Total synthesis of (\pm)－stemonamide， (\pm)－isostemonamide，(\pm)－stemonamine，and
(\pm)－isostemonamine using a radical cascade

メタデータ	言語：eng
	出版者：
	公開日：2017－10－04
	キーワード（Ja）：
	キーワード（En）：
	作成者：
	メールアドレス：
	所属：
URL	https：／／doi．org／10．24517／00015353

This work is licensed under a Creative Commons
Attribution－NonCommercial－ShareAlike 3.0
International License．

Total synthesis of (\pm)-stemonamide, (\pm)-isostemonamide, (\pm)-stemonamine, and (\pm)-isostemonamine using a radical cascade

Tsuyoshi Taniguchi and Hiroyuki Ishibashi*

Division of Pharmaceutical Sciences, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan

Abstract

A total synthesis of (\pm)-stemonamide and (\pm)-isostemonamide has been achieved by using a radical cascade that involves two endo-selective cyclizations. (\pm)-Stemonamine and (\pm)-isostemonamine are synthesized by chemoselective reduction of (\pm)-stemonamide and (\pm)-isostemonamide, respectively.

Keywords: Isostemonamide; Isostemonamine; Radical cascade; Stemonamide; Stemonamine.

[^0]
1. Introduction

Stemona alkaloids such as (-)-stemonamide (1) and (-)-isostemonamide (2) and their reduced compounds, (\pm)-stemonamine (3) and (\pm)-isostemonamine (4), were isolated from the roots of Stemona japonica, which have been used in Chinese and Japanese folk medicine as cough medicines and insecticides. ${ }^{1,2}$ Their tetracyclic structure including

$X=O$: stemonamide (1) $\quad X=O$: isostemonamide (2)
$X=\mathrm{H}_{2}$: stemonamine (3) $X=\mathrm{H}_{2}$: isostemonamine (4)
Figure 1. Stemonamide and related alkaloids.
contiguous spirocyclic quaternary centers provides attractive target molecules for total synthesis. ${ }^{3,4}$ We wish to report herein a total synthesis of (\pm)-stemonamide (1) and $(\pm$-isostemonamide (2) using a radical cascade as the key step and the synthesis of (\pm)-stemonamine (3) and (\pm)-isostemonamine (4) by chemoselective reduction of (\pm) - $\mathbf{1}$ and $(\pm)-2$, respectively. ${ }^{5}$

2. Results and Discussion

2.1. Synthesis of (\pm)-stemonamide (1) and (\pm)-isostemonamide (2) using radical cascade

involving two endo selective cyclizations

Our strategy for the synthesis of (\pm)-stemonamide (1) is shown in Scheme 1. Compound $(\pm)-\mathbf{1}$ was envisaged to arise from tricyclic compound 5 , which, in turn, was obtained by a $\mathrm{Bu}_{3} \mathrm{SnH}$-mediated radical cascade of $\mathbf{6}$ involving two endo-selective cyclizations.

Scheme 1. Retrosynthetic analysis.

Synthesis of $\mathbf{6}$ was begun by condensation of 1,2-cyclopentanedione and 4-(tert-butyldimethylsilyloxy)butylamine followed by acylation of the resulting imine with acryloyl chloride in the presence of N, N-diethylaniline to give enamide 7 (Scheme 2). After removal of the TBS group of 7, mesylation of alcohol $\mathbf{8}$ followed by bromination of the resultant mesylate with lithium bromide afforded the radical precursor 6 .

Scheme 2. Synthesis and radical cyclization of 6.

When a boiling solution of enamide $\mathbf{6}$ in toluene was treated with $\mathrm{Bu}_{3} \mathrm{SnH}$ in the presence of 1,1'-azobiscyclohexanecarbonitrile (ACN), a mixture of almost equal amounts of tricyclic compound $\mathbf{1 0}$ and its stereoisomer $\mathbf{1 1}$ was obtained in 55% total yield (Scheme 2). Formation of $\mathbf{1 0}$ and $\mathbf{1 1}$ may be best explained by a radical cascade that involves a 7-endo-selective cyclization of an alkyl radical onto the alkenic bond of enamide ${ }^{6}$ followed by a 5 -endo cyclization of the resulting α-amidoyl radical $9 .{ }^{7}$

The mixture of compounds $\mathbf{1 0}$ and $\mathbf{1 1}$ was then subjected to aldol reaction with benzaldehyde to give an inseparable mixture of α, β-unsaturated ketones 12a,b in 76% yield (Scheme 3). A subsequent addition reaction of $\mathbf{1 2 a}, \mathbf{b}$ with lithium ethyl propiolate afforded the adducts $\mathbf{1 3}$ and 14 in 50% and 48% isolated yields, respectively. X-ray crystallographic analysis of 13 and 14 confirmed their structures, indicating that the phenyl groups of the mixture 12a,b have
stereochemistries as depicted in Scheme $3 .{ }^{8}$ Formation of $\mathbf{1 3}$ and 14 might be a result of an attack of lithium ethyl propiolate on the convex faces of 12a and 12b, respectively.

12a
12a $+$

12b

Scheme 3. Synthesis of 13 and 14.

Treatment of the adduct $\mathbf{1 3}$ with magnesium methoxide in boiling MeOH^{9} afforded methyl tetronate (β-methoxy- α, β-unsaturated lactone) 15 in 85% yield (Scheme 4). α-Methylation of the α, β-unsaturated bond of this tetronate with LDA/methyl iodide ${ }^{10}$ giving a compound such as $\mathbf{1 7}$ failed, and hence an alternative method of α-methylation was examined. Iodination of $\mathbf{1 5}$ with N-iodosuccinimide (NIS) in the presence of trifluoromethanesulfonic acid (TfOH) gave iodide 16. Treatment of compound $\mathbf{1 6}$ with trimethylboroxine in the presence of $\mathrm{PdCl}_{2}(\mathrm{dppf})_{2}$ (Suzuki Miyaura coupling) ${ }^{11}$ afforded methylated compound 17 in high yield (Scheme 4).

Scheme 4. Synthesis of 17.

Similarly, iodination of compound 18, prepared from 14 with magnesium methoxide, by bis(trimethylpyridine)iodonium hexafluorophosphate in the presence of TfOH^{12} gave 19. Iodination of NIS/TfOH gave an unsatisfactory result. Suzuki-Miyaura coupling of 19 with trimethylboroxine $/ \mathrm{PdCl}_{2}(\mathrm{dppf})_{2}$ afforded compound 20 (Scheme 5) in 89% yield.

Scheme 5. Synthesis of 20.

Oxidative cleavage of alkenes $\mathbf{1 7}$ with $\mathrm{OsO}_{4} / \mathrm{NaIO}_{4}$ afforded ketone 21 in 88% yield (Scheme 6). α-Methylenation of ketone 21 with Eschenmoser's salt ${ }^{13}$ in the presence of various bases such as KH or LDA afforded the unsaturated ketone 23 in poor yield. Similar α-methylenation using paraformaldehyde/ N-methylanilinium trifluoroacetate ${ }^{14}$ also gave an unsatisfactory result. We therefore examined another route to 23 . Treatment of ketone 21 with tert-butoxybis(dimethylamino)methane (Bredereck's reagent) ${ }^{15}$ gave enaminone 22, whose reduction with DIBAL ${ }^{16}$ followed by methylation with MeI afforded α-methylenated ketone 23 in 67\% yield (Scheme 6). Similarly, compound 20 was converted to 26 in good yield.

Scheme 6. Synthesis of 23 and 26
Scheme 6. Synthesis of 23 and 26.

