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ABSTRACT 

Purpose: Methotrexate (MTX) causes dose-limiting gastrointestinal toxicity due to 

exposure of intestinal tissues, and is a substrate of the multidrug resistance-associated 

protein (MRP) 1. Here we examine the involvement of MRP1, which is reported to be 

highly expressed in the proliferative crypt compartment of the small intestine, in the 

gastrointestinal toxicity of MTX. 

Methods: MTX was intraperitonealy administered to mrp1 gene knockout (mrp1(-/-)) and 

wild-type (mrp1(+/+)) mice. Body weight, food and water intake were monitored, intestinal 

histological studies and pharmacokinetics of MTX were examined. 

Results: mrp1(-/-) mice more severely decreased body weight, food and water intake than 

mrp1(+/+) mice. Almost complete loss of villi throughout the small intestine in mrp1(-/-) mice 

was observed, whereas the damage was only partial in mrp1(+/+) mice. Plasma concentration 

and biliary excretion profiles of MTX were similar in mrp1(-/-) and mrp1(+/+) mice, though 

accumulation of MTX in immature proliferative cells isolated from mrp1(-/-) mice was much 

higher compared to mrp1(+/+) mice. Immunostaining revealed localization of Mrp1 in 

plasma membrane of the intestinal crypt compartment in mrp1(+/+) mice, but not in mrp1(-/-) 

mice. 

Conclusion: Mrp1 determines the exposure of proliferative cells in the small intestine to 

MTX, followed by gastrointestinal toxicity. 

 

KEY WORDS: MRP1; methotrexate; transporters; toxicity; intestinal crypt compartment 

cells 
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INTRODUCTION 

Methotrexate (MTX) has been widely used for the treatment of childhood acute 

leukemia and rheumatoid arthritis. The clinical application of this drug is restricted by 

dose-limiting toxicity: myelosuppression and gastrointestinal toxicity. The former side 

effect can be ameliorated by coadministration with G-CSF (1). However, although it was 

reported that the intestinal toxicity may be potentiated by prolonged retention of MTX 

because of its enterohepatic circulation (2,3), the mechanism(s) involved in the toxicity 

remain to be fully clarified. 

In order to understand the disposition of MTX in the body, the membrane 

transport process must be considered. MTX is one of those therapeutic agents whose 

pharmacokinetics is predominantly governed by xenobiotic transporters. For example, both 

multidrug resistance associated protein 2 (Mrp2/Abcc2) and breast cancer resistance protein 

(BCRP/ABCG2) are suggested to be involved in the biliary excretion of MTX (4,5), and 

organic anion transporters (OAT1/SLC22A6 and OAT3/SLC22A8) are proposed to be 

involved in basolateral uptake of MTX in the kidney (6). However, though several 

transporters have been accepted to influence MTX disposition, little information is 

available about the relation between intestinal transporter(s) and the gastrointestinal toxicity 

of MTX.  

The small intestine plays a major role in the absorption of various nutrients, and 

transporters responsible for the uptake of nutrients, such as glucose, vitamins and 
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oligopeptides, are expressed on apical membranes of epithelial cells. Among them, 

oligopeptide transporter (PEPT1/SLC15A1) has been proposed to be involved not only in 

gastrointestinal absorption of di- and tripeptides, but also in that of various therapeutic 

agents, including ß-lactam antibiotics (7,8). Similarly, both reduced folate carrier 

(RFC/SLC19A1) and SLC46A1, originally identified as a heme carrier protein (HCP1), 

were reported to be expressed in small intestine, and both recognize folate and MTX (9,10). 

RFC was suggested to be partly involved in the influx of MTX in a rat IEC-6 intestinal 

epithelial cell line (11), while HCP1/SLC46A1 was recently demonstrated to mediate 

intestinal uptake of MTX (12). 

In addition to such influx transporters, various types of xenobiotic transporters 

have been suggested to pump out therapeutic agents from the intestinal cells. For example, 

P-glycoprotein (P-gp/ABCB1) and Mrp2 limit the oral bioavailability of certain ß-blockers 

and new quinolone antibiotics by extruding these drugs into the intestinal tract (13,14). 

Both Mrp2 and Mrp3/Abcc3 are expressed in the small intestine, and accept MTX as a 

substrate (15,16). Thus, the exposure of intestinal cells to MTX probably depends on 

membrane permeation of MTX mediated by these transporters. 

It should be noted, however, that all the transporters mentioned above are 

localized in the absorptive epithelial cells of the small intestine. Transporter(s) expressed in 

proliferative cells, such as small intestinal stem cells, which differentiate into absorptive 

cells, may also play a role in determining exposure to MTX, and consequently the intestinal 

toxicity of MTX, since mucotitis may be one of the causes of late-onset diarrhea provoked 
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by MTX. In the present study, we focused on the possible role of Mrp1, which accepts 

MTX as a substrate (16), in the intestinal toxicity of MTX. Mrp1 has been reported to be 

mainly localized in proliferative cells in crypts (17), and this led us to the hypothesis that 

Mrp1 is involved in active efflux of MTX from such proliferative cells as a defensive 

mechanism to protect the cells against toxicity arising from MTX treatment. To test this 

hypothesis, we compared the intestinal toxicity induced by MTX treatment in wild-type 

(mrp1(+/+)) and mrp1 gene knockout (mrp1(-/-)) mice in vivo.  To clarify how Mrp1 is 

involved in the toxicity, we further analyzed the involvement of Mrp1 in the disposition of 

MTX. 
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MATERIALS AND METHODS 

 

Materials and Animals 

 MTX and diaminobenzidine were purchased from Wako Pure Chemical Industries 

(Osaka, Japan). Bromodeoxyuridine, anti-BrdU antibody and aminopterin were from Sigma 

(St. Louis, MO). Anti-rat IgG and anti-mouse IgG antibodies were purchased from 

Invitrogen (Carlsbad, CA). Anti-MRP1 antibody (MRPr1) was obtained from ALEXIS 

(Lausen, Switzerland), anti-mouse IgG peroxidase-linked antibody from Amersham 

(Budkinghamshire, England), anti-Na+/K+-ATPase antibody from Upstate Biotechnology 

(Lake Placid, NY). [3H]Methotrexate (1.2 TBq/mmol) was from from Moravek 

Biochemicals Inc. (Brea, CA). [14C]Inulin (89 MBq/g) was from PerkinElmer Life Sciences 

(Boston, MA). 

