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Abstract 

     Human CYP2A6 is responsible for the metabolism of nicotine and coumarin as well as 

the metabolic activation of tobacco-related nitrosamines. Earlier studies revealed that 

CYP2A6 activity was increased by dietary cadmium or cruciferous vegetables, but the 

underlying mechanisms remain to be clarified. In the present study, we investigated the 

possibility that Nrf2 might be involved in the regulation of CYP2A6. Real-time RT-PCR 

analysis revealed that the CYP2A6 mRNA level in human hepatocytes was significantly (P < 

0.01, 1.4 fold) induced by 10 µM sulforaphane (SFN), a typical activator of Nrf2. A 

computer-based search identified three putative antioxidant response elements (AREs) in the 

5’-flanking region of the CYP2A6 gene at positions -1212, -2444, and -3441, termed ARE1, 

ARE2, and ARE3, respectively. Electrophoretic mobility shift assays demonstrated that Nrf2 

bound only to ARE1. Luciferase assays using HepG2 cells revealed that the overexpression of 

Nrf2 significantly increased the reporter activities of the constructs containing a 30-bp 

fragment that included ARE1. However, the activity of the construct containing the intact 

5’-flanking region (-1 to -1395) including ARE1 was not increased by the overexpression of 

Nrf2. In contrast, when the reporter construct was injected into mice via the tail vein, the 

reporter activity in the liver was significantly (P < 0.05, 1.9 fold) increased by SFN (1 

mg/head) administration. In conclusion, we found that human CYP2A6 is regulated via Nrf2, 

suggesting that CYP2A6 is induced under oxidative stress. 

 

 

Key words: cytochrome P450; nuclear factor-erythroid 2 related factor 2; transcriptional 

regulation 
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1. Introduction 

 

     Human cytochrome P450 2A6 (CYP2A6), which was first purified as coumarin 

7-hydroxylase [1], is a major enzyme responsible for the metabolism of nicotine [2] and 

cotinine [3]. CYP2A6 also metabolically activates tobacco-specific nitrosamines such as 

4-methylnitrosoamino-1- (3-pyridyl)-1-butanone and N-nitrosonornicotine [4]. Many studies 

have suggested that the interindividual variability in CYP2A6 activity affects smoking 

behavior or cancer susceptibility [5-7]. Genetic polymorphisms are the major factor 

contributing to the interindividual differences in CYP2A6 activity and expression, but dietary 

or environmental factors as well as endogenous factors such as steroid hormones are also 

involved. To understand the regulators of CYP2A6 expression, we have studied 

transcriptional factors regulating CYP2A6 expression and found that pregnane X receptor [8] 

and estrogen receptor [9] are involved in the CYP2A6 regulation. In addition, a recent study 

reported the involvement of glucocorticoid receptor in the regulation of CYP2A6 [10]. 

     It has been reported that cadmium ingestion increased the CYP2A6 expression based on 

the fact that the extent of urinary excretion of cadmium was positively correlated with the 

extent of urinary excretion of 7-hydroxycoumarin after the administration of coumarin [11]. 

Mouse Cyp2a5, an orthologue of human CYP2A6, has also been reported to be induced by 

the administration of cadmium. Abu-Bakar et al [12] suggested that the induction of Cyp2a5 

would be mediated by nuclear factor-erythroid 2 related factor 2 (Nrf2) because the induction 

was not observed in Nrf2 knock-out mice. Nrf2 is a transcription factor which regulates the 

expression of antioxidative and cytoprotective genes. Under normal conditions, Nrf2 is 

sequestered in the cytoplasm by Kelch-like ECH-associated protein 1, which stimulates 

proteasomal degradation of Nrf2 [13]. On cellular stimulation by oxidative stress, Nrf2 is 

dissociated from Keap1 and accumulates in the nucleus to regulate the expression of 

antioxidative and cytoprotective genes. Sulforaphane, which is well known as an activator of 

Nrf2, is contained in cruciferous vegetables such as broccoli sprouts. Interestingly, it has been 

reported that CYP2A6 activity was significantly increased after the consumption of broccoli 
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(500 g/day for 6 days) by 1.4 - 5.5 fold [14]. This background prompted us to investigate 

whether Nrf2 might be involved in the regulation of human CYP2A6. 

 

2. Materials and Methods 

 

2.1. Chemicals and reagents 

     L-Sulforaphane (SFN) and tert-butylhydroquinone (tBHQ) were obtained from LKT 

Laboratory (St. Paul, MN) and Wako Pure Chemical Industries (Osaka, Japan), respectively. 

