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_____________________________________________________________________________ 

Abstract 

 

Previously published stability constants of several metal ion (M2+) complexes formed with 

thiouridines and their 5'-monophosphates, together with recently obtained log KM(U)
M  versus 

pKU
H  plots for M2+ complexes of uridinate derivatives (U–) allowed now a quantitative evaluation 

of the effect that the exchange of a (C)O by a (C)S group has on the stability of the 

corresponding complexes. For example, the stability of the Ni2+, Cu2+ and Cd2+ complexes of 2-

thiouridinate is increased by about 1.6, 2.3, and 1.3 log units, respectively, by the indicated 

exchange of groups. Similar results were obtained for other thiouridinates, including 4-

thiouridinate. The structure of these complexes and the types of chelates formed (involving (N3)– 

and (C)S) are discussed. A recently advanced method for the quantification of the chelate effect 

allows now also an evaluation of several complexes of thiouridinate 5'-monophosphates. In most 

instances the thiouracilate coordination dominates the systems, allowing only the formation of 

small amounts of phosphate-bound isomers. Among the complexes studied only the one formed 

by Cu2+ with 2-thiouridinate 5'-monophosphate leads to significant amounts of the macrochelated 

isomer, which means that in this case Cu2+ is able to force the nucleotide from the anti to the syn 

conformation, allowing thus metal ion binding to both potential sites and this results in the 

formation of about 58% of the macrochelated isomer. The remaining 42% are species in which 

Cu2+ is overwhelmingly coordinated to the thiouracilate residue; Cu2+ binding to the phosphate 

group occurs in this case only in trace amounts. 

 

Keywords 

Chelate formation • Isomeric equilibria • Metal ion-sulfur coordination • Thiouridine  

5'-monophosphates • Thiouridines 
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1. Introduction 

 

Thioderivatives of purine and pyrimidine nucleobases are of potential therapeutic value [1]. 

If incorporated into nucleic acids, such bases change the properties; e.g., thiolation of uracil 

residues, especially in RNA wobble positions, affects the conformation of the nucleic acid in 

solution [2] and this has implications for recognition processes. Of course, the substitution of 

oxygen by sulfur also changes the metal ion binding properties of uracil derivatives [3]; e.g., the 

affinity toward Zn2+ is expected to increase [4–6]. In line herewith are attempts to recruit divalent 

metal ions for DNA by incorporation of 4-thio-2'-deoxythymidine or 4-thio-2'-deoxyuridine into 

DNA [7]. 

Considering further that 4-thiouridine (U4S) is found in bacterial and archaeal tRNA [8,9], a 

quantification of metal ion binding to such sulfur sites is certainly desirable. This aim can now 

be achieved due to recent correlations for uridinate derivatives (U–), i.e., for log KM(U)
M  versus 

pKU
H  straight-line plots [10]. These parameters allow to evaluate previous very exact 

equilibrium constant measurements of 2-thiouridine (U2S), 4-thiouridine (U4S) and 2,4-

dithiouridine (U2S4S) (see Fig. 1 [11,12]) for their complexes formed with Ni2+, Cu2+ and Cd2+ 

[3,13], providing indirectly also information for the corresponding Zn2+ species [4–6], and to 

quantify in detail the stability enhancement of these complexes which results from the exchange 

of an O by a S atom. 

insert Figure 1 close to here 

The indicated achievements allowed further to evaluate available equilibrium data of 

complexes of thiouridinate 5'-monophosphates [14] by the application of a recently developed 

new method for the quantification of macrochelate formation [15] which also provides 

information about the amounts of metal ions which are either solely phosphate- or nucleobase-

coordinated [16]. For example, the complexes of 2-thiouridinate 5'-monophosphate and Cu2+ 

exist, as shown now, to a significant amount as macrochelates; among the 'open', i.e., not 

chelated, species, the one with nucleobase binding dominates whereas the one with phosphate 

coordination alone occurs only as a minority species. 
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2. Results and discussion 

 

2.1. Extent of the stability enhancement of several thiouridine complexes 

 

For all uridine derivatives (U), including the thio ones, the following two equilibria are of 

relevance for the present study: 

 U  (U – H)– + H+ (1a) 

 KU
H   =  [(U – H)–][H+]/[U] (1b) 

 M2+  +  (U – H)–  M(U – H)+ (2a) 

 KM(U  H)
M   =  [M(U – H)+]/([M2+][(U – H)–]) (2b) 

It should be noted that deprotonation of a hydroxyl group at the ribose ring occurs only with pKa 

= 12.5 [17] and is thus not of relevance in the present context. 