 Five- to six-week-old male FVB (mrp1(+/+)) and FVB/mrp1(-/-) mice, originally 

generated by Wijnholds et al. (18), were purchased from CLEA Japan Inc. (Tokyo, Japan) 

and Taconic (Germantown, NY, USA), respectively. Animal studies were performed in 

accordance with the Guide for the Care and Use of Laboratory Animals in Takara-machi 

Campus of Kanazawa University. 

 

Experimental Schedules and Diarrheal Scores 

 MTX (0, 25, 50 mg/kg/day) was intraperitoneally administered to mice daily for 4 

successive days. Body weight and food intake were measured daily. Diarrhea that started on 
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Day 6 was considered to be delayed onset diarrhea. The severity of this delayed onset 

diarrhea was scored as follows: - normal stools, + wet and unformed stools, ++ wet stools 

with perianal staining of the coat (19,20). After the consecutive i.p. administration of MTX 

(0 or 50 mg/kg), blood was sampled from the cervical vein and plasma was obtained by 

centrifugation at 2500 g for 10 min at 4°C in a microcentrifuge (Kubota 1700, Kubota, 

Tokyo, Japan). Aspartate transaminase (AST), alanine transaminase (ALT), blood urea 

nitrogen (BUN) and creatinine level in plasma (Cre) were determined at Day 4. These 

parameters were determined by Mitsubishi Chemical Medicine (Tokyo, Japan). 

 

Histological Studies and Immunostaining 

 Mice were euthanized, and the whole intestines were removed and equally 

divided into upper, middle and lower segments. Each intestinal segment was fixed in 4% 

paraformaldehyde for 4 h, embedded in paraffin, sectioned and stained on histological 

slides with H&E or anti-BrdU antibodies. The small intestine was also removed, quickly 

immersed in liquid nitrogen, and stored at -80°C until use. The frozen tissue was then 

sectioned with a cryostat, and the sections were mounted on glass slide and fixed in ice-cold 

acetone for 10 min. They were then incubated with anti-MRP1 antibody (MRPr1) at 4°C 

overnight and further incubated with secondary antibody for 1 hr at room temperature. 

Finally, they were mounted in VECTASHIELD mounting medium with DAPI (Vector 

Laboratories, Burlingame, CA) to fix the sample and to stain nuclei. The specimens were 
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examined with an Axiovert S 100 microscope (Carl Zeiss, Jena, Germany), and images 

were captured with an AxioCam (Carl Zeiss). 

 

Pharmacokinetic Studies 

 Mice were lightly anesthetized with diethylether, and the gall bladder was 

cannulated with polyethylene tubing (SP10, Natsume, Tokyo, Japan). MTX (50 mg/kg) was 

intraperitoneally administered. Blood samples (20 µL) were taken at 15, 30, 60, 120, 150 

and 180 min after MTX administration from the tail vein of each mouse and centrifuged to 

obtain plasma. Bile samples were collected in polyethylene tubes at 5, 10, 20, 30, 45, 60, 

90, 120 and 150 min after the drug administration. 

 Non-compartmental parameters, area under the curve (AUC) and area under the 

moment curve (AUMC), were calculated by the linear trapezoidal method. Apparent total 

clearance (CLtot/F), the volume of distribution in the terminal phase (Vz/F) mean residence 

time and biliary clearance (CLbile) were obtained from the following equations: 

 

 CLtot/F = Dose/AUC     Eq (1) 

  AUMC/AUC = MRT     Eq (2) 

 Vz/F = Dose/AUC/k     Eq (3) 

 CLbile = X0-150/AUC0-150     Eq (4) 

 

 8



where F is the intraperitoneal bioavailability, k is the elimination rate constant in the 

terminal phase, X0-150 is the MTX amount excreted into the bile from time 0 to 150 min and 

AUC0-150 is the area under the curve from time 0 to 150 min. 

 

Transport Experiments in Isolated Epithelial Cells 

 Isolation and fractionation of mouse small intestinal epithelial cells followed the 

reported method and the composition of the transport buffer was also as reported (21, 22). 

Briefly, the small intestine was surgically removed, cooled in ice-cold buffered saline (21), 

everted over wooden applicator sticks and washed thoroughly in the saline including 0.1% 

BSA. Stepwise stripping of epithelial cells from the everted intestines was done by gentle 

agitation in citrate buffer (96 mM NaCl, 1.5 mM KCl, 27 mM sodium citrate, 8 mM 

KH2PO4, 7 mM glucose, 0.1% BSA, pH 7.3) varying the length of incubation time (fraction 

#1 and 2) at 37 °C. Fraction #3 and 4 were obtained by additional agitation in phosphate 

buffer containing 1 mM EDTA, 0.5 mM dithiothreitol, 7 mM glucose and 0.1% BSA again 

varying the length of incubation time at 37 °C. Fractions #1 and #4 mainly contained 

differentiated and undifferentiated cells, respectively (21, 22), and this was confirmed by 

higher alkaline phosphatase (ALP) activity in fraction #1 than that in fraction #4 (21, 22). 

