8－Endo－selective aryl radical cyclization leading to 3－benzazocines

メタデータ	言語：eng
	出版者：
	公開日：2017－10－04
	キーワード（Ja）：
	キーワード（En）：
	作成者：
メールアドレス：	
	所属：
URL	https：／／doi．org／10．24517／00015363

This work is licensed under a Creative Commons Attribution－NonCommercial－ShareAlike 3.0
International License．

8-ENDO-SELECTIVE ARYL RADICAL CYCLIZATION LEADING TO 3-BENZAZOCINES ${ }^{\dagger}$

Tsuyoshi Taniguchi, Hisaaki Zaimoku, and Hiroyuki Ishibashi*

Division of Pharmaceutical Sciences, Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa 920-1192, Japan. E-mail: isibasi@p.kanazawa-u.ac.jp

Abstract

Bu}_{3} \mathrm{SnH}\)-mediated radical cyclization of N -acyl-3-(2-bromophenyl)- N-ethenypropylamines (14) occurred in an endo-selective manner to give the 3-benzazocine derivatives (15) in good yields.

INTRODUCTION

In a previous paper, we reported that $\mathrm{Bu}_{3} \mathrm{SnH}$-mediated radical cyclization of enamide (1) gave an isoquinoline derivative (2) as the major product along with a 3-benzazepine derivative (3) in a ratio of 3:1, and the cyclization of enamide (4) gave exclusively a 3-benzazepine derivative (5) (Scheme 1). ${ }^{1}$ These results strongly indicated that positional change in the carbonyl group of enamide played an important role in deciding the course of radical cyclization. When the carbonyl group of starting enamide could be

Scheme 1. Radical cyclization of compounds (1) and (4).

[^0]incorporated into the newly formed ring, exo radical cyclization predominated (e.g., $\mathbf{1} \rightarrow \mathbf{2}$), whereas when the carbonyl group was not incorporated into the newly formed ring, endo cyclization might result (e.g., 4 $\boldsymbol{\rightarrow} \mathbf{5}$). We soon found, however, that exo-selectivity of the radical cyclization was lost even when the carbonyl group is incorporated into the newly formed ring. The radical cyclization of enamide (6) gave a 7-exo cyclization product (7) and an 8-endo cyclization product (8) in almost equal amounts (Scheme 2), although total yields of the cyclization products were low: the major product was a so-called reduction product (9). ${ }^{2}$

Scheme 2. Radical cyclization of compound (6).

We then turned our attention to enamides (14), whose radical cyclizations were expected to occur in an 8-endo-selective manner, since their carbonyl groups were not incorporated into the newly formed ring. We describe herein a synthesis of 3-benzazocine derivatives (15) by radical cyclization of enamides (14). ${ }^{3}$

RESULTS AND DISCUSSION

Scheme 3 shows the synthetic route to the requisite enamides (14). Amine (12) was obtained by condensation of carboxylic acid (10) with 2-(phenylthio)ethylamine followed by reduction of the carbonyl group of the resulting amide (11) with BH_{3}. Acylation of amine (12) with acetyl chloride, pivaloyl chloride, carbobenzoxy chloride or (Boc$)_{2} \mathrm{O}$ gave amides (13a-d), whose oxidation followed by thermal elimination of the phenylsulfinyl group gave enamides (14a-d) in $68 \%, 70 \%, 57 \%$ and 62% yields based on amides (13a-d), respectively.
When enamide (14a) was treated with a mixture of $\mathrm{Bu}_{3} \mathrm{SnH}$ and azobis(cyclohexanecarbonitile) (ACN) (by using the slow addition technique) in boiling toluene, 3-acetyl-3-benzazocine derivative (15a) was obtained in 57% yield along with the reduction product (16a) (30% yield) (Scheme 3). No 7 -exo cyclization product was obtained. Similarly, enamides (14b-d) gave 3-benzazocine derivatives (15b), (15c) and (15d) in $67 \%, 58 \%$ and 63% yields, respectively. It should be noted that the radical
cyclization of enamides (14a-d) exclusively took place in an endo-manner to give 3-benzazocines (15ad) in good yields.

AcCl, pivaloyl chloride, $\mathrm{PhCH}_{2} \mathrm{OCOCl}$,

13a: R = Me (95\%)
13b: $\mathrm{R}=$ tert- Bu (quant.)
13c: $\mathrm{R}=\mathrm{OCH}_{2} \mathrm{Ph}$ (quant.)
13d: R = O-tert-Bu (96\%)

1) $m \mathrm{CPBA}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, $\mathrm{O}^{\circ} \mathrm{C}$

14a: $R=M e$ (68\%)
14b: $\mathrm{R}=$ tert- Bu (70\%)
14c: $\mathrm{R}=\mathrm{OCH}_{2} \mathrm{Ph}$ (57\%)
14d: R = O-tert-Bu (62\%)

Scheme 3. Preparation and radical cyclization of compounds (14a), (14b), (14c) and (14d).