Finally, RhCl_{3}-mediated isomerization of the double bond ${ }^{17}$ of exo-methylene ketone 23 gave (\pm)-stemonamide ($\mathbf{1}$) ($\mathrm{mp} 232-233^{\circ} \mathrm{C}$, lit. ${ }^{3} \mathrm{mp} 240-241^{\circ} \mathrm{C}$) along with $27 \mathrm{in} 31 \%$ and 63% yields, respectively. Spectral data of $(\pm)-\mathbf{1}$ were in accord with those of natural (-)-1, kindly provided by Professor Ye. ${ }^{1} \mathrm{H}$ NMR spectra of the unexpected compound 27 showed it to be a single stereoisomer. It is presumed that an attack of RhCl_{3} on the same side (β-face) of $9-\mathrm{H}$ of $\mathbf{2 3}$ brings about isomerization of the double bond to give $(\pm) \mathbf{- 1}$, whereas, when RhCl_{3} attacks the opposite side (α-face) of $9-\mathrm{H}$, and reduction of the double bond with RhCl_{3} takes place to give 27. Therefore, the methyl group of 27 seemed to have a β-orientation. On the other hand, RhCl_{3} attacked the same side (β-face) of $9-\mathrm{H}$ of 26 to afford (\pm)-isostemonamide (2) (mp 223-224 ${ }^{\circ} \mathrm{C}$, lit. $\left.{ }^{3} \mathrm{mp} 225-227^{\circ} \mathrm{C}\right)$ quantitatively. Spectral data of (\pm) - 2 were in accord with those of natural (-)-2.

Scheme 7. Synthesis of $(\pm)-1$ and $(\pm)-2$.
2.2. Synthesis of (\pm)-stemonamine (3) and (\pm)-isostemonamine (4) from (\pm)-stemonamide (1) and (\pm)-isostemonamide (2)

We next examined a conversion of (\pm)-(1) or $(\pm)-(\mathbf{2})$ to (\pm)-stemonamine (3) or (\pm)-isostemonamine (4) by reduction of the corresponding lactam carbonyl group. p-Methoxyphenylthionophosphine sulfide dimer (Lawesson's reagent) ${ }^{18}$ is known to convert the lactam carbonyl groups into the corresponding thiocarbonyl derivatives selectively even in the presence of ketone and lactone groups. ${ }^{19}$ Therefore, we examined reduction of the thiocarbonyl group of lactam, prepared from $(\pm)-(\mathbf{1})$ or (\pm)-2, with Raney nickel. We were delighted to find that treatment of $(\pm)-(2)$, obtained in large quantities, with Lawesson's reagent afforded the desired thiocarbonyl lactam 28 quantitatively. A subsequent reduction of 28 with Raney nickel (W-2) in refluxing EtOH provided, in 40\% yield, (\pm)-isostemonamine (3), the spectral data of which were in accord with those of a natural one.

Scheme 8. Synthesis of $(\pm)-4$ and $(\pm)-3$.

Surprisingly, the same reduction of 28 also afforded, in 56% yield, the unexpected (\pm)-stemonamine (3), the spectral data of which were in accord with those of a natural one. This result might indicate that (\pm)-stemonamine (3) and (\pm)-isostemonamine (4) can easily interconvert to each other. This phenomenon is identical with the fact that natural stemonamine (3) and isostemonamine (4) are isolated as racemate forms. ${ }^{2 \mathrm{a}}$ We assumed that a cleavage of the spirocyclic ring as depicted in Scheme 9 might result in an isomerization between $(\pm)-3$ and $(\pm)-4$, since they have β-amino cabonyl and vinylogous β-amino carbonyl moieties.

Scheme 9. Equilibrium between 3 and 4.

We soon found, however, that such isomerization did not occur at a low temperature. When compound 28 was treated with Raney nickel in EtOH at $0^{\circ} \mathrm{C},(\pm)-4$ was obtained in 77% yield. Similarly, treatment of (\pm)-stemonamide (1) with Lawesson's reagent afforded, in 98\% yield, $(\pm)-29$, whose reduction with Raney nickel at $0^{\circ} \mathrm{C}$ gave (\pm)-stemonamine (3) in 79% yield.

Scheme 10. Synthesis of (\pm)-3.

3. Conclusions

We achieved a total synthesis of (\pm)-stemonamide (1) and (\pm)-isostemonamine (2) by using a radical cascade involving two endo-selective cyclizations as the key step. The present synthesis clearly demonstrates the usefulness of the radical cascade process for the synthesis of nitrogen-containing polycyclic compounds. We also performed the synthesis of (\pm)-stemonamine (3) and (\pm)-isostemonamine (4) by reduction of the thicarbonyl lactams 29 and 28, prepared from $(\pm)-(\mathbf{1})$ and $(\pm)-(2)$, respectively, with Raney nickel.

4. Experimental

4.1 General

Infrared (IR) spectra were recorded on a Shimadzu FTIR-8100 spectrophotometer for solutions in CHCl_{3}. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were measured on a JEOL EX 500 (500 MHz) or a JEOL JNM-EX $270(270 \mathrm{MHz})$ spectrometer. Chemical shifts (δ) quoted are
relative to tetramethylsilane. High-resolution mass spectra (HRMS) were obtained with a JEOL JMS-SX-102A mass spectrometer. Column chromatography was carried out on silica gel 60N (Kanto Kagaku Co., Ltd., spherical, neutral, 63-210 $\mu \mathrm{m}$) or on alumina 90 (Merck, neutral, 63-200 $\mu \mathrm{m}$) under pressure.

4.1. N-[4-(t-Butyldimethylsilyloxy)butyl]-N-(5-oxocyclopentenyl)acrylamide (7)

A mixture of 1,2 -cyclopentanedione ${ }^{20} \quad(10 \quad \mathrm{~g}, \quad 102 \mathrm{mmol})$ and 4-(t-butyldimethylsilyloxy)butylamine ${ }^{21}(20.8 \mathrm{~g}, 102 \mathrm{mmol})$ in benzene $(350 \mathrm{~mL})$ was heated under reflux with azeotropic removal of water for 2 h . After cooling at $0{ }^{\circ} \mathrm{C}$, acryloyl chloride (11.1 g, 122 mmol) and N, N-diethylaniline ($22.8 \mathrm{~g}, 153 \mathrm{mmol}$) were added dropwise and the mixture was stirred at room temperature for 1 h . The reaction mixture was diluted with water and extracted with AcOEt. The organic layer was washed successively with a saturated aqueous solution of NaHCO_{3} and brine, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated. The residue was chromatographed on silica gel (hexane/AcOEt, 3:1) to give $7(12.0-19.2 \mathrm{~g}, 35-56 \%)$ as a pale yellow oil: $\mathrm{IR}\left(\mathrm{CHCl}_{3}\right) \cup 1720,1655,1620 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.02(6 \mathrm{H}, \mathrm{s})$, $0.87(9 \mathrm{H}, \mathrm{s}), 1.49-1.61(4 \mathrm{H}, \mathrm{m}), 2.51-2.55(2 \mathrm{H}, \mathrm{m}), 2.70-2.75(2 \mathrm{H}, \mathrm{m}), 3.59(2 \mathrm{H}, \mathrm{t}, J=6.1 \mathrm{~Hz})$, $3.65(2 \mathrm{H}, \mathrm{t}, J=7.1 \mathrm{~Hz}), 5.60(1 \mathrm{H}, \mathrm{dd}, J=10.2,2.0 \mathrm{~Hz}), 6.16(1 \mathrm{H}, \mathrm{dd}, J=10.2,6.1 \mathrm{~Hz}), 6.35$ $(1 \mathrm{H}, \mathrm{dd}, J=16.8,2.0 \mathrm{~Hz}), 7.46(1 \mathrm{H}, \mathrm{t}, J=2.8 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR (67.8 MHz) $\delta-5.3,18.3,24.6$, $25.9,29.8,33.7,46.9,62.6,128.0,128.2,144.6,157.3,165.4,203.8$; HRMS calcd for $\mathrm{C}_{18} \mathrm{H}_{31} \mathrm{NO}_{3} \mathrm{Si}$ 337.2073, found 337.2073.