Anti-human Nrf2 antibodies (C-20) and (H-300), which recognize the C-terminus and 

N-terminus of the Nrf2 protein, respectively, and normal rabbit IgG were purchased from 

Santa Cruz Biotechnology (Santa Cruz, CA). Dual Luciferase Reporter Assay System, 

pGL3-basic, phRL-TK, and pGL4.74 plasmid were purchased from Promega (Madison, WI). 

QIAGEN Plasmid Midi kit was from QIAGEN (Valencia, CA). MiraCLEAN Endotoxin 

Removal Kit and TransIT-QR Hydrodynamic Delivery Solution were from Mirus Bio 

(Madison, WI). Oligonucleotides were commercially synthesized at Hokkaido System 

Sciences (Sapporo, Japan). Restriction enzymes were purchased from Takara (Shiga, Japan), 

TOYOBO (Osaka, Japan), and New England Biolabs (Beverly, MA). All other reagents were 

of the highest grade commercially available.  

 

2.2. Cell culture 

     Human cryopreserved hepatocytes, lot 82 (Hispanic, female, 23 years) were purchased 

from In Vitro Technologies (Baltimore, MD). The hepatocytes were seeded into 

collagen-coated 6-well plates at 0.9 × 105 cells/well and maintained in HCM hepatocyte 

culture medium (Cambrex, East Rutherford, NJ) at 37°C under 5% CO2. After 24 h, the 

culture medium was changed to HCM medium (epidermal growth factor- and antibiotics-free) 

containing 10 µM SFN or 0.1% (v/v) DMSO vehicle. Hepatocytes were maintained for 12 h 

or 24 h until harvesting.  

     Human hepatoma cell line HepG2 was obtained from American Type Culture 
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Collection (Manassas, VA). HepG2 cells were cultured in Dulbecco’s modified Eagle’s 

medium (DMEM) (Nissui Pharmaceutical, Tokyo, Japan) supplemented with 10% fetal 

bovine serum (FBS) (Invitrogen, Carlsbad, CA) and 0.1 mM nonessential amino acids 

(Invitrogen) at 37°C under 5% CO2. 

 

2.3. Real-time RT-PCR analyses 

     Total RNA was isolated from human hepatocytes or mouse liver using RNAiso  

(Takara) following the manufacturer’s protocol, and cDNA was synthesized as described 

previously [15]. The primers for human CYP2A6 [15] and human GAPDH [16] were 

described previously. The forward and reverse primers for mouse NAD(P)H:quinone 

oxidoreductase 1 (NQO1) were 5’-CCCTGATTGTACTGGCCCATT-3’ and 

5’-CGTCCTTCCTTATATGCTAG-3’, respectively. The forward and reverse primers for 

mouse GAPDH were 5’-AAATGGGGTGAGGCCGGT-3’ and 

5’-ATTGCTGACAATCTTGAGTGA-3’, respectively. Real-time RT-PCR assays were 

performed using the Smart Cycler (Cepheid, Sunnyvale, CA) as described previously [17]. 

 

2.4. Electrophoretic mobility shift assays 

     Double-stranded oligonucleotides were labeled with [γ-32P] ATP using T4 

polynucleotide kinase (TOYOBO) and purified by Microspin G-50 columns (GE Healthcare, 

Buckinghamshire, UK). The oligonucleotide sequences for ARE1 and consensus ARE 

(cARE) on Mus musculus heme oxygenase-1 (HO-1) promoter were 

5’-GTAGTAGCCCCTGACAAAGCAGGAATCAT-3’ and 

5’-GATCTTTTATGCTGAGTCATGGTTT-3’, respectively [18]. The labeled probe (80 fmol, 

~13,000 cpm) was applied to each binding reaction in 25 mM HEPES-KOH (pH 7.9), 0.5 mM 

EDTA, 10% glycerol, 50 mM KCl, 0.5 mM dithiothreitol, 0.5 mM (p-amidinophenyl) 

methanesulfonyl fluoride, 1 µg of poly (dI-dC), 10 µg of salmon sperm DNA, and 8 µg of the 

nuclear extracts from 80 µM tBHQ-treated HepG2 cells with a final reaction volume of 15 µl. 