We next examined the cyclization of enamides (19a) and (19b) having the methyl or phenyl group at the terminus of the alkenic bond, respectively. Compounds (19a) and (19b) were prepared by condensation of amine (17) and propionaldehyde or phenylacetaldehyde followed by acetylation of the resulting imines (18a) and (18b) with acetyl chloride, respectively (Scheme 4).

Treatment of compound (19a) with $\mathrm{Bu}_{3} \mathrm{SnH}-\mathrm{ACN}$ in boiling toluene gave 1-methyl-3-benzazocine derivative (20a) and 1-ethyl-2-benzazepine derivative (21a) in 45% and 9% yields, respectively, along with reduction product (22a) in 38\% yield (Scheme 4). 7-Exo cyclization product (21a) may arise from a stable intermediate of a methyl-substituted radical. As expected, treatment of phenyl-substituted compound (19b) increased the yield of 7-exo cyclization product (21b), due to the more stable phenylsubstituted radical intermediate. The ratio of the 8 -endo cyclization product (20b) and the 7 -exo cyclization product (21b) was ca. 1:1.

Scheme 4. Preparation and radical cyclization of compounds (19a) and (19b).

CONCLUSION

We revealed that $\mathrm{Bu}_{3} \mathrm{SnH}$-mediated radical cyclization of N -acyl-3-(2-bromophenyl)- N -ethenylpropylamines occurred exclusively in an endo-manner to give 3-benzazocine derivatives in good yields. A similar cyclization of a compound having the methyl or phenyl substituent at the terminus of the alkenic bond, however, occurred partially in an exo manner to give 2-benzazepine derivatives.

EXPERIMENTAL

General Melting points are uncorrected. Infrared (IR) spectra were recorded on a Shimadzu FTIR8100 spectrophotometer for solutions in $\mathrm{CHCl}_{3} .{ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were measured on a JEOL EX $500(500 \mathrm{MHz})$ or a JEOL JNM-EX $270(270 \mathrm{MHz})$ spectrometer. Chemical shifts (δ) quoted are relative to tetramethylsilane. High resolution mass spectra (HRMS) were obtained with a JEOL JMS-SX-102A mass spectrometer. Column chromatography was carried out on silica gel 60N (Kanto Kagaku Co., Ltd., spherical, neutral, 63-210 $\mu \mathrm{m}$) under pressure.

3-(2-Bromophenyl)- N -(2-phenylthioethyl)propanamide (11) To a solution of 3-(2bromophenyl)propionic acid ($2.24 \mathrm{~g}, 9.78 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ were added 2(phenylthio)ethylamine ${ }^{4}(1.50 \mathrm{~g}, 9.80 \mathrm{mmol})$ and 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDC) ($2.25 \mathrm{~g}, 11.7 \mathrm{mmol}$) at rt , and the mixture was stirred for 2 h . The mixture was diluted with water and the organic layer was separated. The organic phase was washed successively with brine, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated. The residue was chromatographed on silica gel (hexane/AcOEt, 1:1) to give $\mathbf{1 1}(3.00 \mathrm{~g}, 84 \%)$ as colorless crystals, $\mathrm{mp} 84.5-86.0{ }^{\circ} \mathrm{C}$ (hexane): IR $\left(\mathrm{CHCl}_{3}\right)$ $v 1665 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($270 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 2.45(2 \mathrm{H}, \mathrm{t}, J=7.4 \mathrm{~Hz}), 3.00(2 \mathrm{H}, \mathrm{t}, J=6.3 \mathrm{~Hz}), 3.06$
$(2 \mathrm{H}, \mathrm{t}, J=7.4 \mathrm{~Hz}), 3.43(2 \mathrm{H}, \mathrm{q}, J=6.3 \mathrm{~Hz}), 5.76(1 \mathrm{H}, \mathrm{br}), 7.03-7.37(8 \mathrm{H}, \mathrm{m}), 7.52(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}) ;$ ${ }^{13} \mathrm{C}$ NMR ($67.8 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 31.9,33.2,36.1,38.5,124.1,126.3,127.5,127.9,129.0,129.4$, 130.5, 132.7, 134.9, 139.8, 171.8. Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{BrNOS}$ C, 56.05 ; H, 4.98; N, 3.84. Found: C, 55.76; H, 5.04; N, 3.76.