For families of structurally related ligands (L), plots of log KM(L)
M  versus pKH(L)

H  result in 

straight lines [18]; this is also true for L = (U – H)– ligands if only those with O donors in the 

uracil residue are considered [10]. Hence Eq. (3) holds: 

 log KM(U  H)
M   =  m · pKU

H  + b (3) 

The parameters m and b for the straight lines of 11 different divalent metal ions and their 

complexes are listed in Ref. [10]. In Fig. 2 log KM(U  H)
M  versus pKU

H  is plotted for the Ni2+ and 

Cd2+ complexes of several uridinate derivatives, together with some related data [19,20] which 

will be discussed in Section 2.2. 

insert Figure 2 close to here 

For the present it is important to note that the stabilities of the M(U2S – H)+ and M(U4S – H)+ 

complexes are significantly above the reference lines which hold for the M(U – H)+ complexes 

of simple uracil derivatives. This observation demonstrates that the thiouracil residues compared 

to the parent uracil residue have a much higher affinity toward Ni2+ and Cd2+; the same 

observation is made for Cu2+ (not shown in Fig. 2). In fact, the vertical dotted lines of the 

M(US – H)+ data points to the various reference lines reflect this stability enhancement. 
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The mentioned stability enhancement can be quantified based on Eq. (4): 

 log   =  log KM(US  H)
M  – log KM(U  H)calc

M  (4) 

The first stability constant given on the right hand side of Eq. (4) is the one experimentally 

measured for the various M(US – H)+ complexes. The second stability constant is calculated 

based on Eq. (3) and the known parameters [10] of m and b by application of the acidity constant 

pKUS
H  (Eq. (1)) valid for the deprotonation of the N(3)H site of the thiouridines. 

In Table 1 the acidity constants (column 3) of uridine and four of its thioderivatives (see Fig. 

1) are listed [3,10,13,21,22]. The corresponding measured stability constants are given in column 

5 whereas the calculated stability constants based on the basicity of N(3)– are compiled in 

column 6. Application of these data to Eq. (4) provides the stability enhancements of the 

complexes formed with the various thiouridines (Table 1, column 7). Of course, for the  

M(Urd – H)+ complexes no stability enhancement is observed. These stability data fit within the 

error limits on the reference lines. 

insert Table 1 close to here 

The observed stability enhancement is most pronounced for the Cu(U2S – H)+ complex. The 

slightly higher stability enhancement of the Cu(U2S5Ac – H) species is a simple charge effect of 

the acetate substituent in position 5. Interestingly, for the Ni(U2S – H)+ complex the stability 

enhancement is more pronounced by about 0.3 log units compared to the one formed with 

(U4S – H)–. For the complexes of Cd2+ the situation is just reversed. This may have to do with 

the size of these two cations because Cd2+ is larger and the (C4)S site is more exposed than 

(C2)S and therefore somewhat more easily accessible. 

Of interest is also the stability of the Ni(U2S4S – H)+ complex. Ni2+ cannot bind 

simultaneously to both S sites for sterical reasons. Therefore, it is revealing to consider the 

stability enhancements of the individual binding sites§ in (U2S – H)– and (U4S – H)– and to use 

these as micro stability enhancements to calculate an expected stability enhancement for  

____________________________________ 

§ Clearly, if these were identical then the extra stability enhancement would simply amount to 

0.3 log unit (equal to a factor of two) for the complex of the (U2S4S – H)– species. 
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Ni(U2S4S – H)+, i.e., 10(1.64±0.08) + 10(1.35±0.08) = 10(1.82±0.08); indeed, this value is within the error 

limits practically identical with the determined one, i.e., 10(1.95±0.09), for Ni(U2S4S – H)+ (Table 1; 

entry 4, column 7). This result indicates that the affinity of Ni2+ to (N3)– is not very pronounced 

because a "symmetrical" species based on a Ni2+-(N3)– coordination and a twofold S interaction 

should give rise to an additional stability enhancement. 

It is interesting to note that while (U2S – H)– forms very stable complexes with Cu2+ (see 

Table 1, entries 2b and 5), both analogues with a (C4)S unit (entries 3 and 4) immediately reduce 

Cu2+ to Cu+ [13]. This observation indicates that some negative charge from (N3)– is delocalized 

toward (C4)S because thionate groups are known to reduce Cu2+ effectively. This does not mean 

that such a charge delocalization does not also occur toward (C2)S but it appears to be less 

pronounced. 

 

2.2. Some considerations on the structure of the complexes formed with thiouridinates 

 

It seems wise to begin this discussion with some reconsiderations about the complexes of 

cytidine (Cyd) [20]. The data point for Ni(Cyd)2+ falls on the reference line defined by 

complexes of ortho-aminopyridine derivatives [20] as is evident from Fig. 2. This means that the 

(C2)O carbonyl group of Cyd does not affect the stability of Ni(Cyd)2+, hence, in this species 

Ni2+ is solely coordinated to N3. The same has been surmised for the Ni2+ complexes of the 

uridinate derivatives [10]. This is different for the Cd2+ (see Fig. 2) and Cu2+ complexes. Both 

M(Cyd)2+ species are more stable than is expected based on the reference lines of the ortho-

aminopyridine derivatives [20]. Furthermore, the reference line for the Cd(U – H)+ complexes is 

located even above the reference line due to the complexes formed with simple pyridine-type 

derivatives. This is evidence that the carbonyl groups are also involved in this case in metal ion 

binding [10]. For the Cyd complexes of Cu2+ and Cd2+ formation degrees for the chelates of 83 ± 

4 and 58 ± 11% have been calculated, respectively [20]. For the complexes formed with  

(Urd – H)–-type ligands this formation degree is most likely even higher [10]. 

