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Abstract – X-Ray analyses of 1-hydroxyyohimbine derivatives clearly show the 

deviation of the N(1)—O bond from the indole molecular plane. This 

phenomenon supports our working hypothesis “bishomoallylic conjugation”. The 

deviation is responsible for the unprecedented nucleophilic substitution reaction 

in 1-hydroxyindole chemistry and effected the synthesis of novel 

7β-heteroarylyohimbine and 4aα-heteroaryl-1,2,3,4-tetrahydro-β-carboline 

derivatives from the corresponding 1-hydroxyindole derivatives.

We have disclosed that the unprecedented2 nucleophilic substitution reaction in indole chemistry3,4 takes 

place once a hydroxy group is introduced onto the nitrogen, N(1),4,5 of the indole substrate. We can 

explain the reason based on our working hypothesis,5 referred to as bishomoallylic conjugation.5 Thus, 

the deviation angle θ of the N(1)—O bond (A, Scheme 1) from the indole molecular plane is 

responsible4,5 for the nucleophilic substitution reactions of the 1-hydroxytryptamine and 

1-hydroxytryptophan derivatives.4,5 In this report, we now wish to describe further evidence for 

supporting the hypothesis by examining the reactions of 1-hydroxyyohimbine6 (1) and 

9-hydroxy-1,2,3,4-tetrahydro-β-carboline derivatives in the presence of a nucleophile.  
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First, we prepared 1,6 1-methoxyyohimbine (2),6,7 and (S)-9-hydroxy-3β-methoxycarbonyl-1,2,3,4- 

tetrahydro-β-carboline8 (3) according to our procedures. 
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The ORTEP drawings9 of X-ray single-crystal analysis for 1H+·CH3SO3
- and 2 are shown in Figures 1 

and 2, respectively. They clearly demonstrate that the N(1)—O bond in 1 and 2 have angle θs of 24.2° 

and 12.7°, respectively. These values are sufficient for expecting the nucleophilic substitution reactions 

to take place judged from our hypothesis.5 It should be noted that the directions of the N(1)—O bond in 1 

and 2 are opposite. Thus, the former is projecting below the molecular plane (α-side), while the latter 

above the plane (β-side) allowing the attached large methyl group to place in the less-hindered α-side. 

This means that the manipulation of the 1-hydroxy group of 1 inverts the initial stereochemistry of the 

N(1)—O bond.  

With these data in consideration, 1 was reacted with tosyl chloride (TsCl) in CHCl3-Et3N at room 

temperature in the presence of indole. As expected, nucleophilic substitution reaction took place and 

among polymerized indole products, a 19% yield of 4a10a was isolated as a major one. Elemental analysis 

and high-resolution mass spectrometry showed that an indole unit is introduced onto the yohimbine 

skeleton. Its 13C-NMR spectrum showed characteristic signals at δ 187.86 and 56.84 ascribed to newly 

formed imine and quaternary carbons, C(2) and C(7), respectively. 

To get more information, 4a was treated with Boc2O to afford the 

7β-(N-tert-butoxycarbonylindol-3-yl)-7H-yohimbine10b (4b) in 90% yield. Comparing the 1H-NMR 

spectra of 4a and 4b, the Boc group is found to cause an anisotropic effect on both protons attached to 

the C(2’) and C(7’) suggesting that the introduced indole has a bond at the 3’-position. The X-ray 

single-crystal analysis of 4a proved it to be 7β-(indol-3-yl)-7H-yohimbine as shown in ORTEP drawing 

in Figure 3. Similar reaction of 1 with TsCl in CHCl3-Et3N at room temperature in the presence of 

pyrrole afforded 6% yield of 7β-(pyrrol-2-yl)-7H-yohimbine10c (5) among polymers. 
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The stereoselective formation of 4a could be explained by a concerted SN2’ mechanism as shown in 

Scheme 2. First, TsCl converts the 1-hydroxy to a good leaving 1-tosyloxy group. The direction of the 

N(1)—O bond projects to the β-side like 2. On departure of the leaving group toward the β-side as 

shown in the transition state (B), indole π-electrons move and form the N(1)=C(2) double bond from the 

backside (α-side). Subsequent attack of the nucleophile (indole) at the C(3) from the β-side completes 

two sequential inversion steps to produce 4a.   

Similar nucleophilic substitution reactions were realized employing 3 as a starting material (Scheme 1). 

The reaction of 3 with TsCl in CHCl3-Et3N at room temperature in the presence of indole or pyrrole 

provided (S)-4aα-(indol-3-yl)-10d (6a) and (S)-4aα-(pyrrol-2-yl)-3β-methoxycarbonyl-1,2,3,4-tetrahydro- 

β-carboline10e (7) in 8 and 9% yields, respectively. The characteristic signals at δ 184.19 and 56.67 in the 
13C-NMR spectrum of 6a showed newly formed imine and quaternary carbons, C(9a) and C(4a), 

respectively. Treatment of 6a with Boc2O in the presence of DMAP and Et3N afforded 

(S)-4aα-(N-tert-butoxycarbonylindol-3-yl)-3β-methoxycarbonyl-1,2,3,4-tetrahydro-β-carboline10f (6b) in 

poor 9% yield probably because of steric crowding.  

Since 6a, 6b, and 7 are all oily compounds, their stereochemistries are determined by nOe experiments. 

The results are shown in Figure 4. In the case of 6a, nOe is observed between the proton pairs of 

H(2’)—H(4, equatorial) and H(2’)—H(3, axial) by 5.4 and 4.7%, respectively. In the case of 7, nOe is 

observed between the pairs of H(3’)—H(4, equatorial) and H(2’)—H(3, axial) by 4.8 and 4.5%, 

respectively. Based on these data, their structures are proved as shown. These results suggested that 

selective introduction of nucleophiles occurred from the less hindered α-side of 3.  
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In summary, we demonstrated examples of stereoselective nucleophilic substitution reactions based on 

1-hydroxyindole chemistry and succeeded in the production of thus far unknown 

7β-heteroarylyohimbine and 4aα-heteroaryl-1,2,3,4-tetrahydro-β-carboline derivatives. Although the 

yields of them are poor at present, further examination for establishing the optimal reaction conditions 

would overcome the problem. These novel compounds are expected to be a new family of biologically 



 

active compounds. 
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