In the present study, we followed the similar methodology and confirmed that ALP 

activities in fractions #1, #2, #3 and #4 were 100 ± 5.3, 18.1 ± 1.2, 10.8 ± 1.2 and 7.00 ± 

0.5 % of maximum for mrp1(+/+) mice, and 100 ± 3.1, 37.8 ± 3.0, 17.7 ± 1.3 and 5.88 ± 

0.4 % of maximum for mrp1(-/-) mice, respectively. 
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 Isolated epithelial cells were incubated in the transport buffer containing 

[3H]MTX and [14C]inulin. At the designated times, aliquots of the mixture were withdrawn, 

and the cells were separated from the transport medium by centrifugal filtration through a 

layer of a mixture of silicon oil (SH550; Toray Dow Corning, Tokyo, Japan) and liquid 

paraffin (Wako Pure Chemicals) with a density of 1.015 on top of 3 M KOH solution. After 

solubilization of each cell pellet in KOH, the cell lysate was neutralized with HCl. The 

associated radioactivity was measured with a liquid scintillation counter, LSC-5100 (Aloka, 

Tokyo, Japan), with Clearsol I (Nacalai Tesque, Inc., Kyoto, Japan) as the scintillation 

fluid. Cellular protein content was determined according to the method of Bradford by 

using a Bio-Rad protein assay kit (Hercules, CA) with bovine serum albumin as the 

standard. 

 

Determination of MTX by HPLC 

 The HPLC analysis for MTX was performed according to the previous report 

(23), using a COSMOSIL 5C18-PAQ (150 x 4.6 mm) column (Nacalai Tesque, Kyoto, 

Japan). The mobile phase was acetonitrile/0.05 M phosphate buffer (pH 6.9) (5:95) (v/v) and 

the flow rate was 1.0 mL/min. The UV detector (UV-2075 Plus, Jasco, Tokyo, Japan) was 

operated at a wavelength of 303 nm. 

 

Statistical Analysis 
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 Statistical analysis was performed by using Student’s t-test with p<0.05 as the 

criterion of significance. 
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RESULTS 

 

Association of mrp1 Gene with Intestinal Toxicity Evoked by MTX 

 Intestinal toxicity caused by anticancer drugs is characterized by loss of body 

weight, anorexia and diarrhea. First, monitoring of the body weight was performed after 

MTX administration. In the control groups, body weight of both mrp1(+/+) and mrp1(-/-) mice 

gradually increased up to Day 7 (Fig. 1A). At 25 mg/kg MTX, no change was observed in 

the body weight, food intake or water intake between mrp1(+/+) and mrp1(-/-) mice up to 7 

days. However, there was a marked difference between the two strains in the effect of 50 

mg/kg of MTX (Fig. 1A): whereas both mrp1(+/+) and mrp1(-/-) mice treated with 50 mg/kg 

MTX lost about 5% of their body weight by Day 5, mrp1(+/+) mice showed a recovery of 

body weight by Day 7, but the body weight of mrp1(-/-) mice remained decreased (Fig. 1A). 

Food and water intake of mrp1(-/-) mice was decreased in accordance with the change in 

body weight, and the intake after Day 4 in mrp1(-/-) was lower than in mrp1(+/+)(Fig. 1B, C).  

On Day 7, lethargy, hunched posture and rough coat were observed in all the 

mrp1(-/-) mice treated with 50 mg/kg of MTX, but not in the mrp1(+/+) mice given the same 

dose (data not shown). All the mrp1(-/-) mice treated with 50 mg/kg of MTX exhibited mild 

or severe diarrhea, whereas no diarrhea was observed in mrp1(+/+) mice (Table 1). Thus, 

intestinal toxicity, characterized by loss of body weight, poor feeding and diarrhea, was 

much more severe in mrp1(-/-) mice than in mrp1(+/+) mice, indicating the critical role of 

Mrp1 in gastrointestinal toxicity of MTX. However, it would be possible that the 
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back-crossing to FVB was incomplete and that therefore background effects might not be 

negligible (18). 

Plasma levels of AST, ALT, BUN and Cre in both strains treated with MTX were 

comparable with those in the control groups (Table 1), suggesting that the toxicological 

effects of MTX treatment in both liver and kidney were minimal. 

 

Disposition of MTX after i.p. Administration 

 It was reported that approximately 60% of i.v. administered [3H]MTX was 

excreted into urine, with 35% of the dose being excreted into feces in mice (24). In 

addition, a substantial amount of MTX was excreted into the bile (4,24), and such biliary 

excretion may affect the accumulation of MTX in the small intestine. Therefore, both the 

plasma concentration and biliary excretion of MTX were examined. There was no 

significant difference in the plasma concentration or biliary excretion profile of MTX 

between mrp1(+/+) and mrp1(-/-) mice (Fig. 2). Thus, the difference in intestinal toxicity of 

MTX between two strains cannot be accounted for by a difference in disposition. The 

pharmacokinetic parameters were also similar in the two strains (Table 2).   

 

Histological Changes 

 We focused on the localization of Mrp1 in proliferative cells in the small intestine 

(17), since MTX accumulation in such cells may be responsible for the severe intestinal 

toxicity observed in mrp1(-/-) mice. In order to examine this possibility, the architecture of 
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the small intestinal villi and the proliferation of the intestinal cells were investigated. 

Almost normal structure and BrdU labeling of cells in small intestinal crypts were observed 

in both mrp1(+/+) and mrp1(-/-) mice by Day 3 (Fig. 3A). However, the majority of the 

absorptive cells were severely damaged, with shortened villi and greatly reduced 

BrdU-labeling of cells in mrp1(-/-) mice on Day 4 (Fig. 3A). Such destruction of small 

intestinal tissue was not observed in mrp1(+/+) mice (Fig. 3A). This dramatic difference 

between mrp1(+/+) and mrp1(-/-) mice was also observed in the upper and middle intestines 

(data not shown). None of MTX-treated mrp1(-/-) mice died at least for 7 days. HE staining 

on Day 8 revealed proliferation of crypt cells and crypt reconstitution in mrp1(-/-) (data not 

shown). MTX withdrawal may thus result in no more damage to intestinal cells, followed 

by crypt reconstitution. Hence, toxicity observed in mrp1(-/-) mice may be reversible in the 

present study. 

On the other hand, no prominent damage was observed in the colon of either 

mrp1(+/+) or mrp1(-/-) mice up to 4 days (Fig. 3B), and BrdU labeling of cells in MTX-treated 

mice was similar to that in control mice (Fig. 3B). 