From X-ray crystal structure studies (for details see [20]) it is known that Cd2+ and Cu2+ are 

able to form 4-membered chelates with the cytosine residue involving the N3 and (C2)O sites. 
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Co2+ binds in a monodentate fashion to N3 and the same was surmised for Ni2+, including the 

(U – H)– systems [10]. For the present study this means that Cu2+ and Cd2+ most likely form 4-

membered rings involving (N3)– and (C2)S (Fig. 3, Structure A). In fact, it is known that such 

low-membered chelates are more easily formed if a (C)O is replaced by a (C)S site [1]. For Ni2+ 

most probably the S sites in the (US – H)– ligands are the crucial ones though spectroscopic data 

indicate that also in this case some interaction with the (N3)– site occurs [13]. Of course, there is 

the possibility that also semichelates with a water molecule between the S-coordinated Ni2+ and 

(N3)– form (see Fig. 3, Structure B). It is evident that the total amount of chelates formed with 

Cd2+ and Cu2+ must be larger than the  numbers given above for the corresponding Cyd 

complexes due to the very significant stability enhancements of about 1.3 and 2.3 log units, 

respectively (Table 1, entries 2b and 2c, column 7). Considering that the stability enhancements 

for the Ni2+ and Cd2+ complexes are in a comparable order (see Table 1), chelate formation also 

for Ni2+ must be assumed. 

The most likely structures of these chelates for the (U2S – H)– ligand, as an example, are 

summarized in Fig. 3: Structure A is believed to be important in accordance with the mentioned  

insert Figure 3 close to here 

X-ray structures, even in solution. For Ni2+, and possibly also to some extent Cd2+ and Cu2+, 

Structure B may be of relevance. Structures as indicated in C involving a sulfur-hydrogen bond 

are in aqueous solution probably not very important because S, in contrast to O, is not an 

excellent site for H bond formation. 

 

2.3. Definitions regarding the stabilities of thiouridine 5'-monophosphates 

 

The structures of the two thionucleotides to be discussed in this section, i.e., U2SMP2– and 

U4SMP2–, are shown in Fig. 4 below. The equilibrium constants to be considered are defined in 

Eqs. (5)–(8): 

H(USMP)–   H+  +  USMP2– (5a)  

  KH(USMP)
H  = [H+][USMP2–]/[H(USMP)–] (5b) 
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USMP2–    H+  +  ((US – H)MP)3– (6a) 

 KUSMP
H  = [H+][((US – H)MP)3–]/[USMP2–] (6b) 

M2+  +  USMP2–    M(USMP) (7a) 

 KM(USMP)
M  = [M(USMP)]/([M2+][USMP2–]) (7b) 

M2+  +  ((US – H)MP)3–    M[(US – H)MP]– (8a) 

 KM[(US  H)MP]
M  = [M[(US – H)MP]–]/([M2+][((US – H)MP)3–]) (8b) 

However, of relevance for the present evaluations are only the acidity constants defined in Eqs. 

(5) and (6) as well as the stability constant of the M[(US – H)MP]– complex (Eq. (8)) in which 

(N3)H is deprotonated (see Table 3, vide infra). M(USMP) complexes (Eq. (7)) also form, at 

least in part: For example, Cu(U2SMP) exists, but it is better written as Cu·(U2S – H)MP·H to 

indicate that Cu2+ is at the thiouracil residue and the proton at the phosphate group; 

deprotonation of this H+ occurs with pKa = 5.67 [14]. This means, Cu2+ at the uracil moiety 

acidifies the proton at the P(O)2(OH)– group of H(U2SMP)– by pKa = pKH(U2SMP)
H  – 

pKCu (U2S  H)MP H
H  = (6.10 ± 0.02) – (5.67± 0.05) = 0.43± 0.05; a value which is in excellent 

agreement with the reasonings discussed below in Section 2.4. 

It may be further added here that the deprotonation of the monoprotonated phosphate groups 

in H(U2SMP)– and H(U4SMP)– occurs with pKH(U2SMP)
H  = 6.10 ± 0.02 and pKH(U4SMP)

H  = 6.07 ± 

0.03, respectively [14]; these values are very similar to that of the parent H(UMP)– species which 

has pKH(UMP)
H  = 6.15 ± 0.01 [23]. This is very different for the deprotonation of the (N3)H sites 

in these compounds: For U2SMP2– and U4SMP2– pKU2SMP
H  = 8.30 ± 0.01 and pKU4SMP

H  = 8.23 ± 

0.02, respectively [14] hold, showing that, if compared with UMP2–, i.e., pKUMP
H  = 9.45 ± 0.02 

[23], here the exchange of (C)O by a (C)S group has a very pronounced effect. 