To determine the specificity of the binding to the oligonucleotides, competition experiments 
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were conducted by co-incubation with 10-, 50-, and 200-fold excesses of unlabeled 

competitors. For super-shift experiments, 2 µg of anti-Nrf2 antibodies or normal rabbit IgG 

were pre-incubated with the nuclear protein on ice for 30 min. The reactions were incubated 

on ice for 15 min and then loaded on 4% acrylamide gel in 0.5 × Tris-borate EDTA buffer. 

The gels were dried and exposed to imaging plate for 18 h. The DNA-protein complexes were 

detected with a Fuji Bio-Imaging Analyzer BAS 1000 (Fuji Film, Tokyo, Japan). 

 

2.5. Human Nrf2 expression plasmid and reporter constructs 

     Human Nrf2 expression plasmid and the pGL3-cARE plasmid containing two copies of 

the cARE on the human NQO-1 gene were previously constructed [17]. Double-stranded 

oligonucleotide ARE1 on the human CYP2A6 gene 

(5’-GTAGTAGCCCCTGACAAAGCAGGAATCAT-3’) was cloned into the pGL3-tk 

plasmid digested with Sma I, resulting in single (pGL3/ARE1) and double (pGL3/2×ARE1) 

insertions. The pGL3/-3046 plasmid containing the 5’-flanking region from -3,046 to -1 of the 

CYP2A6 gene was previously constructed [9]. The pGL3/-1395 and pGL3/-185 plasmids were 

constructed by ligating the fragments from pGL3/-3046 plasmid digested with BST1107 

I/Hind III and Pvu II/Hind III, respectively, into the Sma I/Hind III-digested pGL3-basic 

plasmid. The pGL3/-1013 plasmid was constructed by ligating the fragments from 

pGL3/-3046 plasmid digested with Bgl II /Hind III into the Bgl II/Hind III-digested 

pGL3-basic plasmid. The plasmid DNA was purified by QIAGEN Plasmid Midi kit 

(QIAGEN). Nucleotide sequences of the constructed plasmids were confirmed by DNA 

sequencing analyses. 

 

2.6. In vitro transfection and luciferase assay 

     HepG2 cells were seeded into 24-well plates at 1.0 × 105 cells/well and incubated for 24 

h before transfection. Transfection was performed using Tfx-20 reagent (Promega). In brief, 

the transfection mixture consisted of 150 ng of pGL3 plasmids, 5 ng of phRL-TK plasmid, 

and 100 ng of Nrf2 expression plasmid (or control vector). Forty-eight hours after the 



 7 

transfection, the cells were harvested and lysed to measure the luciferase activity using a Dual 

Luciferase Reporter Assay System. The relative luciferase activities were normalized with the 

Renilla luciferase activities.  

 

2.7. In vivo transfection 

Male ICR mice (3 weeks old, 10-13 g) were obtained from SLC Japan (Hamamatsu, 

Japan). Mice were housed in a controlled environment (temperature 25 ± 1°C, humidity 50 ± 

10%, and 12 h light/12 h dark cycle) in the institutional animal facility with access to food 

and water ad libitum. Mice were acclimatized for a week before use for the experiments. For 

in vivo transfection, 18-22 g mice were injected via the tail vein with 10 µg of pGL3 plasmids 

and 1 µg of pGL4.74 plasmid, in volumes of 0.1 ml/g of body weight within 5-8 s using the 

TransIT-QR Hydrodynamic Delivery Solution. Endotoxin in plasmid preparations was 

removed using MiraCLEAN Endotoxin Removal Kit. After 18 h, 1 mg/head SFN or saline 

was intraperitoneally administered. The dose was decided referring previous studies [19, 20]. 

Animals were sacrificed 24 h later and the liver, approximately 100 mg, was removed and 

homogenized in 1 ml of passive lysis buffer (Dual Luciferase Reporter Assay System). The 

liver homogenates were centrifuged at 15,000 rpm for 10 min at 4°C. Twenty microliters of 

the supernatant were used to measure the firefly and Renilla luciferase activities. For each 

construct, at least three mice were transfected, and three independent experiments were 

performed. Animal maintenance and treatment were conducted in accordance with the 

National Institutes of Health Guide for Animal Welfare of Japan, as approved by the 

Institutional Animal Care and Use Committee of Kanazawa University, Japan. 