 

Accumulation of MTX in Intestinal Epithelial Cells 

 The severe damage in the small intestine and destruction of crypt and villus 

structure observed in mrp1(-/-) mice treated with MTX led us to further examine the 

possibility of excessive MTX accumulation in the proliferative cells of the small intestine in 

mrp1(-/-) mice. To examine this possibility, we compared the accumulation of MTX in the 
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isolated intestinal epithelial cells of mrp1(+/+) and mrp1(-/-) mice at different stages of 

maturation. Although biliary excretion of MTX may mainly contribute to MTX 

accumulation in small intestine, we cannot estimate the actual concentration of MTX in the 

gastrointestinal tract. Therefore, we first examined the time course of MTX uptake and then 

measured the steady-state accumulation at various concentrations of MTX outside the 

epithelial cells (in transport buffer). In fraction #4, which mainly contained undifferentiated 

cells, steady-state accumulation of MTX (1 µM) were significantly higher in mrp1(-/-) than 

in mrp1(+/+) mice (Fig. 4A). The accumulation of [3H]MTX inside the cells obtained from 

mrp1(-/-) mice was much higher at 20 min than that in cells from mrp1(+/+) mice at all the 

MTX concentrations examined (Fig 4A). In contrast, in fraction #1, the accumulation of 

[3H]MTX in mrp1(-/-) mice was similar to that in mrp1(+/+) mice (Fig. 4B). 

 

Localization of Mrp1 in Small Intestine 

 Although specific Mrp1 localization in epithelial cells in crypts has been reported 

(17), Lorico et al. did not detect Mrp1 in small intestine with western blotting (25). To 

clarify the localization of Mrp1 in the small intestine, we performed immunohistochemical 

analysis using anti-Mrp1 antibody in both mrp1(+/+) and mrp1(-/-) mice. Na+/K+-ATPase was 

localized to the basolateral membrane of enterocyte of both mrp1(+/+) and mrp1(-/-) mice 

(Fig. 4C). On the other hand, Mrp1 was detected in plasma membrane in the crypts of 

mrp1(+/+) mice, but not mrp1(-/-) mice (Fig. 4C). 
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DISCUSSION 

Although transporter(s) expressed in differentiated epithelial cells are thought to 

play a key role in drug absorption (7,8,13-16), little is known about the pharmacological 

and/or toxicological effects of transporter(s) expressed in undifferentiated cells in the small 

intestine. The aim of the present study is to clarify whether Mrp1, which was reported to be 

expressed in proliferative cells of crypts in mice, is involved in the intestinal toxicity 

provoked by MTX in vivo. We found that mrp1(-/-) mice given 50 mg/kg MTX showed a 

decrease of body weight, with decreased intake of food and water (Fig. 1), and developed 

severe diarrhea (Table 1), whereas mrp1(+/+) mice given the same dose did not show such 

severe toxic effects (Fig. 1, Table 1). These data indicate a critical role of Mrp1 in intestinal 

toxicity provoked by MTX. 

At least three hypotheses could explain the severe gastrointestinal toxicity observed in 

mrp1(-/-) mice: (i) Exposure of the small intestine to MTX from either the basolateral or 

apical side is higher in mrp1(-/-) mice than in mrp1(+/+) mice due to the difference in systemic 

elimination of MTX between the two strains. (ii) Accumulation of MTX in the small 

intestinal cells of mrp1(-/-) mice is higher than that in mrp1(+/+) mice, despite the fact that 

exposure from the extracellular space, i.e., biliary concentration and/or plasma 

concentration would be the same in the two strains. (iii) Mrp1 is involved in some other 

(unknown) molecular mechanism(s) relevant to MTX toxicity, other than its intrinsic 

transport function for MTX. The first hypothesis is unlikely because there was no marked 

difference in the plasma disappearance profile of MTX or in any pharmacokinetic 
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parameter between mrp1(+/+) and mrp1(-/-) mice (Table 2). The cumulative biliary excretion 

of MTX was also examined and was slightly higher in mrp1(-/-) mice than in mrp1(+/+) mice, 

but the difference was actually quite small (Fig. 2B). These data suggest that differences in 

systematic exposure and biliary excretion of MTX cannot explain the difference in the 

intestinal toxicity of MTX. Biliary excretion of MTX is at least partly mediated by Mrp2, 

and mRNA for Mrp2 is overexpressed in the liver of mrp1(-/-) mice (4,5,26). However, such 

overexpression does not lead to an increase in MTX excretion (Fig. 2B), probably because 

biliary excretion clearance is close to being plasma-flow-limited (Table 2). 

The second hypothesis may be supported by the data shown in Fig. 3 and Fig. 4. 

Intestinal stem cells in crypts are thought to proliferate and to differentiate into absorptive 

cells and goblet cells (27, 28). Thus, these proliferative cells are the source of all the 

differentiated cells, and the death of such proliferative cells may be a critical factor in 

enteritis induced by MTX. In the present study, on Day 4, BrdU-positive cells were greatly 

reduced in mrp1(-/-) mice, but this was not the case in mrp1(+/+) mice, indicating that MTX 

treatment damaged proliferative cells only in mrp1(-/-) mice in vivo (Fig. 3A). In addition, 

Mrp1 is expressed in the membrane of proliferative cells in mrp1(+/+) mice (Fig. 4C), and in 

accordance with this, [3H]MTX accumulation in the undifferentiated cells obtained from 

mrp1(-/-) mice was much higher than that in the cells from mrp1(+/+) mice (Fig. 4A). Peng et 

al. reported that Mrp1 is highly expressed in proliferative cells of crypts in mouse small 

intestine (17), and this was supported by the immunohistochemical analysis performed in 

the present study (Fig. 4C). The specificity of the immunohistochemical analysis in the 
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present study was supported in the finding that almost no staining was seen in mrp1(-/-) mice 

(Fig. 4C). Therefore, the severe toxicity observed in mrp1(-/-) mice can be partly explained 

by deficiency in Mrp1-mediated MTX-extruding activity in mrp1(-/-) mice, resulting in 

higher accumulation of MTX inside the proliferative cells. It should also be considered that 

the fraction of such proliferative cells would be small in the small intestine, and therefore, 

the MTX concentration observed in the whole intestinal tissues in vivo may not be changed 

in mrp1(-/-) mice. We attempted to measure the intestinal MTX concentration after i.p. 

administration in vivo, but the data exhibited large experimental variation probably because 

of considerable interindividual variability in biliary excretion and subsequent movement of 

MTX inside the intestinal lumen.  