The question that arises in the present case is: Does any macrochelate formation as indicated 

in equilibrium (9) occur?  

phosphate-ribose-base phosphate-r
i
b
o
s
eb a s e -

M2+ M2+
KI

 

 
(9) 
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Evidently a simultaneous coordination of a metal ion to one of the (C)S sites and the phosphate 

group could occur only if the thionucleotides are transformed from their dominating anti into the 

syn conformation (see Fig. 4). This energy barrier is in the order of about 7 kJ/mol as is known 

from related nucleotides [20]. Consequently, the parent UMP2– does not form any macrochelates 

with the common divalent metal ions [24,25]. Does the exchange of a (C)O site by a (C)S unit 

change the situation? 

insert Figure 4 close to here 

This question can best be answered by a new evaluation method which was recently 

introduced to quantify the chelate [15] or macrochelate effect [16]. This effect refers to an 

enhanced stability of a complex formed by a ligand offering two or more donor atoms if these 

two (or more) donor atoms participate simultaneously in complex formation. The method is 

based on an 'expected' stability constant which is calculated from the micro stability constants of 

the individual binding sites possibly involved, in the present case this is a (C)S unit and the 

phosphate group. This expected constant is defined in Eq. (10): 

KM[(US  H)MP]expected
M  =  

[((US  H)MP M) ] + [(M (US  H)MP) ]

[M 2+ ][((US  H)MP)3 ]
 (10a) 

  =  k(US  H)MP M
M  + kM (US  H)MP

M  (10b) 

Phosphate coordination is represented in these isomeric species by ((US – H)MP·M)– and 

thiouracil binding by (M·(US – H)MP)–. 

 

2.4. Evaluations of the M[(US – H)MP]– complexes with regard to the chelate effect 

 

The first of the micro stability constants which appear in Eq. (10b) can be calculated based 

on previous research obtained with phosph(on)ate ligands (R-PO3
2 ) and their complexes 

[26,27]. Plots of log KM(R-PO 3)
M  versus pKH(R-PO3)

H  resulted in straight lines defined in analogy 

to Eq. (3). The corresponding parameters for the three metal ions considered here are given in 

Eqs. (11) to (13): 

 log KNi(R-PO 3)
Ni  =  0.245·pKH(R-PO3)

H  + 0.422 (11) 
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 log KCu(R-PO 3)
Cu  =  0.465·pKH(R-PO3)

H  – 0.015 (12) 

 log KCd(R-PO 3)
Cd  =  0.329·pKH(R-PO3)

H  + 0.399 (13) 

The error limits (3 ) of log stability constants calculated with given pKH(R-PO3)
H  values and Eqs. 

(11), (12) and (13) are ±0.05, ±0.06 and ±0.05, respectively, in the pH range 5–8 [26–28]. 

For the calculation of a stability constant based on Eqs. (11)–(13) the acidity constant 

pKH(R-PO3)
H  is needed. As discussed above, for monoprotonated 2-thiouridine 5'-monophosphate, 

H(U2SMP)–, the acidity constants pKH(U2SMP)
H  = 6.10 ± 0.02 (Eq. (6)) and pKU2SMP

H  = 8.30 ± 

0.01 (Eq. (7)) hold [14]. Evidently it is the first value that is of relevance here but it is also clear 

that this value needs to be corrected for the charge effect that the (N3)– site exercises on the 

deprotonation of the P(O)2(OH)– group because the complexes are formed with both ligand sites 

being deprotonated and have such the composition M[(U2S – H)MP]–. 

This charge effect follows from a comparison of the pKU2SMP
H  (Eq. (6)) and pKU2S

H  values 

(Eq. (1)) because the first acidity constant involves the effect of the twofold negatively charged 

phosphate group on the release of the proton from the (N3)H site, i.e., Eq. (14) holds: 

pKa  =  pKU2SMP
H  – pKU2S

H   =  (8.30 ± 0.01) – (8.05 ± 0.01)  =  0.25 ± 0.01 (14) 

Because such effects must be reciprocal, it is not surprising that the same effect was observed for 

a distance-wise very similar deprotonation of the monoprotonated phosphate group of orotidinate 

5'-monophosphate (pKH(OMP)
H  = 6.40 ± 0.02 [29]) and uridine 5'-monophosphate (pKH(UMP)

H  = 

6.15 ± 0.01 [23]), i.e., pKa = 0.25 ± 0.02. Hence, for the micro acidity constant of U2SMP valid 

for the deprotonation of the monoprotonated phosphate group under conditions where the 

thiouracil residue is deprotonated pk(U2S  H)MP H
(U2S  H)MP  = (6.10 ± 0.02) + (0.25 ± 0.01) = 6.35 ± 0.02 

follows. This microconstant represents the basicity of the phosphate group of ((U2S – H)MP)3– 

and may be used together with the straight-line plots of Eqs. (11)–(13). These results are given in 

column 4 of Table 2. The analogous calculations for H(U4SMP)– with the acidity constants 

pKH(U4SMP)
H  = 6.07 ± 0.03 and pKU4SMP

H  = 8.23 ± 0.02 lead with Eq. (15) 

pKa =  pKU4SMP
H  – pKU4S

H   =  (8.23 ± 0.02) – (8.01 ± 0.01)  =  0.22 ± 0.02 (15) 
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to the micro acidity constant pk(U4S  H)MP H
(U4S  H)MP  = (6.07 ± 0.03) + (0.22 ± 0.02) = 6.29 ± 0.04 which 

is needed for the straight-line equations. 

insert Table 2 close to here 

However, the stability constants given in column 4 of Table 2 need to be corrected for the 

charge effect that the uncoordinated but negatively charged thiouracilate residue exercises on a 

metal ion bound to the PO3
2  group. This effect amounts to 0.40 ± 0.15 log units [16,26,29] (in 

excellent agreement with the value given in Section 2.3 in the paragraph which follows Eqs. (5)–

(8)). Hence, this value needs to be added to the constants listed in column 4 to give the micro 

stability constants for the ((US – H)MP·M)– species formed at the phosphate site of the  

((US – H)MP)3– thionucleotides (Table 2, column 5). 