3-(2-Bromophenyl)-N-(2-phenylthioethyl)propylamine (12) To a solution of $\mathbf{1 1}$ ($2.80 \mathrm{~g}, 7.69 \mathrm{mmol}$) in THF (20 mL) was added a 1 M solution of $\mathrm{BH}_{3} \cdot$ THF ($35 \mathrm{~mL}, 34.3 \mathrm{mmol}$) at rt, and the mixture was heated at reflux for 1.5 h . MeOH was added to the reaction mixture, and the mixture was stirred at rt for 30 min . After evaporation of the solvent, 1 N HCl was added to the residue, and the mixture was heated at reflux for 1 h . The mixture was basified by adding 1 N NaOH , and the mixture was extracted with CHCl_{3}. The organic phase was washed successively with brine, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated. The residue was chromatographed on silica gel (hexane/AcOEt, 1:1) to give 12 ($2.41 \mathrm{~g}, 90 \%$) as a colorless oil: ${ }^{1} \mathrm{H}$ NMR ($270 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm})$: $1.52(1 \mathrm{H}, \mathrm{s}), 1.79(2 \mathrm{H}$, quint, $J=7.4 \mathrm{~Hz}), 2.67(2 \mathrm{H}, \mathrm{t}$, $J=7.4 \mathrm{~Hz}), 2.76(2 \mathrm{H}, \mathrm{t}, J=7.4 \mathrm{~Hz}), 2.86(2 \mathrm{H}, \mathrm{t}, J=6.6 \mathrm{~Hz}), 3.08(2 \mathrm{H}, \mathrm{t}, J=6.6 \mathrm{~Hz}), 7.01-7.38(8 \mathrm{H}, \mathrm{m})$, $7.51(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.7 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($67.8 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 30.1,33.7,34.1,48.2,48.7,124.3,126.0$, 127.3, 127.4, 128.8, 129.4, 130.2, 132.7, 135.8, 141.2. Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{BrNS}$: C, 58.28; H, 5.75; N, 4.00. Found: C, 58.27; H, 5.87; N, 4.12.
N-[3-(2-Bromophenyl)propyl]-N-(2-phenylthioethyl)acetamide (13a) General procedure To a solution of $12(1.3 \mathrm{~g}, 3.71 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{~mL})$ was added acetyl chloride ($437 \mathrm{mg}, 5.57 \mathrm{mmol}$) and $\mathrm{Et}_{3} \mathrm{~N}(676 \mathrm{mg}, 6.68 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$, and the mixture was stirred at the same temperature for 30 min . The mixture was diluted with water and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic phase was washed successively with a saturated aqueous solution of NaHCO_{3} and brine. After drying $\left(\mathrm{MgSO}_{4}\right)$, the mixture was concentrated. The residue was chromatographed on silica gel (hexane/AcOEt, 2:1) to give 13a (1.38 g, 95%) as a colorless oil, whose ${ }^{1} \mathrm{H}$ NMR showed it to be a mixture of two rotamers: IR $\left(\mathrm{CHCl}_{3}\right) v 1630$ $\mathrm{cm}^{-1}{ }^{1}{ }^{1} \mathrm{H}$ NMR ($270 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ (ppm): 1.75-1.90 ($2 \mathrm{H}, \mathrm{m}$), 1.98 and 2.00 (total 3H, both s), 2.66$2.73(2 \mathrm{H}, \mathrm{m}), 2.99-3.16(2 \mathrm{H}, \mathrm{m}), 3.28-3.55(4 \mathrm{H}, \mathrm{m}), 7.04-7.56(9 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR ($67.8 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ (ppm): 13.4, 13.9, 19.2, 21,6, 22.8, 24.7, 28.3, 35.5, 40.2, 126.9, 127.1, 127. 2, 127.6, 128.4, 138.5, 172.0. Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{22}$ BrNOS: C, 58.16; H, 5.65; N, 3.57. Found: C, 58.05; H, 5.83; N, 3.78.
N-[3-(2-Bromophenyl)propyl]- N-(2-phenylthioethyl)trimethylacetamide (13b) Yield = quant.; colorless oil: IR $\left(\mathrm{CHCl}_{3}\right) v 1615 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($270 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm})$: $1.17(9 \mathrm{H}, \mathrm{s}), 1.78-1.89(2 \mathrm{H}$, m), $2.69(2 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}), 3.08(2 \mathrm{H}, \mathrm{t}-\mathrm{like}, J=7.9 \mathrm{~Hz}), 3.42(2 \mathrm{H}, \mathrm{t}$-like, $J=7.6 \mathrm{~Hz}), 3.50(2 \mathrm{H}, \mathrm{t}-\mathrm{like}, J$ $=7.9 \mathrm{~Hz}), 7.04-7.41(8 \mathrm{H}, \mathrm{m}), 7.53(1 \mathrm{H}, \mathrm{dd}, J=6.6,1.3 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($\left.67.8 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 26.5$,
28.3, 28.8 (br), 33.4, 38.9, 47.8, 48.1 (br), 124.3, 127.5, 127.9, 129.0, 130.3, 132.9, 177.4; HRMS calcd for $\mathrm{C}_{22} \mathrm{H}_{28}{ }^{79} \mathrm{BrNOS}$: 433.1075, found: 433.1081.
N-Benzyloxycarbonyl- N-[3-(2-bromophenyl)propyl]-2-phenylthioethylamine (13c) Yield = quant.; colorless oil: IR $\left(\mathrm{CHCl}_{3}\right) \cup 1695 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($270 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 1.83(2 \mathrm{H}, \mathrm{br}), 2.62-2.73(2 \mathrm{H}$, m), 3.00-3.16 ($2 \mathrm{H}, \mathrm{m}$), 3.30-3.51 (2H, m), 5.13 (2H, s), 7.01-7.34 (13H, m), $7.51(1 \mathrm{H}, \mathrm{d}, J=7.9 \mathrm{~Hz}){ }^{13} \mathrm{C}$ NMR ($67.8 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 28.9,31.1,33.4,46.9,47.8,67.2,124.3,126.1,127.4,127.7,127.8$, 128.0, 128.5, 129.0, 130.1, 130.2, 132.8, 136.5, 140.6, 140.8; HRMS calcd for $\mathrm{C}_{25} \mathrm{H}_{26}{ }^{79} \mathrm{BrNO}_{2} \mathrm{~S}$: 483.0868, found: 483.0866.
N-[3-(2-Bromophenyl)propyl]-N-tert-butoxycarbonyl-2-phenylthioethylamine (13d) Yield $=96 \%$; colorless oil: IR $\left(\mathrm{CHCl}_{3}\right) v 1685 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 1.43(9 \mathrm{H}, \mathrm{s}), 1.74-1.86(2 \mathrm{H}$, $\mathrm{m}), 2.68(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.9 \mathrm{~Hz}$), 3.06 ($2 \mathrm{H}, \mathrm{br}$), 3.27 ($2 \mathrm{H}, \mathrm{br}$), 3.39 ($2 \mathrm{H}, \mathrm{br}$), $7.05-7.37$ ($8 \mathrm{H}, \mathrm{m}$), 7.51 ($1 \mathrm{H}, \mathrm{d}, J$ $=7.9 \mathrm{~Hz}$); ${ }^{13} \mathrm{C}$ NMR ($67.8 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ (ppm): 28.4, 31.5, 31.7, 33.5, 47.3, 79.7, 124.3, 126.0, 126.2, 127.4, 127.6, 129.0, 129.2, 130.2, 132.8, 140.9, 170.9; HRMS calcd for $\mathrm{C}_{22} \mathrm{H}_{28}{ }^{79} \mathrm{BrNO}_{2} \mathrm{~S}$: 449.1024, found: 449.1012.
N-[3-(2-Bromophenyl)propyl]- N-ethenylacetamide (14a) General procedure To a solution of 13a $(1.38 \mathrm{~g}, 3.52 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(90 \mathrm{~mL})$ was added dropwise a solution of m-chloroperbenzoic acid ($\mathrm{mCPBA}, 65 \%$ purity) ($934 \mathrm{mg}, 3.52 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(90 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ over 1.5 h . To the mixture was added 10% aqueous solution of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$, and the mixture was stirred at the same temperature for 10 min . The organic layer was separated, and washed successively with a saturated aqueous solution of NaHCO_{3} and brine, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated. A mixture of the residue containing N-[3-(2-bromophenyl)propyl]- N-(2-phenylsulfinylethyl)acetamide in xylene (170 mL) was heated at reflux for 16 h in the presence of $\mathrm{NaHCO}_{3}(1.09 \mathrm{~g}, 13.0 \mathrm{mmol})$. The reaction mixture was filtered, and the filtrate was concentrated. The reside was chromatographed on silica gel (hexane/AcOEt, 5:1) to give $\mathbf{1 4} \mathbf{a}$ (671 $\mathrm{mg}, 68 \%)$ as a colorless oil: IR $\left(\mathrm{CHCl}_{3}\right) v 1625,1665 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 1.82-$ $1.89(2 \mathrm{H}, \mathrm{m}), 2.21(3 \mathrm{H}, \mathrm{s}), 2.76(2 \mathrm{H}, \mathrm{t}-\mathrm{like}, J=7.9 \mathrm{~Hz}), 3.70(2 \mathrm{H}, \mathrm{t}-\mathrm{like}, J=7.7 \mathrm{~Hz}) 4.32(1 \mathrm{H}, \mathrm{d}, J=9.2$ $\mathrm{Hz}), 4.39(1 \mathrm{H}, \mathrm{d}, J=15.5 \mathrm{~Hz}), 6.74(1 \mathrm{H}, \mathrm{dd}, J=15.5,9.2 \mathrm{~Hz}), 7.02-7.35(3 \mathrm{H}, \mathrm{m}), 7.52(1 \mathrm{H}, \mathrm{d}, J=7.7$ Hz); ${ }^{13} \mathrm{C}$ NMR ($67.8 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 22.0,26.5,33.5,41.1,93.6,124.4,127.4,127.7,130.2$, 132.8, 133.1, 140.7, 169.2: HRMS calcd for $\mathrm{C}_{13} \mathrm{H}_{16}{ }^{79} \mathrm{BrNO}$ 281.0415, found: 281.0408.
N-[3-(2-Bromophenyl)propyl]- N-ethenyltrimethylacetamide (14b) Yield $=70 \%$; colorless oil: IR $\left(\mathrm{CHCl}_{3}\right) v 1615,1655 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($270 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 1.32(9 \mathrm{H}, \mathrm{s}), 1.83-1.93(2 \mathrm{H}, \mathrm{m}), 2.75$ (2H, t-like, $J=8.1 \mathrm{~Hz}$), $3.70(2 \mathrm{H}, \mathrm{t}-\mathrm{like}, J=7.7 \mathrm{~Hz}) 4.26(1 \mathrm{H}, \mathrm{d}, J=9.4 \mathrm{~Hz}), 4.35(1 \mathrm{H}, \mathrm{d}, J=15.5 \mathrm{~Hz})$, 7.01-7.08 (1H, m), 7.11 ($1 \mathrm{H}, \mathrm{dd}, J=15.5,9.4 \mathrm{~Hz}$), 7.22-7.24 ($2 \mathrm{H}, \mathrm{m}$), $7.52\left(1 \mathrm{H}, \mathrm{d}, J=7.7 \mathrm{~Hz}\right.$); ${ }^{13} \mathrm{C}$ NMR
(67.8 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 26.7,28.5,33.6,39.5,43.2,92.2,124.3,127.4,127.6,130.2,132.7,134.0$, 140.9, 176.5; HRMS calcd for $\mathrm{C}_{16} \mathrm{H}_{22}{ }^{79} \mathrm{BrNO}: 323.0885$, found: 323.0886.
N-Benzyloxycarbonyl- N-[3-(2-bromophenyl)propyl]ethenylamine (14c) Yield $=57 \%$; colorless oil: IR $\left(\mathrm{CHCl}_{3}\right) v 1630,1705 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($270 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 1.90(2 \mathrm{H}, \mathrm{br}), 2.74(2 \mathrm{H}, \mathrm{br}), 3.62$ (2H, br), 4.20-4.35 ($2 \mathrm{H}, \mathrm{m}$), $5.20(2 \mathrm{H}, \mathrm{s}), 7.03-7.06(2 \mathrm{H}, \mathrm{m}), 7.15-7.21(2 \mathrm{H}, \mathrm{m}), 7.30-7.36(4 \mathrm{H}, \mathrm{m}), 7.51$ $(1 \mathrm{H}, \mathrm{d}, J=7.9 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 26.7,27.2,33.4,42.9,67.8,91.8,124.4$, 127.4, 127.7, 128.0, 128.2, 128.5, 130.1, 132.2, 132.8, 136.0; HRMS calcd for $\mathrm{C}_{19} \mathrm{H}_{20}{ }^{79} \mathrm{BrNO}_{2}: 373.0677$, found: 373.0665 .
N-tert-Butoxycarbonyl- N-[3-(2-bromophenyl)propyl]ethenylamine (14d) Yield = 62\%; colorless oil: IR $\left(\mathrm{CHCl}_{3}\right) \cup 1630,1700 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($270 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 1.48(9 \mathrm{H}, \mathrm{s}), 1.81(2 \mathrm{H}$, quint, J $=7.1 \mathrm{~Hz}), 2.75(2 \mathrm{H}, \mathrm{t}$-like, $J=8.1 \mathrm{~Hz}), 3.60(2 \mathrm{H}, \mathrm{br}), 4.15-4.25(2 \mathrm{H}, \mathrm{m}), 7.02-7.09(1 \mathrm{H}, \mathrm{m}), 7.20-7.26$ $(2 \mathrm{H}, \mathrm{m}), 7.52(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.1 \mathrm{~Hz}){ }^{13} \mathrm{C}$ NMR ($67.8 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 27.1$ (br), 28.2, 33.5, 42.7 (br), 81.0, 90.5, 124.4, 127.4, 127.7, 130.1, 132.8, 140.9; HRMS calcd for $\mathrm{C}_{16} \mathrm{H}_{22}{ }^{79} \mathrm{BrNO}_{2}$: 340.0912, found: 340.0910 .