4.2. N-(4-Bromobutyl)- N-(5-oxocyclopentenyl)acrylamide (6)

To a solution of $8(4.90 \mathrm{~g}, 22.0 \mathrm{mmol})$ and diisopropylethylamine $(4.82 \mathrm{~g}, 37.3 \mathrm{mmol})$ in DME (140 mL) was added dropwise methanesulfonyl chloride $(3.77 \mathrm{~g}, 32.9 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$, and the mixture was further stirred at room temperture for $1.5 \mathrm{~h} . \operatorname{LiBr}(9.54 \mathrm{~g}, 110 \mathrm{mmol})$ was added, and the mixture was further stirred at room temperture for 8 h . The reaction mixture was diluted with water and extracted with AcOEt. The organic layer was washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated. The residue was chromatographed on silica gel (hexane/AcOEt, 1:1) to give $6(5.21 \mathrm{~g}, 83 \%)$ as a colorless oil; ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of 6 showed it to be a mixture of two rotamers: IR $\left(\mathrm{CHCl}_{3}\right) \cup 1720,1660,1620 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.66(2 \mathrm{H}, \mathrm{tt}, J=7.4,7.1 \mathrm{~Hz}), 1.87(2 \mathrm{H}, \mathrm{tt}, J=7.4,6.4 \mathrm{~Hz}), 2.55-2.58(2 \mathrm{H}$, m), 2.74-2.79 ($2 \mathrm{H}, \mathrm{m}$), $3.43(2 \mathrm{H} \times 17 / 20, \mathrm{t}, J=6.4 \mathrm{~Hz}), 3.55(2 \mathrm{H} \times 3 / 20, \mathrm{t}, J=6.4 \mathrm{~Hz}), 3.68$ $(2 \mathrm{H}, \mathrm{t}, J=7.1 \mathrm{~Hz}), 5.62(1 \mathrm{H}, \mathrm{dd}, J=10.1,1.6 \mathrm{~Hz}), 6.15(1 \mathrm{H}, \mathrm{dd}, J=16.8,10.1 \mathrm{~Hz}), 6.36(1 \mathrm{H}$, $\mathrm{dd}, J=16.8,1.6 \mathrm{~Hz}), 7.50(1 \mathrm{H}, \mathrm{t}, J=2.6 \mathrm{~Hz}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(67.8 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 24.6,26.6,29.5$, $33.5,33.6,44.6,45.9,128.0,128.2,144.3,157.6,165.5,203.8$. Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{BrNO}_{2}$: C, 50.37; H, 5.64; N, 4.89. Found: C, 50.77; H, 5.84; N, 4.96.

4.3. A Mixture of $\mathbf{1 0}$ and 11

To a boiling solution of $\mathbf{6}(1.00 \mathrm{~g}, 3.50 \mathrm{mmol})$ in toluene (350 mL) was added dropwise a solution of $\mathrm{Bu}_{3} \mathrm{SnH}(1.53 \mathrm{~g}, 5.24 \mathrm{mmol})$ and ACN (1,1-azobiscyclohexanecarbonitrile) (171 $\mathrm{mg}, 0.699 \mathrm{mmol})$ in toluene $(100 \mathrm{~mL})$ over 5 h by employing a syringe-pump technique, and
the mixture was further heated at reflux for 1 h . After evaporation of the solvent, the residue was chromatographed on silica gel containing KF $(10 \% \mathrm{w} / \mathrm{w})^{22}$ (hexane/AcOEt, $1: 2$) to give a mixture of $\mathbf{1 0}$ and $\mathbf{1 1}(399 \mathrm{mg}, 55 \%)$ as colorless solids: $\mathrm{IR}\left(\mathrm{CHCl}_{3}\right) v 1750,1680 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (500 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 1.31-1.43(1 \mathrm{H}, \mathrm{m}), 1.50-2.07(9 \mathrm{H}, \mathrm{m}), 2.15-2.06(6 \mathrm{H}, \mathrm{m}), 4.04$ $(1 / 2 \mathrm{H}, \mathrm{d}, \mathrm{J}=14.6 \mathrm{~Hz}), 4.12(1 / 2 \mathrm{H}, \mathrm{d}, J=14.6 \mathrm{~Hz}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 22.6,23.1$, 23.9, 24.2, 25.5, 27.58, 27.63, 28.0, 28.6, 29.4, 30.1, 30.7, 34.3, 34.7, 39.6, 40.3, 44.6, 46.9, 73.3, 74.2, 175.4, 176.0, 212.4. Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{NO}_{2}$: C, $69.54 ; \mathrm{H}, 8.27 ; \mathrm{N}, 6.76$. Found: C, 69.34; H, 8.50; N, 6.88.

4.4. A Mixture of $12 a$ and $12 b$

To a solution of the mixture of $\mathbf{1 0}$ and $\mathbf{1 1}(399 \mathrm{mg}, 1.93 \mathrm{mmol})$ in $\mathrm{MeOH}(7 \mathrm{~mL})$ containing $10 \% \mathrm{KOH}$ was added benzaldehyde ($225 \mathrm{mg}, 2.12 \mathrm{mmol}$). After stirring for 24 h , the reaction mixture was poured into a saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution and extracted with EtOAc. The organic layer was washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated. The residue was chromatographed on silica gel (hexane/AcOEt, 1:1) to give a mixture of 12a and $\mathbf{1 2 b}(433 \mathrm{mg}$, 76%, ca. 1:1 mixture of diastereoisomers) as a pale yellow amorphous: $\operatorname{IR}\left(\mathrm{CHCl}_{3}\right)$ v 1720 , 1680, $1630 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.39-1.97(8 \mathrm{H}, \mathrm{m}), 2.03-2.13(1 \mathrm{H}, \mathrm{m})$, 2.25-2.34 ($1 \mathrm{H}, \mathrm{m}$), 2.45-2.68 [($2+1 / 2) \mathrm{H}, \mathrm{m}], 2.73(1 / 2 \mathrm{H}, \mathrm{td}, J=14.6,3.7 \mathrm{~Hz}), 3.00(1 / 2 \mathrm{H}, \mathrm{dd}$, $J=15.9,6.7 \mathrm{~Hz}), 3.12(1 / 2 \mathrm{H}, \mathrm{ddd}, J=17.7,8.5,3.1 \mathrm{~Hz}), 4.04-4.07(1 / 2 \mathrm{H}, \mathrm{m}), 4.20(1 / 2 \mathrm{H}, \mathrm{td}, J$ $=10.4,4.3 \mathrm{~Hz}), 7.27-7.58(6 \mathrm{H}, \mathrm{m}),{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 22.9,25.1,25.3,26.6$, 27.7, 28.9, 29.4, 29.5, 30.0, 30.4, 30.8, 32.0, 39.47, 39.51, 42.8, 44.8, 73.9, 74.3, 128.78, 128.84,
$129.8,130.0,130.4,130.9,132.1,132.9,134.6,134.8,134.9,136.0,175.4,176.3,202.3$, 206.3; HRMS calcd for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{NO}_{2}$ 295.1572, found 295.1572.