Values for the second micro stability constant in Eq. (10b) are obtained by employing the 

known (see Table 1) stability constants of the thiouridinate complexes, M(US – H)+. These 

values are provided in column 6 of Table 2 and they need to be corrected for the difference in 

basicity of the uracilate residue in the thiouridinates and in the ((US – H)MP)3– species. These 

differences have already been expressed in Eqs. (14) and (15) for U2SMP and U4SMP, 

respectively. Application of the slopes of the log KM(U)
M  versus pKU

H  straight-line plots ([10]; see 

also Fig. 2) leads to the basicity-corrected log KM(US  H)B,cor
M  values listed in column 7. It is 

evident from Table 2 that these corrections are very minor. More important is the effect that the 

uncomplexed, twofold negatively charged PO3
2  group has on M2+ binding at the thiouracil 

residue; this charge effect amounts to about 0.60 ± 0.15 log units [16] and may be compared 

with the mentioned 0.40 ± 0.15 log units due to the singly charged P(O)2(OH)– group (see 

above). Addition of 0.60 log units to the values in column 7 gives the logarithms of the micro 

stability constants log kM (US  H)MP
M  listed in column 8; they quantify the metal ion affinity of 

the thiouracilate residue in the ((US – H)MP)3– ligands. 

Now the expected stability of the M[(US – H)MP]– complexes can be calculated according 

to Eq. (10b). These values are listed in column 5 of Table 3. In other words, now the expected  

insert Table 3 close to here 

stability constants log KM[(US  H)MP]expected
M  (Eq. 10) for M[(US – H)MP]– complexes without 
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any macrochelate formation, but based solely on the M2+ affinity of the two individual binding 

sites of ((US – H)MP)3– are known, and therefore we can define the chelate effect [15,16] 

according to equation (16) by comparing the expected stability constant with the one actually 

measured: 

  log Chelate  =  log KM[(US  H)MP]
M  – log KM[(US  H)MP]expected

M  (16) 

The values for the three terms which appear in Eq. (16) are listed in columns 6, 4 and 5, 

respectively, in Table 3. 

A view on the log Chelate values in column 6 of Table 3 reveals that a chelate effect is only 

observed for the Cu[(U2S – H)MP]– complex; possibly there is also a small effect for the 

Cd[(U2S – H)MP]– species. This means that only Cu2+ (and possibly Cd2+) is (are) able to bind to 

the (C2)S/(N3)– unit and simultaneously to the phosphate group, thus forcing U2SMP into the 

less stable syn conformation. It is not surprising that no indication for any macrochelate 

formation in the complexes of the ((U4S – H)MP)3– ligand is observed because the structure of 

this ligand (see Fig. 4) is such that a metal ion bound at the (C4)S/(N3)– unit can hardly reach the 

phosphate group and vice versa. It is not clear why in the latter case the expected values are 

relatively high compared to the measured ones (Table 3, entries 2), but still it is certain that no 

hint for macrochelate formation occurs. 

 

2.5. Formation degrees of the various M[(US – H)MP]– isomers 

 

Because the definition of the macrochelate effect as given in Eq. (16) is based on the micro 

stability constants of individual metal ion binding sites (Eq. (10b)), knowledge of log Chelate 

allows not only the calculation of the formation degree of the macrochelate but also of the 

species in which M2+ is solely bound either to the thiouracilate moiety or to the phosphate group 

of ((US – H)MP)3–. Evidently this kind of knowledge is meaningful for biological systems [30–

32] because it demonstrates how metal ions can switch from one site to another through 

macrochelate formation [16]. 

At this point it is helpful to note that from Eq. (16) Eq. (17) follows: 

 10log Chelate  = KM[(US  H)MP]
M /KM[(US  H)MP]expected

M  (17a) 
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   =  KM[(US  H)MP]
M /( k(US  H)MP M

M  + kM (US  H)MP
M ) (17b) 

   =  
[M[(US  H)MP] ]

[((US  H)MP M) ] + [(M (US  H)MP) ]
 (17c) 

According to this definition (Eq. 17) 10log Chelate is the dimensionless equilibrium constant that 

quantifies the position of equilibrium (18): 

 {((US – H)MP·M)– + (M·(US – H)MP)–}   M[(US – H)MP]– (18) 

In this equilibrium the left side contains the sum of the 'open' species resulting from metal ion 

binding to the individual sites of ((US – H)MP)3–, whereas M[(US – H)MP]– at the right hand 

side represents the total amount of complexes formed, including the chelates. 