As shown in Fig. 3A, not only the proliferative cells, but also the differentiated 

absorptive cells localized in small intestinal villi were destroyed by MTX in mrp1(-/-) mice. 

This result indicates that our hypothesis, i.e., deficiency in Mrp1-mediated extruding 

function in proliferative cells, cannot entirely explain the whole mechanism of intestinal 

toxicity observed in mrp1(-/-) mice. Mechanisms of MTX-induced enteritis have been 

studied for a long time, and several factors have been proposed: (i) prolonged exposure to 

small intestine caused by enterohepatic circulation of MTX, (ii) production of reactive 

oxygen species stimulated by MTX, (iv) contribution of mucosal immune cells to the 

MTX-induced damage and (iv) protection of crypt and villus epithelium associated with 

Peyer’s patches against the MTX-induced damage and (v) mucositis prevention exerted by 
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mucin, the structural component of mucus layer (2,3,29-32). These factors may also 

contribute to the onset and development of gastrointestinal toxicity of MTX. 

Previous studies have demonstrated the increased gastrointestinal toxicity provoked 

by the administration of etoposide and PMEA in mrp1(-/-) and mrp4(-/-) mice, respectively 

(33, 34). Although they described that the damage to stem cells in basolateral epithelium 

caused oropharyngeal mucosal injury (33), comparison of the drug accumulation between 

wild-type and knock out mice was not investigated. In the present study, intestinal cells 

were successfully fractionated, and the higher accumulation of an anticancer drug in 

proliferative cells of mrp1(-/-) mice was first demonstrated as one of the possible causes for 

the higher gastrointestinal toxicity. Important keys to understand the mechanism of diarrhea 

provoked by anticancer drugs may thus include the concentration of drug in intestinal cells, 

which would be affected by various transporters including Mrp1. 

In addition to Mrp1, Mrp2, Mrp3, Mrp4, P-gp, Bcrp, RFC and HCP are reported to 

be expressed in the small intestine and accept MTX as a substrate (9, 10, 15, 16, 35, 36) 

(Fig. 4D). For example, Mrp2 was shown to be localized on apical membranes of epithelial 

cells, and its expression in upper intestine was higher than that of lower intestine in rats 

(15). Localization (apical or basal) and regional expression (duodenum, jejunum or ileum) 

of these transporters would be important factors for MTX disposition in intestines. In spite 

of so many MTX transporters, however, our present findings indicated extensive 

accumulation of MTX in undifferentiated cells from mrp1(-/-) mice (Fig. 4A) and severe 

gastrointestinal damage observed in mrp1(-/-) mice (Fig. 3A). Additionally, there is no report 
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about crypt localization of other MTX transporters than Mrp1. These suggest that Mrp1 

may control local concentration of MTX in crypt cells, but not absorptive epithelial cells, 

affecting gastrointestinal toxicity provoked by MTX. However, MTX uptake in fraction #4 

exhibited saturation especially for mrp1(-/-) mice (Fig. 4A), but such saturable uptake was 

not so clearly observed in fraction #1 (Fig. 4B), implying different influx transporter(s) for 

MTX between fraction #1 and #4. In addition, if the transporters other than Mrp1 were 

compensatory up/down-regulated in the crypt cells due to the lack of Mrp1 in mrp1(-/-) mice, 

they might also have been involved in the MTX accumulation. Thus, such indirect 

association between Mrp1 and gastrointestinal toxicity of MTX should also be examined by 

further analyses. 

It would be important to understand whether or not cytotoxic effect of MTX is 

specific to small intestinal crypt cells. Up to now, except for intestinal crypt cells, there is 

no information on expression of Mrp1 in undifferentiated cells of other tissues. Etoposide 

induced damage to the mucosa of the oropharyngeal cavity in mrp1(-/-) mice (32). 

Additionally, MTX often causes stomatitis as gastric toxicity. Thus, Mrp1 expressed in 

undifferentiated cells of oropharyngeal mucosal layer may be also involved in toxicity of 

MTX. 

Though severe damage was found in the small intestine, almost normal structure 

was observed in the colon of both mice (Fig. 3). This was unexpected, because of Mrp1 is 

expressed in the colon (17). However, fewer proliferative cells were found in the colon of 

controls (Fig. 3B), and this may be one of the reasons for insensitivity of the colon to MTX 
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treatment. Another possible reason is that MTX retention in the gastrointestinal tract is 

thought to be related to its enterohepatic circulation (2,3). 
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CONCLUSION 

We have obtained the evidence that Mrp1 plays a critical role in the gastrointestinal 

toxicity, especially diarrhea, induced by MTX. In addition to MTX, irinotecan and 

etoposide often cause severe diarrhea in patients (36,37) and it is noteworthy that all these 

anticancer drugs are substrates of Mrp1 (24,38). Therefore, Mrp1 would also contribute to 

diarrhea induced by these anticancer drugs, leading to the necessity of the clinical trial in 

near future to examine the possible unfavorable effect of MRP1 inhibitors on intestinal 

toxicity provoked by the administration of the anticancer drugs. Further study is also 

needed of the effect of genetic and/or functional changes in MRP1 activity on the 

gastrointestinal toxicity of MTX. 