4.5. Esters 13 and 14

To solution of ethyl propiolate ($232 \mathrm{mg}, 2.34 \mathrm{mmol}$) in THF (5 mL) was added dropwise 1.6 M solution of n-butyllithium in hexane $(1.46 \mathrm{~mL}, 2.34 \mathrm{mmol})$ at $-78^{\circ} \mathrm{C}$ and the mixture was stirred at the same temperture for 30 min . To this solution was added dropwise a solution of the mixture of 12a and 12b $(230 \mathrm{mg}, 0.778 \mathrm{mmol})$ in THF $(5 \mathrm{~mL})$ and the mixture was stirred at $-78^{\circ} \mathrm{C}$ for 20 min . The reaction mixture was quenched with a saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution at $-78^{\circ} \mathrm{C}$ then extracted with EtOAc. The organic layer was washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated. The residue was chromatographed on silica gel (hexane/EtOAc, 1:1). The first eluent gave $13(151 \mathrm{mg}, 50 \%)$ as colorless crystals, $\mathrm{mp} 209-211^{\circ} \mathrm{C}(\mathrm{EtOAc}-\mathrm{MeOH})$: IR $\left(\mathrm{CHCl}_{3}\right) \cup 1705,1675 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.29(3 \mathrm{H}, \mathrm{t}, J=7.1 \mathrm{~Hz}), 1.40-1.50$ $(3 \mathrm{H}, \mathrm{m}), 1.72-1.84(4 \mathrm{H}, \mathrm{m}), 2.06-2.40(3 \mathrm{H}, \mathrm{m}), 2.67-2.92(3 \mathrm{H}, \mathrm{m}), 3.24(1 \mathrm{H}, \mathrm{dd}, J=14.3,10.2$ $\mathrm{Hz}), 4.17-4.26(1 \mathrm{H}, \mathrm{m}), 4.22(2 \mathrm{H}, \mathrm{q}, J=7.1 \mathrm{~Hz}), 5.87(1 \mathrm{H}, \mathrm{br}), 6.87(1 \mathrm{H}, \mathrm{t}-\mathrm{like}), 7.21-7.40(5 \mathrm{H}$, $\mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR ($67.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 14.0,24.0,25.7,28.4,30.3,30.5,31.7,41.2,42.2,62.0$, $76.2,77.6,79.3,87.5,127.2,127.3,128.4,128.7,136.8,140.5,153.2,178.3$. Anal. Calcd for $\mathrm{C}_{24} \mathrm{H}_{27} \mathrm{NO}_{4}$: C, $73.26 ; \mathrm{H}, 6.92 ; \mathrm{N}, 3.56$. Found: C, $73.29 ; \mathrm{H}, 7.00 ; \mathrm{N}, 3.55$. The second eluent gave 14 ($149 \mathrm{mg}, 48 \%$) as colorless crystals, $\mathrm{mp} .190 .5-192{ }^{\circ} \mathrm{C}(\mathrm{EtOAc}-\mathrm{MeOH})$: $\mathrm{IR}\left(\mathrm{CHCl}_{3}\right) v$ $1705,1675 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($270 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.21-1.35(1 \mathrm{H}, \mathrm{m}), 1.30(3 \mathrm{H}, \mathrm{t}, J=7.1 \mathrm{~Hz})$, $1.55-1.70(4 \mathrm{H}, \mathrm{m}), 1.83-2.06(2 \mathrm{H}, \mathrm{m}), 2.23-2.32(2 \mathrm{H}, \mathrm{m}), 2.62-2.92(5 \mathrm{H}, \mathrm{m}), 3.90(1 \mathrm{H}, \mathrm{d}, J=$
$14.3 \mathrm{~Hz}), 4.01(1 \mathrm{H}, \mathrm{br}), 4.23(2 \mathrm{H}, \mathrm{q}, J=7.1 \mathrm{~Hz}), 6.79(1 \mathrm{H}, \mathrm{t}-\mathrm{like}), 7.26-7.31(1 \mathrm{H}, \mathrm{m}), 7.37-7.39$ $(4 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR ($67.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 14.0,22.1,25.1,28.2,28.4,29.4,30.3,41.4,62.2$, $76.4,79.0,81.0,86.7,123.6,123.7,127.4,128.5,129.0,136.2,142.1,153.3,176.3$. Anal. Calcd for $\mathrm{C}_{24} \mathrm{H}_{27} \mathrm{NO}_{4}: \mathrm{C}, 73.26 ; \mathrm{H}, 6.92$; N, 3.56. Found: C, 73.30; H, 6.99; N, 3.57.

4.6. Methyl tetronate 15

To a solution of $13(159 \mathrm{mg}, 0.400 \mathrm{mmol})$ in $\mathrm{MeOH}(2 \mathrm{~mL})$ was added $6-10 \%$ solution of magnesium methoxide in $\mathrm{MeOH}(1.5 \mathrm{~mL})$, and the mixture was heated at reflux for 10 h . Sodium methoxide ($4.3 \mathrm{mg}, 0.0800 \mathrm{mmol}$) was added and the mixture was heated under reflux for 2 d . The reaction mixture was cooled to room temperature and poured into a saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution then extracted with EtOAc. The organic layer was washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated. The residue was chromatographed on silica gel (hexane/EtOAc, 1:2) to give 15 ($129 \mathrm{mg}, 85 \%$) as colorless crystals, $\mathrm{mp} 247-248{ }^{\circ} \mathrm{C}\left(\mathrm{EtOAc}^{2} \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$: IR $\left(\mathrm{CHCl}_{3}\right) \cup 1760,1680,1630 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.35-1.41(2 \mathrm{H}, \mathrm{m}), 1.50-1.57$ $(1 \mathrm{H}, \mathrm{m}), 1.71-1.80(3 \mathrm{H}, \mathrm{m}), 1.96(1 \mathrm{H}, \mathrm{q}, J=11.6 \mathrm{~Hz}), 2.20-2.27(2 \mathrm{H}, \mathrm{m}), 2.49(1 \mathrm{H}, \mathrm{t}, J=13.4$ $\mathrm{Hz}), 2.69(1 \mathrm{H}, \mathrm{t}, J=12.2 \mathrm{~Hz}), 2.80-2.99(3 \mathrm{H}, \mathrm{m}), 3.87(3 \mathrm{H}, \mathrm{s}), 4.07(1 \mathrm{H}, \mathrm{d}, J=14.0 \mathrm{~Hz}), 5.12$ $(1 \mathrm{H}, \mathrm{s}), 6.37(1 \mathrm{H}, \mathrm{s}), 7.35-7.39(5 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 25.2,26.1,28.2,30.0$, $30.1,32.2,40.1,41.2,59.6,75.0,89.3,94.4,127.8,127.9,128.5,128.7,135.6,135.8,171.0$, 177.9, 181.5; HRMS calcd for $\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{NO}_{4} 379.1784$, found 379.1772.

4.7. α-Iodo methyl tetronate 16

To a solution of 15 ($200 \mathrm{mg}, 0.527 \mathrm{mmol}$) and N-iodosuccinimide ($356 \mathrm{mg}, 1.581 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(7 \mathrm{~mL})$ was added dropwise trifluoromethanesulfonic acid (277 mg, 1.85 mmol$)$ at 0 ${ }^{\circ} \mathrm{C}$, and the mixture was stirred at room temperature for 16 h . The reaction mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and washed successively with a saturated $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ solution and brine. After the organic layer was dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated, and the residue was chromatographed on silica gel (hexane/EtOAc, 1:2) to give 16 ($306 \mathrm{mg}, 92 \%$) as colorless crystals, $\mathrm{mp} 234-237^{\circ} \mathrm{C}$ (dec) $\left(\mathrm{EtOAc}-\mathrm{CH}_{2} \mathrm{Cl}_{2}\right):$ IR $\left(\mathrm{CHCl}_{3}\right)$ v 1755, $1685,1615 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $1.33-1.58(3 \mathrm{H}, \mathrm{m}), 1.73-1.83(3 \mathrm{H}, \mathrm{m}), 1.89-2.05(1 \mathrm{H}, \mathrm{m}), 2.13-2.29(2 \mathrm{H}, \mathrm{m}), 2.44(1 \mathrm{H}, \mathrm{ddd}, J$ $=16.2,13.2,3.0 \mathrm{~Hz}), 2.66-2.87(3 \mathrm{H}, \mathrm{m}), 2.92-3.03(1 \mathrm{H}, \mathrm{m}), 4.11(1 \mathrm{H}, \mathrm{d}, J=13.4 \mathrm{~Hz}), 4.42(3 \mathrm{H}$, s), $6.28(1 \mathrm{H}, \mathrm{t}-\mathrm{like}), 7.09(2 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 7.69(2 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR (67.5 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 25.1,26.1,28.2,29.8,30.0,32.1,40.3,41.2,47.2,60.3,75.3,93.6,96.6,127.3,130.4$, 135.0, 136.9, 137.6, 169.5, 177.9, 178.1; HRMS calcd for $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{NO}_{4} \mathrm{I}_{2}$ 630.9717, found 630.9716.