For log Chelate = 0 in Eq. (16), the ratio given in Eq. (17c) equals one; this means, as it 

should be, that no chelates exist and that all M[(US – H)MP]– species are present as the open 

((US – H)MP·M)– and (M·(US – H)MP)– isomers. For all situations in which log Chelate > 0, the 

ratio will be larger than 1 and this then means that macrochelates exist [16]. For example, for log 

Chelate = 0.3, a value of 2:1 follows for the ratio given in Eq. (17c). This means that 50% of all 

M[(US – H)MP]– complexes exist in the form of macrochelates. 

Of course, the two open species are also in equilibrium with each other. Clearly, the position 

of this equilibrium is defined by the ratio of the two micro stability constants given in Eq. (10b), 

the values of which are listed in columns 5 and 8 of Table 2. Application of this information 

allows one to calculate the formation degrees of all the species present in a M[(US – H)MP]– 

system, that is, the amount of 'closed' or macrochelated species present, and consequently, also 

of the total amount of open species, M[(US  H)MP]op/tot. Application of the micro stability 

constants to these percentages gives then those of the two open species at their individual 

binding sites. The corresponding results are listed in Table 4. 

insert Table 4 close to here 

Several conclusions are possible from these results: (i) In the case of the Cu[(U2S – H)MP]– 

species the macrochelates dominate with approximately 58%; however, from the in total 42% of 

the open species practically all have Cu2+ coordinated to the thiouracilate residue and purely 

phosphate-bound species occur only in trace amounts. (ii) The upper and lower limits given of 
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the various isomers for the Cd[(U2S – H)MP]– system (Table 4, entry 1c) demonstrate how 

relatively small changes in log Chelate (as long as the value is below 1) heavily affect the 

formation degrees of the isomers. (iii) As one might have expected, in all those instances where 

macrochelates form only in trace amounts or not at all, thiouracilate coordination dominates 

heavily, but even though, small amounts of solely phosphate-coordinated complexes are still 

formed. 

 

 

3. Conclusions 

 

Despite all the shortcomings which arise from the estimates of the charge effects (given with 

generous error limits) on the micro stability constants employed for the individual binding sites 

(see Table 2), it is evident that meaningful results are still obtained: Replacement of one of the 

carbonyl oxygens in an uracil residue by a sulfur atom significantly affects the metal ion binding 

properties of the corresponding nucleosides or nucleotides. Clearly, the presence of a sulfur atom 

strongly enhances the stabilities of the complexes formed with Ni2+, Cu2+ or Cd2+. 

In contrast, for alkaline earth ions, like Mg2+ or Ca2+, which have a very low affinity toward 

sulfur sites, it is expected that, for example, Mg[(U2S – H)MP]– behaves very similar as 

Mg(UMP – H)–, except that the thio species loses its proton from the (N3)H site at a much lower 

pH and may thus exist in the physiological pH range. 

For the biologically important Zn2+ no information is available, but based on the Stability 

Ruler of Martin [4–6] it is expected that the properties of its complexes are approximately 

between those described herein for the Ni2+ and Cd2+ complexes. In other words, Zn2+ is expected 

to bind heavily to the thiouracilate residue. Again, due to the higher acidity of the sulfur-

containing ligands, these (N3)H-deprotonated species are expected to occur to some extent also 

in the physiological pH range as it is the case with the Ni2+ and Cd2+ complexes [14] of the 

thiouridinate 5'-monophosphates. 
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4. Abbreviations and definitions 

 

See Figures 1 and 4 for the uracil derivatives; I, ionic strength; Ka, acidity constant; L, 

general ligand; M2+, general divalent metal ion; R-PO3
2 , simple phosphate monoester or 

phosphonate ligand with a residue R that does not affect metal ion binding; U, uracil derivative 

(see Fig. 1) which often also includes the thio derivatives, if so, this is clear from the context; 

US, thiouracil derivative. Formulas like U2SMP (see Fig. 4) written without a charge represent 

the species in general. 
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Table 1 

Negative logarithms of the acidity constants (Eq. (1)) of uridine and its thio derivatives (U) shown in 

Fig. 1, together with the stability constant comparisons for several M(U – H)– complexes between the 

measured stability constants (Eq. (2)) and the calculated ones based on Eq. (3) with the resulting 

stability differences log  as defined by Eq. (4)a 

 

No.     U       pKU
H  M2+ log KM(U  H)