 22



ACKNOWLEDGEMENT 

We thank Ms. Lica Ishida and Mr. Syuichi Yamazaki for technical assistance. This work 

was supported in part by a Grant-in-Aid for Scientific Research provided by the Ministry of 

Education, Science and Culture of Japan and funds from the Kanehara Grant Program 2004 

of the Ichiro Kanehara Foundation (Tokyo, Japan) 

 

 23



REFERENCES 

1. K. Welte, M.A. Bonilla, A.P. Gillio, T.C. Boone, G.K. Potter, J.L. Gabrilove, M.A. 

Moore, R.J. O'Reilly, and L.M. Souza. Recombinant human granulocyte 

colony-stimulating factor. Effects on hematopoiesis in normal and 

cyclophosphamide-treated primates. J Exp Med. 165: 941-948 (1987). 

2. S.E. Steinberg, C.L. Campbell, W.A. Bleyer, and R.S. Hillman. Enterohepatic 

circulation of methotrexate in rats in vivo. Cancer Res. 42: 1279-1282 (1982). 

3. D. Griffin, and H.M. Said. The enterohepatic circulation of methotrexate in vivo: 

inhibition by bile salt. Cancer Chemother Pharmacol. 19: 40-41 (1987). 

4. M. Masuda, Y. I’izuka, M. Yamazaki, R. Nishigaki, Y. Kato, K. Ni'inuma, H. Suzuki, 

and Y. Sugiyama. Methotrexate is excreted into the bile by canalicular multispecific 

organic anion transporter in rats. Cancer Res. 57: 3506-3510 (1997). 

5. P. Breedveld, N. Zelcer, D. Pluim, O. Sönmezer, M.M. Tibben, J.H. Beijnen, A.H 

Schinkel, O. van Tellingen, P. Borst, and J.H. Schellens. Mechanism of the 

pharmacokinetic interaction between methotrexate and benzimidazoles: potential role 

for breast cancer resistance protein in clinical drug-drug interactions. Cancer Res. 64: 

5804-5811 (2004). 

6. M. Takeda, S. Khamdang, S. Narikawa, H. Kimura, M. Hosoyamada, S.H. Cha, T. 

Sekine, and H. Endou. Characterization of methotrexate transport and its drug 

interactions with human organic anion transporters. J Pharmacol Exp Ther. 302: 

666-671 (2002). 

 24



7. K. Miyamoto, T. Shiraga, K. Morita, H. Yamamoto, H. Haga, Y. Taketani, I. Tamai, Y. 

Sai, A. Tsuji, and E. Takeda. Sequence, tissue distribution and developmental change in 

rat intestinal oligopeptide transporter. Biochim Biophys Acta. 1305: 34-38 (1996). 

8. I. Tamai, T. Nakanishi, K. Hayashi, T. Terao, Y. Sai, T. Shiraga, K. Miyamoto, E. Takeda, 

H. Higashida, and Tsuji A. The predominant contribution of oligopeptide transporter 

PepT1 to intestinal absorption of ß-lactam antibiotics in the rat small intestine. J Pharm 

Pharmacol. 49: 796-801 (1997). 

9. Y. Wang, R. Zhao, R.G. Russell, and I.D. Goldman. Localization of murine reduced 

folate carrier as assessed by immuhistochemical analysis. Biochim Biophys Acta. 1513: 

49-54 (2001).  

10. M. Shayeghi, G.O. Latunde-Dada, J.S. Oakhill, A.H. Laftah, K. Takeuchi, N. Halliday, 

Y. Khan, A. Warley, F.E. McCann, R.C. Hider, D.M. Frazer, G.J. Anderson, C.D. 

Vulpe, R.J. Simpson, and A.T. McKie. Identification of an intestinal heme transporter. 

Cell. 122: 789-801 (2005). 

11. Y. Wang, A. Rajgopal, I.D. Goldman, and R. Zhao. Preservation of folate transport 

activity with a low-pH optimum in rat IEC-6 intestinal epithelial cell lines that lack 

reduced folate carrier function. Am J Physiol. 288: C65-71 (2005). 

12. A.Qiu, M. Jansen, A.Sakaris, S.H. Min, S. Chattopadhyay, E. Tsai, C. Sandoval, R. 

Zhao, M.H. Akabas, and I.D. Goldman. Identification of an intestinal folate transporter 

and the molecular basis for hereditary folate malabsorption. Cell. 127: 917-928 (2006). 

13. T. Terao, E. Hisanaga, Y. Sai, I. Tamai, and A. Tsuji. Active secretion of drugs from the 

 25



small intestinal epithelium in rats by P-glycoprotein functioning as an absorption barrier. 

J Pharm Pharmacol. 48: 1083-1089 (1996). 

14. K. Naruhashi, I. Tamai, N. Inoue, H. Muraoka, Y. Sai, N. Suzuki, and A. Tsuji 

Involvement of multidrug resistance-associated protein 2 in intestinal secretion of 

grepafloxacin in rats. Antimicrob Agents Chemother. 46: 344-349 (2002). 

15. D. Rost, S. Mahner, Y. Sugiyama, and W. Stremmel. Expression and localization of the 

multidrug resistance-associated protein 3 in rat small and large intestine. Am J Physiol. 

28: G720-G726 (2002). 

16. H. Zeng, Z.S. Chen, M.G. Belinsky, P.A. Rea, and G.D. Kruh. Transport of 

methotrexate (MTX) and folates by multidrug resistance protein (MRP) 3 and MRP1: 

effect of polyglutamylation on MTX transport. Cancer Res. 61: 7225-7232 (2001). 

17. K.C. Peng, F. Cluzeaud, M. Bens, J.P. Van Huyen, M.A. Wioland, R. Lacave, and A. 

Vandewalle. Tissue and cell distribution of the multidrug resistance associated protein 

(MRP) in mouse intestine and kidney. J Histochem Cytochem. 47: 757-767 (1999). 

18. J. Wijnholds, R. Evers, M.R. van Leusden, C.A. Mol, G.J. Zaman, U. Mayer, J.H. 

Beijnen, M. van der Valk, P. Krimpenfort, and P. Borst. Increased sensitivity to 

anticancer drugs and decreased inflammatory response in mice lacking the multidrug 

resistance-associated protein. Nat Med. 3: 1275-1279 (1997). 