4.8. α-Methyl methyl tetronate 17

A mixture of 16 ($190 \mathrm{mg}, 0.301 \mathrm{mmol}$), trimethylboroxine ($126 \mathrm{mg}, 0.903 \mathrm{mmol}$), $\mathrm{PdCl}_{2}(\mathrm{dppf})_{2}(13 \mathrm{mg}, 15.1 \mu \mathrm{~mol})$ and $\mathrm{Cs}_{2} \mathrm{CO}_{3}(516 \mathrm{mg}, 1.51 \mathrm{mmol})$ in dioxane $(10 \mathrm{~mL})$ was heated at reflux for 5 h . After cooling to room temperature, the reaction mixture was diluted with water and extracted with AcOEt. The organic layer was washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated. The residue was chromatographed on silica gel (hexane/EtOAc,

1:2) to give $\mathbf{1 7}$ ($109 \mathrm{mg}, 89 \%$) as colorless crystals, $\mathrm{mp} 215-216^{\circ} \mathrm{C}$ (hexane-EtOAc- $\mathrm{CH}_{2} \mathrm{Cl}_{2}$): IR $\left(\mathrm{CHCl}_{3}\right)$ v 1750, $1680,1665 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.39-1.77(3 \mathrm{H}, \mathrm{m})$, $1.80-1.87(3 \mathrm{H}, \mathrm{m}), 1.90-2.00(1 \mathrm{H}, \mathrm{m}), 2.06(3 \mathrm{H}, \mathrm{s}), 2.16-2.26(2 \mathrm{H}, \mathrm{m}), 2.35(3 \mathrm{H}, \mathrm{s}), 2.44(1 \mathrm{H}$, ddd, $J=16.3,13.2,3.1 \mathrm{~Hz}), 2.72-3.04(4 \mathrm{H}, \mathrm{m}), 4.08(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=14.3 \mathrm{~Hz}), 4.09(3 \mathrm{H}, \mathrm{s}), 6.28$ $(1 \mathrm{H}, \mathrm{t}-\mathrm{like}), 7.16(2 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz}), 7.24(2 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(67.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $9.03,21.2,25.2,26.1,28.3,29.9,30.2,32.2,40.1,41.2,59.3,75.0,93.1,97.8,127.1,128.6$, 129.2, 133.2, 135.3, 137.6, 172.9, 173.8, 178.1; HRMS calcd for $\mathrm{C}_{25} \mathrm{H}_{29} \mathrm{NO}_{4} 407.2097$, found 407.2102.

4.9. α-Iodo methyl tetronate 19

To a solution of $\mathbf{1 8}(100 \mathrm{mg}, 0.264 \mathrm{mmol})$ and bis(2,4,6-trimethylpyridine)iodonium hexafluorophosfate ($488 \mathrm{mg}, 0.949 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ was added dropwise trifluoromethanesulfonic acid ($139 \mathrm{mg}, 0.924 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$, and the mixture was stirred at room temperature for 24 h . The reaction mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and washed successively with a saturated $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ solution and brine. The organic layer was dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated, and the residue was chromatographed on silica gel (EtOAc) to give 19 (139 mg, 84\%) as colorless crystals, mp 205-208 ${ }^{\circ} \mathrm{C}(\mathrm{dec})\left(\mathrm{EtOAc}-\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$: IR $\left(\mathrm{CHCl}_{3}\right)$ v $1770,1680,1620 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($270 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.26-1.35(1 \mathrm{H}, \mathrm{m}), 1.51-1.68(4 \mathrm{H}, \mathrm{m})$, $1.84-1.97(3 \mathrm{H}, \mathrm{m}), 2.24-2.47(3 \mathrm{H}, \mathrm{m}), 2.74-3.05(3 \mathrm{H}, \mathrm{m}), 3.95(1 \mathrm{H}, \mathrm{d}, J=14.7 \mathrm{~Hz}), 4.44(3 \mathrm{H}$, s), $6.40(1 \mathrm{H}, \mathrm{t}-\mathrm{like}), 7.10(2 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 7.72(2 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $(67.5 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 22.0,25.1,28.0,28.9,29.4,29.9,40.9,43.0,43.9,60.4,74.7,93.6,96.2,123.7,130.7$,
135.0, 137.7, 138.3, 169.7, 174.0, 180.6; HRMS calcd for $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{NO}_{4} \mathrm{I}_{2}$ 630.9717, found 630.9728.

4.10. Ketone 21

To a solution of $\mathbf{1 7}(100 \mathrm{mg}, 0.245 \mathrm{mmol})$ and sodium metaperiodate $(2.60 \mathrm{~g}, 12.3 \mathrm{mmol})$ in acetone (10 mL) and water (10 mL) was added $4 \% \mathrm{OsO}_{4}$ solution (5 drops), and the mixture was stirred at room temperature for 30 h . The reaction mixture was diluted with water and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layer was washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated. The residue was chromatographed on silica gel (hexane/AcOEt, 1:2) to give 21 $(68.5 \mathrm{mg}, 88 \%)$ as colorless crystals, $\mathrm{mp} 260-269{ }^{\circ} \mathrm{C}(\mathrm{dec})\left(\mathrm{EtOAc}-\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$: IR $\left(\mathrm{CHCl}_{3}\right) v$ $1780,1685,1620 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (270 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 1.24-1.67(3 \mathrm{H}, \mathrm{m}), 1.78-1.85(3 \mathrm{H}, \mathrm{m})$, 2.00-2.12 ($2 \mathrm{H}, \mathrm{m}$), $2.03(3 \mathrm{H}, \mathrm{s}), 2.21-2.37(2 \mathrm{H}, \mathrm{m}), 2.60(1 \mathrm{H}, \mathrm{dd}, J=18.6,7.7 \mathrm{~Hz}), 2.68-2.90$ $(2 \mathrm{H}, \mathrm{m}), 3.20(1 \mathrm{H}, \mathrm{dt}, J=17.1,8.7 \mathrm{~Hz}), 4.11(3 \mathrm{H}, \mathrm{s}), 4.14(1 \mathrm{H}, \mathrm{d}, J=12.0 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR (67.5 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.1,24.7,26.0,27.9,29.6,30.0,38.0,40.0,40.3,59.6,73.5,91.4,100.1,167.9$, 177.4, 206.0; HRMS calcd for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{NO}_{5} 319.1420$, found 319.1416.