 

2.8. Statistical analysis 

     Data are expressed as mean ± SD. Statistical analysis was performed by an unpaired 

two-tailed Student’s t test. A value of P less than 0.05 was considered statistically significant. 
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3. Results 

 

3.1. SFN induces CYP2A6 mRNA expression in human hepatocytes 

     We first examined whether the CYP2A6 level in human hepatocytes was increased by 

SFN treatment (Fig. 1). When human hepatocytes were treated with 10 µM SFN for 12 h, a 

significant induction (1.4-fold, P < 0.01) of the CYP2A6 mRNA level was observed. With 

24-h treatment, a similar induction (1.3-fold induction, P < 0.05) was observed. These results 

suggest that CYP2A6 mRNA is induced by SFN. 

 

3.2. Nrf2 directly binds to the ARE on the CYP2A6 gene 

     To find potential binding sites of Nrf2 on the 5’-flanking region of CYP2A6 gene, we 

investigated overlapping with the core sequence of consensus ARE 

5’-TMAnnRTGAY(C/T)nnnGCRwwww-3’ (core sequence is underlined) using a computer 

program GENETYX-MAC for all probable nucleotide combination, and thereby we identified 

three putative AREs up to -4 kb of the 5’-flanking region of CYP2A6 gene. These elements 

located at -1212, -2444, and -3441 were termed ARE1, ARE2, and ARE3, respectively (Fig. 

2). We performed electrophoretic mobility shift assays to examine whether Nrf2 can bind to 

these AREs (Fig. 3). When the 32P-labeled cARE was incubated with the nuclear extract 

prepared from the tBHQ-treated HepG2 cells, three bands were detected (Fig. 3, lane 1). The 

upper and lower bands were non-specific bands (NS). The middle band represented a shifted 

band, and its density was diminished with both anti-Nrf2 antibodies (C-20) and (H-300) (Fig. 

3, lanes 2 and 3). Super-shifted band was observed only with the anti-Nrf2 antibody (C-20), 

consistent with our previous study on UGT2B7 [17]. When the ARE1 was used as a probe, a 

band the mobility of which was the same as that of the cARE-Nrf2 complex was observed 

(Fig. 3, lane 8). The band was clearly supershifted with the anti-Nrf2 antibody (C-20) (Fig. 3, 

lane 9) and was competed out by unlabeled cARE (Fig. 3, lanes 12, 13, and 14). These results 

indicated that Nrf2 specifically binds to ARE1 on the human CYP2A6 gene. When ARE2 or 

ARE3 was used as a probe, no band was observed (data not shown).  



 9 

 

3.3. ARE1 on CYP2A6 promoter is functional for transactivation via Nrf2 

     To examine whether ARE1 is functional for the transactivation via Nrf2, luciferase 

assays were performed using HepG2 cells. We first confirmed that the luciferase activity of 

the pGL3-cARE plasmid containing two copies of cARE used as a positive control, was 

significantly (P < 0.001) increased up to 2.7-fold by the overexpression of Nrf2 (Fig. 4A). 

The luciferase activities of the pGL3/ARE1 and pGL3/2×ARE1 plasmids containing one and 

two copies of ARE1 were significantly increased up to 1.3- and 2.0-fold, respectively, by the 

overexpression of Nrf2. Next we performed luciferase assay using a series of reporter 

plasmids containing the 5’-flanking region of CYP2A6 gene (Fig. 4B). Contrary to our 

expectations, the luciferase activity of the pGL3/-1013 plasmid containing ARE1 was 

significantly decreased by the overexpression of Nrf2. The luciferase activities of the 

pGL3/-1395 and pGL3/-185 plasmids were also significantly decreased by the overexpression 

of Nrf2. These results suggest that the proximal promoter region possibly has a negative 

regulatory region responding to Nrf2, or HepG2 cells may lack transcriptional factors crucial 

for the transcriptional activity of CYP2A6.  

 

3.4. Nrf2 activates CYP2A6 promoter activity in vivo 

      Next, we sought to determine the transactivity of the plasmids in mice in vivo, because 

mice liver contains sufficient levels of hepatic transcription factors, which is unlikely the case 

in cell lines. When the pGL3-cARE plasmid was injected into mice, the luciferase activity in 

the liver was significantly (P < 0.05) increased up to 2.1-fold by SFN treatment (Fig. 5A). It 

was confirmed that under this condition the endogenous mouse NQO1 mRNA level was 

significantly (P < 0.001) induced (2.4-fold) (Fig. 5B). The luciferase activity of the 

pGL3/-1395 plasmid containing ARE1 was significantly (P < 0.05) increased (1.9- fold) by 