19. A. Kurita, S. Kado, N. Kaneda, M. Onoue, S. Hashimoto, and T. Yokokura. Modified 

irinotecan hydrochloride (CPT-11) administration schedule improves induction of 

delayed-onset diarrhea in rats. Cancer Chemother Pharmacol. 46: 211-220 (2000). 

 26



20. O.C. Trifan, W.F. Durham, V.S. Salazar, J. Horton, B.D. Levine, B.S. Zweifel, T.W. 

Davis, and J.L. Masferrer. Cyclooxygenase-2 inhibition with celecoxib enhances 

antitumor efficacy and reduces diarrhea side effect of CPT-11. Cancer Res. 62: 

5778-5784 (2002). 

21. F.M. Sirotnak, D.M. Moccio, and C.H. Yang. Similar characteristics of folate analogue 

transport in vitro in contrast to varying dihydrofolate reductase levels in epithelial cells 

at different stages of maturation in mouse small intestine. Cancer Res. 44: 5204-5211 

(1984). 

22. M.M. Weiser. Intestinal epithelial cell surface membrane glycoprotein synthesis. I. An 

indicator of cellular differentiation. J Biol Chem 248: 2536-2541 (1973). 

23. K. Ueda, Y. Kato, K. Komatsu, and Y. Sugiyama. Inhibition of biliary excretion of 

methotrexate by probenecid in rats: quantitative prediction of interaction from in vitro 

data. J Pharmacol Exp Ther. 297: 1036-1043 (2001). 

24. E.S. Henderson, R.H. Adamson, C. Denham, and V.T. Oliverio. The metabolic fate of 

tritiated methotrexate 1. Absorption, excretion, and distribution in mice, rats, dogs and 

monkeys. Cancer Res. 25: 1008-1017 (1965). 

25. A. Lorico, G. Rappa, R.A. Finch, D. Yang, R.A. Flavell, and A.C. Sartorelli. Disruption 

of the murine MRP (multidrug resistance protein) gene leads to increased sensitivity to 

etoposide (VP-16) and increased levels of glutathione. Cancer Res. 57; 5238-5242 

(1997). 

 27



26. L.J. Bain, and R.A. Feldman. Altered expression of sulfotransferases, 

glucuronosyltransferases and mrp transporters in FVB/mrp1-/- mice. Xenobiotica. 33: 

1173-1183 (2003). 

27. H. Cheng, and C.P. Leblond. Origin, differentiation and renewal of the four main 

epithelial cell types in the mouse small intestine. V. Unitarian Theory of the origin of 

the four epithelial cell types. Am J Anat. 141: 537-561 (1974). 

28. C.A. Loehry, D.N. Croft, A.K. Singh, and B. Creamer. Cell turnover in the rat small 

intestinal mucosa: an appraisal of cell loss. Gut. 10: 13-16 (1969). 

29. I.B. Renes, M. Verburg, N.P. Bulsing, S. Ferdinandusse, H.A. Büller, J. Dekker, and 

A.W. Einerhand. Protection of the Peyer's patch-associated crypt and villus epithelium 

against methotrexate-induced damage is based on its distinct regulation of proliferation. 

J Pathol. 198: 60-68 (2002). 

30. Y. Miyazono, F. Gao, and T. Horie. Oxidative stress contributes to 

methotrexate-induced small intestinal toxicity in rats. Scand J Gastroenterol. 39: 

1119-1127 (2004). 

31. B.A. de Koning, J.M. van Dieren, D.J. Lindenbergh-Kortleve, M. van der Sluis, T. 

Matsumoto, K. Yamaguchi, A.W. Einerhand, J.N. Samsom, R. Pieters, and E.E. 

Nieuwenhuis. Contributions of mucosal immune cells to methotrexate-induced 

mucositis. 1: Int Immunol. 18: 941-949 (2006). 

 28



32. B.A. de Koning, M. Sluis, D.J. Lindenbergh-Kortleve, A. Velcich, R. Pieters, H.A. 

Büller, A.W. Einerhand, and I.B. Renes. Methotrexate-induced mucositis in mucin 

2-deficient mice. J Cell Physiol. 210: 144-152 (2007). 

33. J. Wijnholds, G.L. Scheffer, M. van der Valk, P. van der Valk, J.H. Beijnen, R.J. 

Scheper, and P. Borst. Multidrug resistance protein 1 protects the oropharyngeal 

mucosal layer and the testicular tubules against drug-induced damage. J Exp Med. 

188;797-808 (1998). 

34. M.G. Belinsky, P. Guo, K. Lee, F. Zhou, E. Kotova, A. Grinberg, H. Westphal, I. 

Shchaveleva, A. Klein-Szanto, J.M. Gallo, and G.D. Kruh. Multidrug resistance protein 

4 protects bone marrow, thymus, spleen, and intestine from nucleotide 

analogue-induced damage. Cancer Res. 67 :262-268 (2007). 

35. Y. Mochida, K. Taguchi, S. Taniguchi, M. Tsuneyoshi, H. Kuwano, T. Tsuzuki, M. 

Kuwano, and M. Wada. The role of P-glycoprotein in intestinal tumorigenesis: 

disruption of mdr1a suppresses polyp formation in Apc(Min/+) mice. Carcinogenesis. 

24:1219-1224 (2003). 

36. H. Wang, X. Wu, K. Hudkins, A. Mikheev, H. Zhang, A. Gupta, J.D. Unadkat, and 

Q.Mao. Expression of the breast cancer resistance protein (Bcrp1/Abcg2) in tissues 

from pregnant mice: effects of pregnancy and correlations with nuclear receptors. Am J 

Physiol Endocrinol Metab. 291: E1295-1304 (2006). 

37. H. Bleiberg. CPT-11 in gastrointestinal cancer. Eur J Cancer. 35: 371-379 (1999). 

 29



38. J.T. Hartmann, and H.P. Lipp. Camptothecin and podophyllotoxin derivatives: 

inhibitors of topoisomerase I and II - mechanisms of action, pharmacokinetics and 

toxicity profile. Drug Saf. 29: 209-230 (2006). 

