), 3.81-3.90(1 \mathrm{H}, \mathrm{m})$, 3.99-4.09 (1H, m), 4.69-4.73(1/2H, m), 4.82 (1/2H, dd, $J=7.9,6.7), 5.03-5.07$ (1/2H, m), 5.38 ($1 / 2 \mathrm{H}, \mathrm{dd}, J=12.2,7.3 \mathrm{~Hz}$), $7.15(1 / 2 \mathrm{H}, \mathrm{d}, J=6.7 \mathrm{~Hz}), 7.35(1 / 2 \mathrm{H}, \mathrm{d}, J=12.2 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}) $\delta 20.6,20.7,25.1,25.7,30.5,31.1,49.4,49.6,56.3,58.6,93.7,112.5,112.9$, 134.9, 138.1, 158.6, 167.4, 167.7; HRMS calcd for $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{Cl}_{3} \mathrm{NO}_{3}$: 298.9883. Found: 298.9884.

4.7. (1R,8S)-1-Acetoxymethyl-2,2-dichloropyrrolizidin-3-one (12)

A solution of $\mathbf{1 1}(42.5 \mathrm{mg}, 0.14 \mathrm{mmol})$ in N, N '-dimethylpiperazine (2 mL) was heated at reflux for 15 min. After cooling to room temperature, the reaction mixture was diluted with water and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic phase was washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated. The residue was chromatographed on silica gel (hexane/AcOEt, 5:1) to give $12(19.5 \mathrm{mg}, 52 \%)$ as a pale yellow oil. $[\alpha]_{\mathrm{D}}{ }^{25}-34.6\left(c 0.72, \mathrm{CHCl}_{3}\right)$; $\operatorname{IR}\left(\mathrm{CHCl}_{3}\right) v 1725 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.50-1.58(1 \mathrm{H}, \mathrm{m}), 2.10-2.25(3 \mathrm{H}, \mathrm{m}), 2.11(3 \mathrm{H}, \mathrm{s}), 2.77(1 \mathrm{H}, \mathrm{dd}$, $J=13.7,7.8 \mathrm{~Hz}), 3.26-3.30(1 \mathrm{H}, \mathrm{m}), 3.55-3.61(1 \mathrm{H}, \mathrm{m}), 3.67(1 \mathrm{H}, \mathrm{m}, J=14.6,8.9 \mathrm{~Hz})$, 4.49-4.57 (2H, m); ${ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}) $\delta 20.7,26.5,30.4,41.9,58.1,61.41,61.45$,
86.8, 164.5, 170.5; HRMS calcd for $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{Cl}_{2} \mathrm{NO}_{3}$: 265.0273. Found: 265.0256.

4.8. (1R,8S)-1-(Acetoxymethyl)pyrrolizidin-3-one (13)

A solution of 12 ($17.0 \mathrm{mg}, 0.064 \mathrm{mmol}$) in EtOH (2 mL) was vigorously stirred under H_{2} atmosphere at room temperature in the presence of $10 \% \mathrm{Pd} / \mathrm{C}(2 \mathrm{mg})$ and NaOAc ($13 \mathrm{mg}, 0.16$ mmol) for 4 d . The reaction mixture was filtered through celite and the filtrate was concentrated. The residue was chromatographed on silica gel (hexane/AcOEt, 1:3) to give $\mathbf{1 3}$ (12.6 mg, 100\%) as a colorless oil. $[\alpha]_{\mathrm{D}}{ }^{25}-27.3\left(c 0.39, \mathrm{CHCl}_{3}\right)$; IR $\left(\mathrm{CHCl}_{3}\right) v 1680,1740$ $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.39-1.50(1 \mathrm{H}, \mathrm{m}), 2.02-2.19(3 \mathrm{H}, \mathrm{m}), 2.08(3 \mathrm{H}, \mathrm{s})$, 2.41-2.51 (1H, m), 2,54-2.58 (2H, m), $3.06(1 \mathrm{H}, \mathrm{ddd}, J=12.2,9.1,3.7 \mathrm{~Hz}), 3.56(1 \mathrm{H}, \mathrm{dt}, J=$ $10.6,7.9 \mathrm{~Hz}), 3.66-3.70(1 \mathrm{H}, \mathrm{m}), 4.11(1 \mathrm{H}, \mathrm{dd}, J=11.0,7.3 \mathrm{~Hz}), 4.20(1 \mathrm{H}, \mathrm{dd}, J=11.0,5.5 \mathrm{~Hz})$; ${ }^{13}{ }^{1} \mathrm{CNR}\left(67.8 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 20.8,26.8,31.4,38.3,41.1,41.2,65.0,65.3,170.7,173.0$; HRMS calcd for $\mathrm{C}_{10} \mathrm{H}_{15} \mathrm{NO}_{3}$: 197.1052. Found: 197.1049.