SFN treatment, but that of the pGL3/-1013 plasmid was not (Fig. 5A). These results suggest 

that the CYP2A6 promoter containing ARE1 is transactivated by SFN in vivo. 
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4. Discussion 

 

     In the present study, we found that Nrf2 is involved in the regulation of human 

CYP2A6. Concerning the role of Nrf2 in the regulation of P450, mouse Cyp2a5 was the first 

reported case [12]. In addition, a recent study demonstrated that human CYP2J2 is regulated 

by Nrf2 [21]. We could provide evidence to put CYP2A6 into the short list of P450s that are 

regulated by Nrf2. It was clearly demonstrated that sulforaphane significantly increased the 

CYP2A6 mRNA level in human hepatocytes. Sulforaphane, an activator of Nrf2, is contained 

in cruciferous vegetables such as broccoli sprouts, horseradish, cabbage, and watercress. 

Interestingly, it has been reported that CYP2A6 activities were significantly increased after 

the consumption broccoli (500 g/day for 6 days) by 1.4 - 5.5-fold [14]. We believe that the 

present study may demonstrate the underlying molecular mechanism of the induction. 

     Electrophoretic mobility shift assays clearly demonstrated that Nrf2 directly bound to 

ARE1, but not ARE2 and ARE3, on the human CYP2A6 gene. Previously, Abu-Bakar et al. 

[22] identified ARE (TGACagaGCA) at -2377 on the 5’-flanking region of the mouse Cyp2a5 

gene to which Nrf2 bound. Interestingly, the sequence of human ARE1 (TGACaaaGCA) has 

only one base difference with the mouse ARE. Although the core sequence of ARE2 

(TGACctgGCc) is similar to that of ARE1, Nrf2 did not bind to ARE2. Thus, the differences 

in core sequence (underlined) might also be important for the binding of Nrf2. For the 

supershift assay, we used two kinds of anti-Nrf2 antibody (C-20 and H-300). The supershifted 

band was observed with the anti-Nrf2 antibody (C-20) but not with the anti-Nrf2 antibody 

(H-300). Anti-Nrf2 antibody (C-20) recognizes the C-terminal of Nrf2, whereas anti-Nrf2 

antibody (H-300) recognizes the N-terminal. Since the N-terminal has a DNA-binding domain, 

the anti-Nrf2 antibody (H-300) seemed to interfere with the binding of Nrf2 to the DNA, not 

forming the antibody-Nrf2-DNA complex represented as a supershifted band. 

In the luciferase assays, we first determined the effects of the treatment with SFN on 

the transactivity of the constructs. Unexpectedly, SFN treatment significantly decreased the 

firefly and Renilla luciferase activities derived from the pGL3-tk and phRL-TK plasmids, 
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respectively by approximately half (data not shown). Such a phenomenon was not observed 

when Nrf2 was overexpressed. It was assumed that SFN might affect the thymidine kinase 

promoter activities independently of Nrf2. By the overexpression of Nrf2, we found that 

ARE1 itself was functional for the transactivation. However, the luciferase activities of 

plasmids containing the intact 5’-flanking region of CYP2A6 gene were not increased by the 

overexpression of Nrf2, even if it contained the ARE1. Similar results were obtained using 

HeLa cells (data not shown), suggesting that it was not a HepG2-specific phenomenon. It was 

considered that the sequences surrounding ARE may interfere the binding of Nr2, or these 

cell lines might lack some transcriptional factor(s) that are necessary for the transactivation of 

CYP2A6. It has been reported that the transactivity of the CYP2C8 promoter was successfully 

evaluated by the injection of the constructs in mouse in vivo, although such evaluation was 

unsuccessful in HepG2 cells [23]. Based on this report, we also performed the luciferase assay 

in mice in vivo and found that the SFN treatment significantly increased the transactivity of 

the pGL3/-1395 plasmid containing ARE1 (Fig. 5A). Thus, it was concluded that CYP2A6 is 

regulated by Nrf2 via ARE1. 