39. Z.S. Chen, T. Furukawa, T. Sumizawa, K.Ono, K. Ueda, K. Seto, and S.I. Akiyama  

ATP-Dependent efflux of CPT-11 and SN-38 by the multidrug resistance protein (MRP) 

and its inhibition by PAK-104P. Mol Pharmacol. 55: 921-928 (1999). 

 30



 LEGENDS FOR FIGURES 

 

Fig. 1. Effect of MTX administration on body weight (A), food (B) and water (C) 

intake.  MTX (0, 25 or 50 mg/kg) was intraperitoneally administered to mrp1(+/+) (open 

symbols) and mrp1(-/-) (closed symbols) mice for 4 days (once daily as shown as arrows in 

panel A), and body weight, food and water intake were measured daily. Data are expressed 

as mean ± S.E.M. of 5 (mrp1(+/+)) or 6 (mrp1(-/-)) mice (A), or mean values (N = 5 - 6) of 

two independent experiments (B, C). *p<0.05, Significantly different from mrp1(+/+) mice. 

 

Fig. 2. Disposition of MTX in Mice. 

Plasma disappearance (A) and biliary excretion (B) of MTX after i.p. administration (50 

mg/kg) was examined in mrp1(+/+) (open symbols) and mrp1(-/-) (closed symbols) mice. Data 

are expressed as mean ± S.E.M. of 4 (mrp1(+/+)) or 3 (mrp1(-/-)) mice. If error bars are not 

shown, they lie within the symbol. 

 

Fig. 3. Histopathological Changes in Small Intestine. 

MTX (50 mg/kg) was intraperitoneally administered to mrp1(+/+) and mrp1(-/-) mice for 4 

days. Mice were euthanized on Day 2, 3, or 4, and tissue sections from middle part of the 

small intestine (A) and colon (B) were analyzed for morphology with H&E staining (the top 

panel) and for S-phase cells with immunostaining using anti-BrdU antibody (the bottom 

panel). Tissue sections from animals without MTX treatment (controls) are also shown. 
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Similar results to those in the middle part (A) were also observed in the upper and middle 

parts of the small intestine (data not shown). Original magnification, x 200. 

 

Fig. 4. MTX Accumulation in Isolated Epithelial Cells and Immunostaining of MRP1 

in Small Intestine. 

A and B, Intestinal epithelial cells were isolated from mrp1(+/+) (open bars) and mrp1(-/-) 

(closed bars) mice, and fractionated to obtain fractions #4 (A) and #1 (B), which were 

incubated with the transport buffer (pH 6.0) containing [3H]MTX and [14C]inulin at 37°C 

for 20 min. C, Immunofluorescence analysis was performed using both anti-MRP1 (green) 

and anti-Na+/K+ ATPase antibodies (red) in the lower part of small intestine. Colocalization 

(double staining: yellow) was observed in crypts of mrp1(+/+) (arrows), but not of mrp1(-/-) 

mice. Original magnification, x 200. Inset, Time course of [3H]MTX uptake by fraction #4 

obtained from mrp1(+/+) (open circle) and mrp1(-/-) (closed circle) mice at 1 µM MTX. 

Uptake and accumulation were normalized by the medium concentration and represented as 

cell-to-medium ratio. Data are expressed as mean ± S.E.M. (N = 3-4) *p<0.05, Significantly 

different from mrp1(+/+) mice. 

 32



B

C

A
Figure 1

Day

25 mg/kg

-20

-10

10

1 3 5 7

0

C
ha

ng
e 

in
 b

od
y 

w
ei

gh
t %

-20

-10

10

1 3 5 7

C
ha

ng
e 

in
 b

od
y 

w
ei

gh
t %

control

0

Day

50 mg/kg

*

-20

-10

10

1 3 5 7

0

C
ha

ng
e 

in
 b

od
y 

w
ei

gh
t %

Day

Day

25 mg/kg

1 3 5 7
0

6

4

2Fo
od

 in
ta

ke
( g

/m
ou

se
/d

ay
)

0

6

4

2

8

1 3 5 7Day

25 mg/kg

W
at

er
 in

ta
ke

( g
/m

ou
se

/d
ay

)

Fo
od

 in
ta

ke
( g

/m
ou

se
/d

ay
)

1 3 5 7
0

6

4

2

control

Day

W
at

er
 in

ta
ke

( g
/m

ou
se

/d
ay

)

0

6

4

2

8

1 3 5 7

control

Day

50 mg/kg

1 3 5 7
0

6

4

2Fo
od

 in
ta

ke
( g

/m
ou

se
/d

ay
)

DayDay

0

6

4

2

8

1 3 5 7

50 mg/kg

W
at

er
 in

ta
ke

( g
/m

ou
se

/d
ay

)

Day



Figure 2

0 30 60 90 120 150
0

20

40

60

80

100

Time (min)

C
um

ul
at

iv
e 

am
ou

nt
(%

 o
f d

os
e)

A B

0.1

1

10

100

0 30 60 90 120 150 180
Time (min)

Pl
as

m
a 

co
nc

en
tr

at
io

n 
(µ

g/
m

L)



A

B

Figure 3

mrp1(+/+)

mrp1(-/-)

control Day 2 Day 3 Day 4

mrp1(+/+)

mrp1(-/-)

control Day 2 Day 3 Day 4



100 nM 1 µM 10 µM 100 µM
0

10

20

30

40

50

MTX concentration

C
/M

 ra
tio

 (µ
L/

m
g 

pr
ot

ei
n)

C

A B
 

Figure 4

100 nM 1 µM 10 µM 100 µM
0

10

20

30

40

50

MTX concentration

C
/M

 ra
tio

 (µ
L/

m
g 

pr
ot

ei
n)

0

10

20

30

40

0 10 20 30

C
/M

 ra
tio

(µ
L/

m
g 

pr
ot

ei
n)

Time (min)

Mrp1
Mrp1 and

Na+/K+-ATPase (enlarged)

mrp1(-/-)

Mrp1
Mrp1 and

Na+/K+-ATPase

mrp1(+/+)

*

*
*

*