4.11. α, β-Unsaturated ketone 23

A mixture of $21(25 \mathrm{mg}, 78.3 \mu \mathrm{~mol})$ and tert-butoxybis(dimethylamino)methane (45.8 mg , $0.263 \mathrm{mmol})$ in DMF $(1 \mathrm{~mL})$ was heated at $100^{\circ} \mathrm{C}$ for 1.5 h . After the reaction mixture was cooled to room temperature, the solvent was removed under reduced pressure to give 22. To a
solution of the crude 22 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ was added dropwise 0.94 M solution of diisobutylalminum hydride in hexane $(0.14 \mathrm{~mL}, 0.132 \mathrm{mmol})$ at $-78^{\circ} \mathrm{C}$, and the mixture was further stirred at $-78^{\circ} \mathrm{C}$ for 10 min and at room temperture for 30 min . To the solution was added methyl iodide ($125 \mathrm{mg}, 0.878 \mathrm{mmol}$), and the mixture was stirred at room temperature for 1 h . The reaction mixture was quenched with a saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layer was washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated. The residue chromatographed on silica gel (EtOAc) to give 23 (17.3 mg, 67\%) as colorless crystals, mp $230-231{ }^{\circ} \mathrm{C}\left(\mathrm{EtOAc}-\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$: IR $\left(\mathrm{CHCl}_{3}\right)$ v 1765, 1750, 1685, $1665 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.43-1.58(3 \mathrm{H}, \mathrm{m}), 1.82-1.96(4 \mathrm{H}, \mathrm{m}), 2.03-2.12(1 \mathrm{H}, \mathrm{m}), 2.05(3 \mathrm{H}$, s), $2.24(1 \mathrm{H}, \mathrm{dd}, J=16.8,9.3 \mathrm{~Hz}), 2.77(1 \mathrm{H}, \mathrm{ddd}, J=11.7,8.3,3.2 \mathrm{~Hz}), 2.88(1 \mathrm{H}, \operatorname{ddd}, J=13.9$, $10.2,2.2 \mathrm{~Hz}), 3.75-3.78(1 \mathrm{H}, \mathrm{m}), 4.11(3 \mathrm{H}, \mathrm{s}), 4.18(1 \mathrm{H}, \mathrm{d}, J=14.9 \mathrm{~Hz}), 5.43(1 \mathrm{H}, \mathrm{d}, J=3.2$ $\mathrm{Hz}), 6.27(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=3.2 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.2,22.2,26.2,27.1,29.2,30.2$, 40.1, 44.8, 59.6, 72.4, 90.6, 100.3, 118.6, 142.6, 168.0, 172.6, 177.5, 195.6; HRMS calcd for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{NO}_{5} 331.1420$, found 331.1421.

4.12. (\pm)-Stemonamide (1) and (\pm)-dihydrostemonamide (27)

A mixture of 23 ($50 \mathrm{mg}, 0.151 \mathrm{mmol}$) and rhodium (III) chloride hydrate ($30 \mathrm{mg}, 0.453$ mmol) in $\mathrm{EtOH}-\mathrm{H}_{2} \mathrm{O}(10: 1)(3 \mathrm{~mL})$ was heated at reflux for 4 h . The reaction mixture was cooled to room temperature, the solvent was removed under reduced pressure, and the residue was chromatographed on silica gel (hexane/AcOEt, 1:2). The first eluent gave 27 (30.8 mg , $62 \%)$ as a colorless solid, $\mathrm{mp} 237-238{ }^{\circ} \mathrm{C}\left(\mathrm{EtOAc}-\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): \mathrm{IR}\left(\mathrm{CHCl}_{3}\right)$ v $1770,1685,1665$
$\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.21(3 \mathrm{H}, \mathrm{d}, J=7.3 \mathrm{~Hz}), 1.26-1.70(4 \mathrm{H}, \mathrm{m}), 1.80-1.91$ $(2 \mathrm{H}, \mathrm{m}), 1.98-2.12(2 \mathrm{H}, \mathrm{m}), 2.03(3 \mathrm{H}, \mathrm{s}), 2.20-2.28(2 \mathrm{H}, \mathrm{m}), 2.69-2.80(2 \mathrm{H}, \mathrm{m}), 2.85(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=$ $12.2 \mathrm{~Hz}), 4.09(3 \mathrm{H}, \mathrm{s}), 4.14(1 \mathrm{H}, \mathrm{d}, J=13.4 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.2,12.6,23.3$, $26.8,28.4,29.7,30.2,40.3,44.7,45.9,59.7,72.7,90.8,100.3,168.3,172.8,177.5,209.0$; HRMS calcd for $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{NO}_{5}$ 333.1576, found 333.1572. The second eluent gave (\pm)-1 (15.2 $\mathrm{mg}, 31 \%)$ as colorless crystals, $\mathrm{mp} 232-233{ }^{\circ} \mathrm{C}\left(\mathrm{EtOAc}-\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$: IR $\left(\mathrm{CHCl}_{3}\right)$ v 1765, 1725, $1685,1665,1640 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.22-1.46(2 \mathrm{H}, \mathrm{m}), 1.83(1 \mathrm{H}, \mathrm{d}, J=14.0$ $\mathrm{Hz}), 1.87(3 \mathrm{H}, \mathrm{s}), 1.95(1 \mathrm{H}, \mathrm{td}, J=12.8,8.9 \mathrm{~Hz}), 2.02(3 \mathrm{H}, \mathrm{s}), 2.04-2.18(2 \mathrm{H}, \mathrm{m}), 2.30(1 \mathrm{H}, \mathrm{dd}$, $J=16.5,8.5 \mathrm{~Hz}), 2.38(1 \mathrm{H}, \mathrm{dd}, J=12.8,7.3 \mathrm{~Hz}), 2.61(1 \mathrm{H}, \mathrm{ddd}, J=16.7,12.0,7.9 \mathrm{~Hz}), 2.62$ $(1 \mathrm{H}, \mathrm{t}, J=12.8 \mathrm{~Hz}), 3.00(1 \mathrm{H}, \mathrm{dd}, J=12.2,4.9 \mathrm{~Hz}), 4.00(3 \mathrm{H}, \mathrm{s}), 4.19(1 \mathrm{H}, \mathrm{d}, J=14.0 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 8.4,9.1,27.3,27.4,29.8,30.1,31.8,41.2,59.1,74.5,90.0,99.6$, 136.9, 168.7, 170.9, 172.9, 175.7, 196.5; HRMS calcd for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{NO}_{5} 331.1420$, found 331.1415. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectral data of $(\pm) \mathbf{- 1}$ were in accord with those of the natural and Kende's synthetic stemonamide.

4.13. (\pm)-Isostemonamide (2)

A mixture of $26(3.0 \mathrm{mg}, 9.05 \mu \mathrm{~mol})$ and rhodium (III) chloride hydrate $(0.4 \mathrm{mg}, 1.81 \mu \mathrm{~mol})$ in $\mathrm{EtOH}-\mathrm{H}_{2} \mathrm{O}(10: 1)(0.5 \mathrm{~mL})$ was heated at reflux for 30 min . The reaction mixture was cooled to room temperature, and the solvent was removed under reduced pressure. The residue was chromatographed on silica gel (EtOAc) to give (\pm)-2 ($3.0 \mathrm{mg}, 100 \%$) as colorless crystals, mp 223-224 ${ }^{\circ} \mathrm{C}\left(\mathrm{EtOAc}-\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$: IR $\left(\mathrm{CHCl}_{3}\right) \cup 1765,1720,1690,1665,1645 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR
$\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.25-1.45(2 \mathrm{H}, \mathrm{m}), 1.78(1 \mathrm{H}, \mathrm{dd}, J=14.5,3.7 \mathrm{~Hz}), 1.86(3 \mathrm{H}, \mathrm{s}), 1.92(1 \mathrm{H}$, $\mathrm{td}, J=13.2,9.3 \mathrm{~Hz}), 2.07(3 \mathrm{H}, \mathrm{s}), 2.10-2.15(2 \mathrm{H}, \mathrm{m}), 2.27(1 \mathrm{H}, \mathrm{ddd}, J=16.6,12.2,7.6 \mathrm{~Hz})$, $2.35(1 \mathrm{H}, \mathrm{dd}, J=16.6,9.3 \mathrm{~Hz}), 2.61(1 \mathrm{H}, \mathrm{dd}, J=13.4,7.3 \mathrm{~Hz}), 2.95(1 \mathrm{H}, \mathrm{dd}, J=12.7,6.6 \mathrm{~Hz})$, $3.00(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=19.7 \mathrm{~Hz}), 4.15(3 \mathrm{H}, \mathrm{s}), 4.17(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=15.0 \mathrm{~Hz}){ }^{13}{ }^{3} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.3,9.3,26.9,27.7,28.0,29.4,29.8,42.4,59.9,73.5,86.5,102.9,136.6,168.7,171.7,172.6$, 174.6, 196.9; HRMS calcd for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{NO}_{5} 331.1420$, found 331.1417. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectral data were in accord with those of the natural and Kende's synthetic isostemonamide.