3-Acetyl-1,2,3,4,5,6-hexahydro-3-benzazocine (15a) and N-ethenyl- N-(3-phenylpropyl)acetamide (16a) General procedure for radical reaction of N-acyl-3-(2-bromophenyl)propyl- N ethenylamines (14) To a boiling solution of $\mathbf{1 4 a}(200 \mathrm{mg}, 0.709 \mathrm{mmol})$ in toluene (70 mL) was added dropwise a solution of $\mathrm{Bu}_{3} \mathrm{SnH}(309 \mathrm{mg}, 1.06 \mathrm{mmol})$ and $\mathrm{ACN}(34.6 \mathrm{mg}, 0.142 \mathrm{mmol})$ in toluene (30 mL) over 4 h , and the mixture was further heated at reflux for 1 h . After evaporation of the solvent, the residue was chromatographed on silica gel containing KF (10\%) (hexane/AcOEt, 3:1). The first eluate gave 16a ($43.0 \mathrm{mg}, 30 \%$) as a colorless oil, whose ${ }^{1} \mathrm{H}$ NMR spectrum showed it to be a mixture of rotamers: IR $\left(\mathrm{CHCl}_{3}\right) \cup 1620,1665 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, for one rotamer) $\delta(\mathrm{ppm}):$ 1.81$1.95(2 \mathrm{H}, \mathrm{m}), 2.18(3 \mathrm{H}, \mathrm{s}), 2.64(2 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}), 3.64(2 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}), 4.27(1 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz})$, $4.35(1 \mathrm{H}, \mathrm{d}, J=15.3 \mathrm{~Hz}), 6.70(1 \mathrm{H}, \mathrm{dd}, J=15.3,8.2 \mathrm{~Hz}), 7.14-7.34(5 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR (67.8 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 22.0,27.8,33.2,41.1,65.3,93.5,124.0,125.9,126.9,127.7,128.28,128.83,128.5$, 129.2, 133.1, 141.4, 169.2; HRMS calcd for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{NO}$: 203.1310, found: 203.1315. The second eluate gave $\mathbf{1 5 a}(81.9 \mathrm{mg}, 57 \%)$ as colorless oil, whose ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectrum showed it to be a mixture of isomers: IR $\left(\mathrm{CHCl}_{3}\right) v 1630 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, for one isomer) $\delta(\mathrm{ppm}): 1.85-2.05(2 \mathrm{H}$, m), 1.94 and 2.10 (total 3 H , s and s), 2.66-2.75 ($2 \mathrm{H}, \mathrm{m}$), 2.85-2.93 ($2 \mathrm{H}, \mathrm{m}$), 3.12-3.23 ($2 \mathrm{H}, \mathrm{m}$), 3.49-3.51 and 3.68 (total $2 \mathrm{H}, \mathrm{m}$ and br), 7.13-7.27 ($4 \mathrm{H}, \mathrm{m}$); ${ }^{13} \mathrm{C}$ NMR ($67.8 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ (ppm): 21.0, 21.9, 28.6, 29.1, 30.7, 31.3, 34.6, 34.7, 46.8, 47.5, 49.8, 52.7, 126.4, 126.8, 127.0, 127.2, 129.1, 129.2, 129.6, 129.7, 137.9, 139.3, 139.8, 140.9, 170.0, 170.8; HRMS calcd for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{NO}$: 203.1310, found: 203.1312.