CYP2A6 is responsible for nicotine metabolism [2]. Smokers adapt their smoking 

behavior to maintain their nicotine levels in the body [24]. Since the metabolism of nicotine 

by CYP2A6 is the principal pathway by which nicotine is removed from the circulation, an 

association between the CYP2A6 activity and cigarette consumption has been suggested [5, 

6]. Cigarette smoking is known to cause oxidative stress, which activates Nrf2 [25, 26]. In 

addition, tobacco is a substantial source of cadmium, supported by the fact that the serum 

cadmium level of smokers is 3 folds higher than that of non-smokers [27]. Therefore, it is 

surmised that the CYP2A6 expression level might be higher in smokers than in non-smokers, 

although there is no report comparing the expression level of hepatic CYP2A6 protein in 

smokers versus that in non-smokers. In contrast, it has been reported that in vivo nicotine 

clearance [28] and in vivo coumarin metabolism [29] were lower in smokers than in 

non-smokers, suggesting the possibility that some constituents in tobacco smoke might have 

inhibitory effects on the CYP2A6 activity. Such inhibitory effects could possibly mask the 
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induction of CYP2A6, resulting in decreased in vivo metabolic potency. Thus, it would be of 

interest to compare the hepatic CYP2A6 expression levels in smokers and non-smokers, 

although it has been reported that the administration of nicotine itself downregulated 

CYP2A6-like enzyme expression in African green monkeys [30]. 

In conclusion, we found that Nrf2 regulates the human CYP2A6. This mechanism 

implies the possibility that the CYP2A6 expression may be increased by oxidative stress such 

as by cigarette smoking. 
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Figure legends 

 

Fig. 1. Effects of SFN treatment on the CYP2A6 mRNA level in human hepatocytes. Human 

hepatocytes were treated with 10 µM SFN or 0.1% DMSO for 12 h or 24 h. Total RNA was 

extracted and real-time RT-PCR was performed. To normalize the RNA loading, the CYP2A6 

mRNA levels were corrected with the GAPDH mRNA levels. Each column represents the 

mean ± SD of three independent experiments. *P < 0.05 and **P < 0.01 compared with 

DMSO treatment. 

 

Fig. 2. Schematic representation of the putative AREs on the CYP2A6 genes and the 

sequences of the AREs. Numbers indicate the nucleotide position when the A in the initiation 

codon ATG is denoted + 1 and the base before A is numbered -1. The core ARE sequence is 

underlined. The nucleotides that are consistent with the consensus ARE are shown with bold 

letters. 

 

Fig. 3. Electrophoretic mobility shift assays of the binding of Nrf2 to ARE of the CYP2A6 

gene. Oligonucleotides of the cARE in Mus musculus HO-1 promoter (left) and CYP2A6 

ARE1 (right) were used as probes. Nuclear extracts were prepared from HepG2 cells treated 

with 80 µM tBHQ for 6 h. Cold oligonucleotides were used as a competitor in 10-, 50-, and 

200-fold molar excess. For supershift analyses, 2 µg of anti-Nrf2 antibodies or normal rabbit 

IgG were preincubated with the nuclear extracts on ice for 30 min. 

 

Fig. 4. Effects of overexpression of Nrf2 on CYP2A6 transactivation in HepG2 cells. 

Reporter plasmids containing ARE sequences (A) or the 5’-flanking region of CYP2A6 gene 

with deletion from the 5’ direction (B) were transiently transfected into HepG2 cells with 

Nrf2 expression plasmid (Nrf2) or pTARGET empty vector (control). The pGL3-cARE 

plasmid, which contains two copies of the cARE on the human NQO-1 gene, was used as a 

positive control. The firefly luciferase activities were normalized with the Renilla luciferase 
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activities. Right panel shows the fold induction of the transcriptional activity by the 

overexpression of Nrf2. Each column represents the mean ± SD of three independent 

experiments. **P < 0.01 and ***P < 0.001 compared with control. 

 

Fig. 5. Effects of SFN on CYP2A6 transactivation in in vivo mice liver transfections. Ten µg 

of pGL3 reporter plasmid and one µg of pGL4.74 plasmid were injected into the tail vein of 

male ICR mice. After 18 h, 1 mg/head SFN was intraperitoneally administered. After 6 h, the 

liver was removed and the homogenate and total RNA were prepared for the luciferase assay 

and real-time RT-PCR, respectively. (A) The firefly luciferase activities were normalized 

with the Renilla luciferase activities. Right panel shows the fold induction of the 

transcriptional activity by the treatment with SFN. Each column represents the mean ± SD (n 

= 3). *P < 0.05 compared with control. (B) NQO1 mRNA levels in mice injected with 

pGL3-cARE plasmid were determined by real-time RT-PCR. The NQO1 mRNA levels were 

normalized with the GAPDH mRNA levels. Each column represents the mean ± SD (n = 3). 

***P < 0.001 compared with saline. 
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