4.14. Isostemonamide thiocarbonyl lactam 28

Lawesson's reagent ($8.1 \mathrm{mg}, 19.9 \mu \mathrm{~mol}$) was added to a solution of $(\pm)-2(12 \mathrm{mg}, 33.2 \mu \mathrm{~mol})$ in toluene (1.5 mL), and the mixture was heated at reflux for 1 h . After removal of solvent, the residue was chromatographed on silica gel (hexane/EtOAc, 1:1) to give $28(12.7 \mathrm{mg}, 100 \%)$ as a colorless solid, $\mathrm{mp} 204-206{ }^{\circ} \mathrm{C}(\mathrm{dec})\left(\mathrm{EtOAc}-\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$: $\mathrm{IR}\left(\mathrm{CHCl}_{3}\right) v 1765,1725,1665,1645$ $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.36-1.45(1 \mathrm{H}, \mathrm{m}), 1.63-1.72(1 \mathrm{H}, \mathrm{m}), 1.77-1.81(1 \mathrm{H}, \mathrm{m})$, $1.89(3 \mathrm{H}, \mathrm{s}), 2.01-2.17(3 \mathrm{H}, \mathrm{m}), 2.07(3 \mathrm{H}, \mathrm{s}), 2.70(1 \mathrm{H}, \mathrm{dd}, J=13.4,6.7 \mathrm{~Hz}), 2.76-2.83(1 \mathrm{H}, \mathrm{m})$, $2.95(1 \mathrm{H}, \mathrm{t}, J=13.4,5.5 \mathrm{~Hz}), 3.04(1 \mathrm{H}, \mathrm{dd}, J=17.1,8.5 \mathrm{~Hz}), 3.21(1 \mathrm{H}, \mathrm{t}, J=13.4 \mathrm{~Hz}), 4.16(3 \mathrm{H}$, s), $4.79(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=12.2 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.4,9.3,26.8,27.2,28.0,29.5,29.7$, 42.7, 47.6, 59.9, 79.6, 85.4, 102.6, 137.6, 168.8, 170.9, 171.4, 196.3; HRMS calcd for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{NO}_{4} \mathrm{~S} 347.1191$, found 347.1191.
4.15. Treatment of 28 with Raney nickel in EtOH at reflux: stemonamine (3) and

isostemonamine (4)

A mixture of $28(12 \mathrm{mg}, 33.2 \mu \mathrm{~mol})$ and Raney Ni (W-2) (ca. 5 g$)$ in EtOH (2 mL) was heated at reflux for 1.5 h . The reaction mixture was filtered, the filtrate was concentrated and the residue was chromatographed on silica gel (hexane/EtOAc, $3: 1 \rightarrow 1: 1$). The first eluent gave (\pm)-isostemonamine (4) (4.0 mg, 40%) as colorless crystals, $\mathrm{mp} 148-149{ }^{\circ} \mathrm{C}\left(\mathrm{Et}_{2} \mathrm{O}\right): \mathrm{IR}$ $\left(\mathrm{CHCl}_{3}\right) \cup 1750,1710,1660,1630 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.13-1.22(1 \mathrm{H}, \mathrm{m})$, $1.37-1.41(1 \mathrm{H}, \mathrm{m}), 1.49-1.59(1 \mathrm{H}, \mathrm{m}), 1.67-1.82(4 \mathrm{H}, \mathrm{m}), 1.76(3 \mathrm{H}, \mathrm{s}), 2.01-2.06(1 \mathrm{H}, \mathrm{m}), 2.08$ (3H, s), 2.37 ($1 \mathrm{H}, \mathrm{dd}, J=12.9,5.9 \mathrm{~Hz}$), 2.83-2.87 ($2 \mathrm{H}, \mathrm{m}$), 3.10 ($1 \mathrm{H}, \mathrm{dd}, J=16.6,12.2 \mathrm{~Hz}$), 3.17-3.22 (2H, m), $4.13(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.0,9.3,24.2,24.3,27.3,27.8$, 35.6, 49.1, 50.9, 59.3, 75.3, 89.2, 102.3, 134.5, 169.5, 173.5, 176.4, 199.0; HRMS calcd for $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{NO}_{4} 317.1627$, found 317.1628. The second eluent gave (\pm)-stemonamine (3) $(5.7 \mathrm{mg}$, $56 \%)$ as colorless crystals, $\mathrm{mp} 159-160^{\circ} \mathrm{C}\left(\mathrm{Et}_{2} \mathrm{O}\right): \mathrm{IR}\left(\mathrm{CHCl}_{3}\right) \cup 1750,1710,1665,1630 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.18-1.27(1 \mathrm{H}, \mathrm{m}), 1.40-1.43(1 \mathrm{H}, \mathrm{m}), 1.73-1.91(5 \mathrm{H}, \mathrm{m}), 1.77$ $(3 \mathrm{H}, \mathrm{s}), 2.02(3 \mathrm{H}, \mathrm{s}), 2.11(1 \mathrm{H}, \mathrm{td}, J=12.8,1.8 \mathrm{~Hz}), 2.16(1 \mathrm{H}, \mathrm{dd}, J=11.0,4.9 \mathrm{~Hz}), 2.81(1 \mathrm{H}, \mathrm{t}$, $J=7.3 \mathrm{~Hz}), 2.89(1 \mathrm{H}, \mathrm{dd}, J=12.8,6.1 \mathrm{~Hz}), 3.04(1 \mathrm{H}, \mathrm{dd}, J=15.3,14.6 \mathrm{~Hz}), 3.11-3.16(2 \mathrm{H}, \mathrm{m})$, $3.97(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.2,9.1,24.5,24.8,26.9,28.2,39.0,48.9,51.4$, 58.6, 76.5, 91.8, 97.5, 135.1, 171.8, 174.8, 175.0, 198.7; HRMS calcd for $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{NO}_{4}$ 317.1627, found 317.1626 . ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectral data were in accord with those of the natural stemonamine and isostemonamine.
4.16. Treatment of 28 with Raney nickel in EtOH at low temperature

Compound $28(10 \mathrm{mg}, 28.7 \mu \mathrm{~mol})$ was treated with excess Raney $\mathrm{Ni}(\mathrm{W}-2)$ in $\mathrm{EtOH}(3 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ for 1.5 h and at room temperature for 0.5 h . The reaction mixture was filtered and the filtrate was concentrated and chromatographed on silica gel (hexane/EtOAc, 2:1) to give 4 (6.7 $\mathrm{mg}, 77 \%$) as colorless crystals.