1,2,3,4,5,6-Hexahydro-3-trimethylacetyl-3-benzazocine (15b) and N-ethenyl- N-(3-phenylpropyl)trimethylacetamide (16b) 15b: yield $=67 \%$; colorless oil: $\mathrm{IR}\left(\mathrm{CHCl}_{3}\right)$ v $1615 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (270 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 1.24(9 \mathrm{H}, \mathrm{s}), 1.92(2 \mathrm{H}, \mathrm{br}), 2.69(2 \mathrm{H}, \mathrm{t}, J=6.3 \mathrm{~Hz}), 2.94(2 \mathrm{H}, \mathrm{br}), 3.13(2 \mathrm{H}, \mathrm{br})$, $3.71(2 \mathrm{H}, \mathrm{br}), 7.10-7.20(4 \mathrm{H}, \mathrm{m})$; ${ }^{13} \mathrm{C}$ NMR ($67.8 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 28.6,29.5,30.5,35.7,39.0,48.4$, 52.0, 126.3, 127.2, 129.3, 129.5, 138.3, 141.0, 177.1; HRMS calcd for $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{NO}$: 245.1780, found: 245.1781. 16b: yield $=32 \%$; colorless oil: IR $\left(\mathrm{CHCl}_{3}\right) v 1615 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ (ppm): 1.31 ($9 \mathrm{H}, \mathrm{s}$), 1.82-1.93 (2H, m), 2.63 ($2 \mathrm{H}, \mathrm{t}$-like, $J=7.8 \mathrm{~Hz}$), 3.64 ($2 \mathrm{H}, \mathrm{t}$-like, $J=7.8 \mathrm{~Hz}$) 4.23 $(1 \mathrm{H}, \mathrm{d}, J=9.3 \mathrm{~Hz}), 4.27(1 \mathrm{H}, \mathrm{d}, J=15.4 \mathrm{~Hz}), 7.09(1 \mathrm{H}, \mathrm{dd}, J=15.4,9.3 \mathrm{~Hz}), 7.18-7.31(5 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR ($67.8 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 28.0,28.5,33.3,39.5,43.3,92.1,125.9,128.29,128.31,134.0,141.5$, 176.4; HRMS calcd for $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{NO}: 245.1780$, found: 245.1770.