M  log KM(U  H)calc
M  log  

1a Urd 9.18 ± 0.02 Ni2+ 1.76 ± 0.06 1.70 ± 0.07    0.06 ± 0.09 

  b   Cu2+ 4.13 ± 0.20 4.13 ± 0.21    0 

  c   Cd2+ 3.16 ± 0.04 3.21 ± 0.05  –0.05 ± 0.06 

2a U2S 8.05 ± 0.01 Ni2+ 2.99 ± 0.04 1.35 ± 0.07    1.64 ± 0.08 

  b  8.05 ± 0.04 Cu2+ 5.91 ± 0.06 3.62 ± 0.21    2.29 ± 0.22 

  c  8.05 ± 0.01 Cd2+ 4.11 ± 0.03 2.77 ± 0.05    1.34 ± 0.06 

3a U4S 8.01 ± 0.01 Ni2+ 2.68 ± 0.04 1.33 ± 0.07    1.35 ± 0.08 

  b   Cd2+ 4.34 ± 0.01 2.75 ± 0.05    1.59 ± 0.05 

4 U2S4S 7.17 ± 0.01 Ni2+ 3.02 ± 0.05 1.07 ± 0.07    1.95 ± 0.09 

5 U2S5Ac– 8.55 ± 0.04 Cu2+ 6.45 ± 0.06 3.85 ± 0.21    2.60 ± 0.22 

 a The values in entries 1 are from Ref. [10] (25ºC; I = 0.1 M, NaNO3) (3 ). The stability 

constant for Cu(Urd – H)+ (entry 1b) is calculated from the log KCu(U  H)
Cu  versus pKU

H  plot (see [10]); 

this result agrees well with log KCu(Urd  H)
Cu  = 4.2 ± 0.2 (25ºC; I = 1 M, NaNO3) [21]) and 4.32 ± 0.06 

(20ºC; I = 0.1 M, KNO3 [22]). –  Entries 2b and 5 are from Ref. [3]; all the other values in entries 2, 3 

and 4 are from Ref. [13] (25ºC; I = 0.2 M, KCl) (1 ). – The error limits listed above (  = standard 

deviation) are those given in the various studies. The error limits of the derived data, in the present 

case for log , were calculated according to the error propagation after Gauss. This also holds for the 

errors given in the other tables of this study. 
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Table 2 

Estimation of the various micro stability constants needed for the application of Eq. (10b) regarding the independent metal ion-binding sites, i.e., the 

thiouracilate residue and the phosphate group of the ((US – H)MP)3– ligands (see Fig. 4)a 

 

No. ((US – H)MP)3– M2+ log KM(R-PO 3)
M  log k(US  H)MP M

M  log KM(US  H)
M  log KM(US  H)B,cor

M  log kM (US  H)MP
M  

1a ((U2S – H)MP)3– Ni2+ 1.98 ± 0.05 2.38 ± 0.16 2.99 ± 0.04 3.07 ± 0.04 3.67 ± 0.16 

  b  Cu2+ 2.94 ± 0.06 3.34 ± 0.16 5.91 ± 0.06 6.02 ± 0.06 6.62 ± 0.16 

  c  Cd2+ 2.49 ± 0.05 2.89 ± 0.16 4.11 ± 0.03 4.21 ± 0.03 4.81 ± 0.15 

2a ((U4S – H)MP)3– Ni2+ 1.96 ± 0.05 2.36 ± 0.16 2.68 ± 0.04 2.75 ± 0.04 3.35 ± 0.16 

  b  Cd2+ 2.47 ± 0.05 2.87 ± 0.16 4.34 ± 0.01 4.43 ± 0.01 5.03 ± 0.15 

 a For details see text in Section 2.4. – Note, the values given in column 4 were calculated with Eqs. (11)–(13) and those listed in column 6 

are from Table 1. 
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Table 3 

Comparison of the measured (Eq. (8)) and calculated (expected) stability constants of several  

M[(US – H)MP]– complexes and their evaluation towards the chelate effect as defined by Eq. (16)a 

 

log KM[(US  H)MP]
M  

 

No. 
 
((US – H)MP)3– 

 
      M2+ 

  measured  expected 

 
log Chelate 

1a ((U2S – H)MP)3– Ni2+ 3.51 ± 0.04 3.69 ± 0.15    0 

  b  Cu2+ 7.00 ± 0.04 6.62 ± 0.16    0.38 ± 0.16 

  c  Cd2+ 4.93 ± 0.03 4.82 ± 0.15    0.11 ± 0.15 

2a ((U4S – H)MP)3– Ni2+ 2.85 ± 0.08 3.39 ± 0.15    0 

  b  Cd2+ 4.76 ± 0.04 5.03 ± 0.15    0 

 a For further details see text in Section 2.4. The measured constants in column 4 are from Ref. 

[14] (25ºC; I = 0.1 M, KNO3) and the expected values in column 5 were calculated according to Eq. 