4.9. (1R,8S)-1-Pyrrolizidinemethanol (Trachelanthamidine) (14)

To a solution of $\mathbf{1 3}$ ($90.0 \mathrm{mg}, 0.46 \mathrm{mmol}$) in THF (5 mL) was added lithium aluminum hydride ($70 \mathrm{mg}, 1.83 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$, and the mixture was heated at reflux for 3 h . After cooling to room temperature, water $(0.07 \mathrm{~mL}), 10 \% \mathrm{NaOH}(0.1 \mathrm{~mL})$ and water $(0.21 \mathrm{~mL})$ were added successively, and the mixture was further stirred for 30 min . The mixture was filtered through celite and the filtrate was concentrated. The residue was chromatographed on alumina
$\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}, 5: 1\right)$ to give $\mathbf{1 4}(55.0 \mathrm{mg}, 86 \%)$ as a pale yellow oil. $[\alpha]_{\mathrm{D}}{ }^{25}-13.2$ (c 0.72 , CHCl_{3}), lit. ${ }^{7}[\alpha]_{\mathrm{D}}-13.8$ (c 1.28, EtOH), lit. ${ }^{8}[\alpha]_{\mathrm{D}}-13.5$ (c 2.0, EtOH), ${ }^{1} \mathrm{H}$ NMR (270 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 1.50-2.05(7 \mathrm{H}, \mathrm{m}), 2.48-2.64(2 \mathrm{H}, \mathrm{m}), 2.95(1 \mathrm{H}, \mathrm{dt}, J=10.5,6.3 \mathrm{~Hz}), 3.13(1 \mathrm{H}, \mathrm{ddd}$, $J=10.1,7.1,3.5 \mathrm{~Hz}$), 3.22 (1H, dd, $J=13.2,6.3 \mathrm{~Hz}$), 3.59 (2H, d, 6.3 Hz), 4.05-4.25 (1H, br); ${ }^{13} \mathrm{C}$ NMR ($67.8 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 25.6,29.9,31.9,48.3,54.4,54.7,64.9 .67 .6$; HRMS calcd for $\mathrm{C}_{8} \mathrm{H}_{15} \mathrm{NO}: 141.1154$. Found: 141.1154 .

Acknowledgements

This work was supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

References and notes

1. Ishibashi, H.; Haruki, S.; Uchiyama, M.; Tamura, O.; Matsuo, J. Tetrahedron Lett. 2006, 47, 6263-6266.
2. For recent synthesis of (-)-trachelanthamidine, see: (a) Craig, D.; Hyland, C. J. T.; Ward, S. E. Synlett 2006, 2142-2144. (b) Chang, M.-Y.; Wu, D.-C.; Chang, N.-C. Heterocycles 2005, 65, 2965-2971. (c) Kim, S.-H.; Kim, S.-I.; Lai, S.; Cha, J. K. J. Org. Chem. 1999, 64, 6771-6775. (d) Konno, H.; Kishi, M.; Hiroya, K.; Ogasawara, K. Heterocycles 1998, 49, 33-37. (e) Knight, D. W.; Share, A. C.; Gallagher, P. T. J. Chem. Soc., Perkin Trans. 1

1997, 2089-2097. (f) Ishibashi, H.; Uemura, N.; Nakatani, H.; Okazaki, M; Sato, T.; Nakamura, N.; Ikeda, M. J. Org. Chem. 1993, 58, 2360-2368.
3. For reviews on the synthesis of pyrrolizidine alkaloids, see: (a) Liddell, J. R. Nat. Prod. Rep. 2000, 17, 455-462. (b) Ikeda, M.; Sato, T.; Ishibashi, H. Heterocycles 1988, 27, 1465-1487.
4. Surprenant, S.; Chan, W. Y.; Berthelette, C. Org. Lett. 2003, 5, 4851-4854
5. Simmons, D. P.: Reichlin, D.; Skuy, D. Helv. Chim. Acta 1988, 71, 1000-1004.
6. A partial racemization might occur in Swern oxidation of alcohol $\mathbf{4}$ to give aldehyde $\mathbf{5}$.
7. Tsuda, Y.; Marion, L. Can. J. Chem. 1963, 41, 1919-1923.
8. Robins, D. J.; Sakdarat, S. J. Chem. Soc., Perkin Trans. 1 1981, 909-913.
9. Reed, P. E.; Katzenellenbogen, J. A. J. Org. Chem. 1991, 56, 2624-2634.

[^0]: * Corresponding author. Tel.: +81 76234 4474. Fax: +81 762344476. .

 E-mail address: isibasi@p.kanazawa-u.ac.jp