3-Benzyloxycarbonyl-1,2,3,4,5,6-hexahydro-3-benzazocine (15c) and N-benzyloxycarbonyl- N -ethenyl-3-phenylpropylamine (16c) 15 c: yield $=58 \%$; colorless oil; ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectrum showed compound $\mathbf{1 5 c}$ to be a mixture of isomers: $\operatorname{IR}\left(\mathrm{CHCl}_{3}\right) v 1680 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, for one isomer) $\delta(\mathrm{ppm}): 1.82-2.02(2 \mathrm{H}, \mathrm{m}), 2,69(2 \mathrm{H}, \mathrm{dd}, J=13.5,5.9 \mathrm{~Hz}), 2.82-2.86(2 \mathrm{H}, \mathrm{m}), 3.02-3.12$ $(2 \mathrm{H}, \mathrm{m}), 3.58(2 \mathrm{H}, \mathrm{br}), 5.08$ and 5.14 (total 2 H , s and s), $7.06-7.34(9 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR (67.8 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 29.2,29.5,30.1,30.6,35.07,35.09,46.2,47.4,50.9,51.3,66.7,66.9,126.4,126.6$, 126.95, 127.0, 127.6, 127.7, 127.78, 127.83, 128.40, 128.43, 129.2, 129.4, 129.5, 129.7, 136.9, 137.0, 139.0, 139.5, 140.1, 140.5, 155.3, 156.2; HRMS calcd for $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{NO}$: 245.1780, found: 245.1781. 16c: yield $=32 \%$; colorless oil: $\operatorname{IR}\left(\mathrm{CHCl}_{3}\right) v 1630,1705 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 1.80-$ $1.95(2 \mathrm{H}, \mathrm{m}), 2.62(2 \mathrm{H}, \mathrm{br}), 3.57(2 \mathrm{H}, \mathrm{br}), 4.22(2 \mathrm{H}, \mathrm{br} \mathrm{d}), 5.19(2 \mathrm{H}, \mathrm{s}), 7.15-7.35(11 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR ($67.8 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ (ppm): 23.0, 24.7, 28.0, 30.9, 33.1, 42.8, 67.8, 91.7, 125.9, 127.9, 128.0, 128.19, 128.24, 128.3, 128.5, 132.7, 136.0; HRMS calcd for $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{NO}$: 245.1780 , found: 245.1770.