(10b) by using the micro stability constants listed in columns 5 and 8 of Table 2. 
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Table 4 

Summary of the formation degrees of the macrochelated (closed) species, M[(US – H)MP] cl, of the total open species, M[(US – H)MP] op/tot , as well 

as of the open phosphate- and thiouracilate-coordinated complexes, ((US – H)MP·M)– and (M·(US – H)MP)–, as calculated (Eq. (17)) based on the 

extent of the chelate effect (Eq. (16)) and the micro stability constants for individual binding of the metal ions (Table 2, columns 5 and 8) either to the 

phosphate group or the thiouracilate residue (Eq. (10)) in aqueous solutiona 

 

No. ((US – H)MP)3– M2+ log Chelate % M[(US – H)MP] cl % M[(US – H)MP] op/tot  % ((US – H)MP·M)– % (M·(US – H)MP)– 

1a ((U2S – H)MP)3– Ni2+     0             0          100          5           95 

  b  Cu2+     0.38 ± 0.16           58            42          0.02           42 

  c  Cd2+     0.11 ± 0.15           22 (45/0)            78 (55/100)          1 (0.7/1.2)           77 (54/99) 

2a ((U4S – H)MP)3– Ni2+     0             0          100          9           91 

  b  Cd2+     0             0          100          1           99 

 a The values in column 4 are from Table 3 (column 6). The percentage of M[(US – H)MP] op/tot  follows from Eq. (17c) because the total amount 

of M[(US – H)MP]– present equals 100%; hence, it follows further that % M[(US – H)MP] cl = 100 – % M[(US – H)MP] op/tot . Application of the 

micro stability constants (Table 2, columns 5 and 8) of the ((US – H)MP·M)– and (M·(US – H)MP)– species to the total amount of  

M[(US – H)MP] op/tot  present, allows calculation of the percentages of the individually bound open isomers (see also text in Section 2.5). The listed 

values are only estimations due to the large error limits of the micro stability constants, but the above results still prove that both isomers exist in 

equilibrium. As an example for entry 1c the upper and lower limits are listed as they follow from log Chelate = 0.26 (= 0.11 + 0.15) and 0.00 (= 0.11 – 

0.15), respectively. 
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Figure Legends 

 

Fig. 1.  Chemical structures of uridine (Urd), 2-thiouridine (U2S), 4-thiouridine (U4S), 5-

carboxymethyl-2-thiouridine (U2S5Ac–), 2,4-dithiouridine (U2S4S) and cytidine (Cyd). All 

pyrimidine nucleosides are shown in their dominating anti conformation [11,12]. The uridine 

derivatives are abbreviated as U and in the (N3)–-deprotonated, anionic form as (U – H)–, which is 

to be read as U minus H+; of course, the resulting negative charge at N3 can be delocalized in part to 

the neighboring (C)O or (C)S units. Further abbreviations and definitions are given in the legend of 

Fig. 4 and in Section 4. 

 

Fig. 2.  Evidence of an increased stability of several M(US – H)– complexes of Ni2+ and Cd2+ ( ) 

based on the comparison of their data points (values from Table 1; 25ºC; I = 0.2 M, KCl) with the 

log KM(U  H)
M  versus pKU

H  straight-line relationships ( ) [10] for uridinate-type ligands (U – H)– 

and their complexes formed with Ni2+ and Cd2+, as well as with the corresponding relationships 

between log KM(L)
M  and pKH(L)

H  for simple pyridine-type ligands PyN ( ) and the sterically 

inhibited o-amino(methyl)pyridine-type ligands oPyN ( ) [19]; the data points for the M2+/Cyd 

systems ( ) [20] are given for further comparisons (25ºC; I = 0.5 M, NaNO3). The least-squares 

straight reference lines are drawn according to Eq. (3). The plotted equilibrium constants refer for 

the M2+/(U – H)– systems ( ) to (from left to right) 5-fluorouridine, 5-chloro-2'-deoxyuridine, 

uridine and thymidine (= 2'-deoxy-5-methyluridine) (25ºC; I = 0.1 M, NaNO3) [10], for the PyN 

systems (L) ( ) to 3-chloropyridine, 4-bromopyridine, 4-(chloromethyl)pyridine, pyridine, 3-

methylpyridine and 3,5-dimethylpyridine [19], and for the o-substituted oPyN systems (L) ( ) to 2-

methyl-5-bromopyridine, 2-amino-5-bromopyridine, tubercidine (= 7-deazaadenosine), 2-

methylpyridine and 2-aminopyridine [19] (25ºC; I = 0.5 M, NaNO3). The reduced stability of the 

M(oPyN)2+ complexes, compared to the M(PyN)2+ ones, reflects the steric inhibition of an o-amino 

(or o-methyl) group. The change in I from 0.1 to 0.5 M is of no significance because the small 

connected shifts in log K and pKa go "parallel" to each other. 

 

 



   
   
    

23

Fig. 3.  Possible metal ion-binding modes in the chelates formed in equilibrium by the M(U2S – H)+ 

complexes (as an example) in aqueous solution (see Section 2.2). The negative charge in the 2-

thiouridinate structures is shown on N3, but it can be delocalized in part on the neighboring (C)O 

and (C)S groups. Of course, in Structure C a further semichelate may be formed involving a 

coordinated water molecule and the (C4)O group. 

 

Fig. 4.  Chemical structures of 2-thiouridine 5'-monophosphate (U2SMP2–) and 4-thiouridine 5'-

monophosphate (U4SMP2–) as well as of their parent nucleotide uridine 5'-monophosphate (UMP2–) 

shown in their dominating anti conformation [11,12]. Deprotonation of the thiouridine 5'-

monophosphates (USMP2–) at the (N3)H site leads to 3-fold negatively charged species which are 

written as ((US – H)MP)3– to indicate that the proton is released from the thiouracil residue. 
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