4.17. Stemonamide thiocarbonyl lactam 29

A mixture of $(\pm) \mathbf{- 1}(3.0 \mathrm{mg}, 9.05 \mu \mathrm{~mol})$ and Lawesson's reagent $(2.3 \mathrm{mg}, 5.43 \mu \mathrm{~mol})$ in toluene (0.5 mL) heated at reflux for 1 h . After the reaction mixture was cooled to room temperture, solvent was removed under reduced pressure. The residue was chromatographed on silica gel (hexane/EtOAc, 1:1) to give 29 ($3.1 \mathrm{mg}, 99 \%$) as a colorless solid, mp 175-176
 $\delta 1.38-1.47(1 \mathrm{H}, \mathrm{m}), 1.62-1.70(1 \mathrm{H}, \mathrm{m}), 1.81-1.84(1 \mathrm{H}, \mathrm{m}), 1.91(3 \mathrm{H}, \mathrm{s}), 2.03(3 \mathrm{H}, \mathrm{s}), 2.08-2.20$ $(3 \mathrm{H}, \mathrm{m}), 2.52(1 \mathrm{H}, \mathrm{dt}, J=12.8,4.0 \mathrm{~Hz}), 2.97-3.01(3 \mathrm{H}, \mathrm{m}), 3.18(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=12.8 \mathrm{~Hz}), 4.02(3 \mathrm{H}, \mathrm{s})$, 4.83 (1H, dd, J=9.8, 4.3 Hz); ${ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.5,9.1,27.1,27.6,27.8,32.8$, 42.9, 46.6, 59.4, 81.2, 88.2, 99.9, 138.4, 168.7, 169.2, 172.6, 196.1; HRMS calcd for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{NO}_{4} \mathrm{~S} 347.1191$, found 347.1120.

4.18. Treatment of 29 with Raney nickel in EtOH at low temperature

A mixture of $29(10 \mathrm{mg}, 28.7 \mu \mathrm{~mol})$ and excess Raney $\mathrm{Ni}(\mathrm{W}-2)$ in EtOH (3 mL) was stirred
at $0{ }^{\circ} \mathrm{C}$ for 1.5 h and at room temperature for 0.5 h . The reaction mixture was filtered, the filtrate was concentrated and and the residue was chromatographed on silica gel (hexane/EtOAc, 1:1) to give 3 ($6.9 \mathrm{mg}, 79 \%$) as colorless crystals.

Acknowledgments

This work was supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Sciences and Technology of Japan. We are grateful to Professor Yang Ye (Shanghai Institute of Materia Medica) for giving us the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of natural products, $(-)$-stemonamide, $(-)$-isostemonamide, (\pm)-stemonamine, and (\pm)-isostemonamime.

Supplementary data

Experimental procedures and compound characterization data for compounds 8, 18, 20, 24, and 26. Supplementary data associated with this article can be found in the online version, at doi:

References and notes

1. Pilli, R. A.; Ferreira de Oliveira, M. C. Nat. Prod. Rep. 2000, 17, 117-127.
2. (a) Iizuka, H.; Irie, H.; Masaki, N.; Osaki, K.; Ueno S. J. Chem. Soc., Chem. Commun.

1973, 125-126. (b) Ye, Y.; Qin, G.-W.; Xu, R.-S. J. Nat. Prod. 1994, 57, 665-669.
3. For a total synthesis of (\pm)-stemonamide (1) and (\pm)-isostemonamide (2), see: (a) Kende, A. S.; Martin Hernando, J. I.; Milbank, J. B. J. Org. Lett. 2001, 3, 2505-2508. (b) Kende, A. S.; Martin Hernando, J. I.; Milbank, J. B. J. Tetrahedron 2002, 58, 61-74.
4. Quite recently, the first synthesis of (\pm)-stemonamine (3) was reported on the basis of TiCl_{4} promoted tandem semipinacol rearrangement/Schmidt reaction of α-siloxyepoxy azide. See: Zhao, Y.-M.; Gu, P.; Tu, Y.-Q.; Fan, C.-A.; Zhang, Q. Org. Lett. 2008, 10, 1763-1765.
5. For a portion of this work, see: Taniguchi, T.; Tanabe, G.; Muraoka, O.; Ishibashi H. Org. Lett. 2008, 10, 197-199.
6. For 7-endo-selective radical cyclizations onto the alkenic bond of enamides, see: (a) Taniguchi, T.; Ishita, A.; Uchiyama, M.; Tamura, O.; Muraoka, O.; Tanabe, G.; Ishibashi, H. J. Org. Chem. 2005. 70. 1922-1925. (b) Taniguchi, T.; Yonei, D.; Sasaki, M.; Tamura, O.; Ishibashi, H. Tetrahedron 2008, 64, 2634-2641.
7. For 5-endo cyclizations of α-amidoyl radicals, see: (a) Ishibashi, H.; Ishita, A.; Tamura, O. Tetrahedron Lett. 2002, 43, 473-475. (b) Taniguchi, T.; Tamura, O.; Uchiyama, M.; Muraoka, O.; Tanabe, G.; Ishibashi, H. Synlett 2005, 1179-1181. (c) Takeuchi, K.; Ishita, A.; Matsuo, J.; Ishibashi, H. Tetrahedron 2007, 63, 11101-11107. See also Ref. 6a.
8. Crystallographic data of $\mathbf{1 3}$ and $\mathbf{1 4}$ have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication no. CCDC 678244 (13) and 678245 (14), respectively. Copies of these data may be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif, by emailing data_request@ccdc.cam.ac.uk, or by
contacting The Cambridge Crystallographic Data Centre, 12, Union Road, Cambridge CB2 1EZ, UK; fax: +44(1223)336033.
9. Witiak, D. T.; Tehim, A. K. J. Org. Chem. 1987, 52, 2324-2327.
10. (a) Clemo, N. G.; Pattenden, G. Tetrahedron Lett. 1982, 23, 581-584. (b) Ladlow, M.; Pattenden, G. Tetrahedron Lett. 1985, 23, 4413-4416.
11. Miyaura, N.; Suzuki, A. Chem. Rev. 1995, 95, 2457-2483.
12. Campos, P. J.; Tan, C.-Q.; Rodriguez, M. A. Tetrahedron Lett. 1995, 36, 5257-5260.
13. For a recent review of the Mannich reaction, see: Arend, M.; Westermann, B.; Risch, N. Angew. Chem., Int. Ed. 1998, 37, 1044-1070.
14. Gras, J.-L. Tetrahedron Lett. 1978, 19, 2111-2114.
15. Bredereck, H.; Simchen, G.; Rebsdat, S.; Kantlehner, W.; Horn, P.; Wahl, R.; Hoffman, H.; Grieshaber, P. Ber. 1968, 101, 41-50.
16. Murai, A.; Tanimoto, N.; Sakamoto, N.; Masamune, T. J. Am. Chem. Soc. 1988, 110, 1985-1986.
17. (a) Grieco, P. A.; Nishizawa, M.; Marinovic, N.; Ehmann, W. J. J. Am. Chem. Soc. 1976, 98, 7102-7104. (b) Andrieux, J.; Barton, D. H. R.; Patin, H. J. Chem. Soc., Perkin Trans. 1 1977, 359-363.
18. Pedersen, B. S.; Scheibye, S.; Nilsson, N. H.; Lawesson, S.-O. Bull. Soc. Chim. Belg. 1978, 87, 223-228.
19. Ozturk, T.; Ertas, E.; Mert, O. Chem. Rev. 107, 5210-5278 (2007). See also: Ori, M.; Nishio, T. Heterocycles 2000, 52, 111-116.
20. Tomari, K.; Machiya, K.; Ichimoto, I.; Ueda, H. Agric. Biol. Chem. 1980, 44, 2135-2183.
21. Ferraz, H. M. C.; Sasahara, R. M.; Losco, P. Tetrahedron Lett. 1992, 33, 8131-8132.
22. Harrowven, D. C.; Guy, I. L. Chem. Commun. 2004, 1968-1969.

[^0]: * Corresponding author. Tel.: +81 76234 4474. Fax: +81 762344476.

 E-mail address: isibasi@p.kanazawa-u.ac.jp