3-tert-Butoxycarbonyl-1,2,3,4,5,6-tetrahydro-3-benzazocine (15d) and N-tert-Butoxycarbonyl- N -ethenyl-3-phenylpropylamine (16d) 15d: yield $=63 \%$; colorless oil; ${ }^{1} \mathrm{H}$ NMR spectrum showed compound 15 d to be a mixture of isomer: $\mathrm{IR}\left(\mathrm{CHCl}_{3}\right) \cup 1680 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm})$: 1.35 and 1.44 (total 9 H , both s), 1.8-1.98 ($2 \mathrm{H}, \mathrm{m}$), 2.67-2.71 ($2 \mathrm{H}, \mathrm{m}$), 2.80-2.87 ($2 \mathrm{H}, \mathrm{m}$), 2.95 and 3.06 (total 2 H , br and $\mathrm{t}, J=5.8 \mathrm{~Hz}$), 3.46-3.52 $(2 \mathrm{H}, \mathrm{m}), 7.10-7.18(4 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR ($67.8 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ (ppm): 28.3, 28.5, 29.3, 29.6, 30.5, 30.7, 34.8, 35.2, 46.4, 47.1, 50.5, 50.9, 79.0, 79.2, 126.3, 126.5, 126.80, 126.83, 129.1, 129.39, 129.47, 129.7, 139.0, 139.7, 140.2, 141.0, 154.7, 155.5. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{NO}_{2}$: C, 73.53; H, 8.87; N, 5.36. Found: C, 73.52; H, 9.09; N, 5.50. 16d: yield = 28\%; colorless oil: IR $\left(\mathrm{CHCl}_{3}\right) \cup 1625,1700 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 1.47(9 \mathrm{H}, \mathrm{s}), 1.83-1.94(2 \mathrm{H}, \mathrm{m})$, $2.63(2 \mathrm{H}, \mathrm{t}$ like, $J=7.9 \mathrm{~Hz}), 3.50(2 \mathrm{H}, \mathrm{br}), 4.16(2 \mathrm{H}, \mathrm{br} \mathrm{d}), 7.05(1 \mathrm{H}, \mathrm{br}), 7.17-7.30(5 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR
($67.8 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ (ppm): 28.2, 28.3, 33.2, 42.5 (br), 81.0, 90.4, 125.9, 128.26, 128.34, 132.7, 132.8, 141.4; HRMS calcd for $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{NO}$: 261.1729, found: 261.1727.
N-3-(2-Bromophenyl)propyl- N-(1-propenyl)acetamide (19a) A mixture of 3-(2-bromophenyl)propylamime ($300 \mathrm{mg}, 1.40 \mathrm{mmol}$) and propionaldehyde ($81.3 \mathrm{mg}, 1.40 \mathrm{mmol}$) in THF (12 mL) was stirred at $0^{\circ} \mathrm{C}$ for 3 h in the presence of MS $4 \AA$ (powder, 300 mg). Acetyl chloride ($132 \mathrm{mg}, 1.68 \mathrm{mmol}$) and $\mathrm{Et}_{3} \mathrm{~N}$ ($313 \mathrm{mg}, 2.10 \mathrm{mmol}$) were added to the reaction mixture containing imine (18a) at $0^{\circ} \mathrm{C}$, and the mixture was stirred at the same temperature for 30 min . The reaction mixture was poured into water and the organic layer was separated. The organic phase was washed successively with a saturated aqueous solution of NaHCO_{3} and brine, After drying $\left(\mathrm{MgSO}_{4}\right)$, the mixture was concentrated. The residue was chromatographed on silica gel (hexane/AcOEt, 5:1) to give 19a (173.1 mg, 42\%) as a colorless oil, whose ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectrum showed it to be a mixture of two rotamers: IR $\left(\mathrm{CHCl}_{3}\right) \cup 1645 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($270 \mathrm{MHz}, \mathrm{CDCl}_{3}$, for one isomer) $\delta(\mathrm{ppm}): 1.72(3 \mathrm{H}, \mathrm{d}, J=6.6 \mathrm{~Hz}), 1.80-2.00(2 \mathrm{H}, \mathrm{m}), 2.17(3 \mathrm{H}, \mathrm{s})$, $2.74(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=8.1 \mathrm{~Hz}), 3.67(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}), 5.00(1 \mathrm{H}, \mathrm{dq}, \mathrm{J}=13.8,6.8 \mathrm{~Hz}), 6.43(1 \mathrm{H}, \mathrm{d}, J=13.8$ $\mathrm{Hz}), 7.02-7.27(4 \mathrm{H}, \mathrm{m}), 7.52(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.7 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($67.8 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 15.6,22.2,26.8$, 33.5. 42.3, 107.8, 124.4, 127.4, 127.6, 128.2, 130.2, 132.7, 140.9, 168.8; HRMS calcd for $\mathrm{C}_{14} \mathrm{H}_{18}{ }^{79} \mathrm{BrNO}$: 295.0572, found: 295.0565.
N-3-(2-Bromophenyl)propyl- N -(2-phenylethenyl)acetamide (19b) According to the procedure similar to that described for the preparation of 19a, 3-(2-bromophenyl)propylamime ($300 \mathrm{mg}, 1.40 \mathrm{~mol}$) and phenylacetaldehyde ($168 \mathrm{mg}, 1.40 \mathrm{~mol}$) was condensed and the resulting imine ($\mathbf{1 8 b}$) was treated with acetyl chloride ($132 \mathrm{mg}, 1.68 \mathrm{mmol}$) and $\mathrm{Et}_{3} \mathrm{~N}(313 \mathrm{mg}, 2.10 \mathrm{mmol})$ to give $\mathbf{1 9 b}(133.5 \mathrm{mg}, 27 \%)$ as a colorless oil, whose ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectrum showed it to be a mixture of rotamers: IR $\left(\mathrm{CHCl}_{3}\right)$ $v 1635 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($270 \mathrm{MHz}, \mathrm{CDCl}_{3}$, for one rotamer) $\delta(\mathrm{ppm}): 1.85-2.10(2 \mathrm{H}, \mathrm{m}), 2.31(3 \mathrm{H}, \mathrm{s})$, 2.78-2.86 (2H, m), 3.66-3.84 (2H, m), $5.85(1 \mathrm{H}, \mathrm{d}, J=14.5 \mathrm{~Hz}), 7.04-7.56(10 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR (67.8 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 22.2,26.7,32.3,32.7,33.5,41.9,62.1,110.6,111.2,124.4,125.3,125.6,126.4$, 126.5, 127.4, 126.6, 127.8, 128.2, 128.6, 128.7, 128.8, 130.36, 130.38, 132.77, 132.84, 136.5, 140.6, 141.1, 144.8, 169.2; HRMS calcd for $\mathrm{C}_{19} \mathrm{H}_{20}{ }^{79} \mathrm{BrNO}$: 357.0728, found: 357.0727.

3-Acetyl-1,2,3,4,5,6-hexahydro-1-methyl-3-benzazocine (20a), 2-acetyl-1-ethyl-1,3,4,5-tetrahydro-2(2H)-benzazepine (21a) and N-(3-phenylpropyl)- N-(1-propenyl)acetamide (22a) According to the general procedure described above for the radical reaction of 14a, compound (19a) ($150 \mathrm{mg}, 0.506$ mmol) was treated with $\mathrm{Bu}_{3} \mathrm{SnH}(221 \mathrm{mg}, 0.76 \mathrm{mmol})$ and $\mathrm{ACN}(24.7 \mathrm{mg}, 0.101 \mathrm{mmol})$, After usual
work-up, the residue was chromatographed on silica gel (hexane/AcOEt, 3:1). The first eluate gave 22a ($42.6 \mathrm{mg}, 38 \%$) as a colorless oil, whose ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectrum showed it to be a mixture of two rotamers: IR $\left(\mathrm{CHCl}_{3}\right)$ v $1645 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, for one rotamer) $\delta(\mathrm{ppm}): 1.69(3 \mathrm{H}, \mathrm{d}, \mathrm{J}$ $=6.7 \mathrm{~Hz}), 1.82-1.89(2 \mathrm{H}, \mathrm{m}), 2.16(3 \mathrm{H}, \mathrm{s}), 2.61-2.67(2 \mathrm{H}, \mathrm{m}), 3.62(2 \mathrm{H}, \mathrm{t}, J=7.9 \mathrm{~Hz}), 4,86-4.96(1 \mathrm{H}, \mathrm{m})$, $6.41(1 \mathrm{H}, \mathrm{d}, J=13.4 \mathrm{~Hz}), 7.1-7.4(5 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR ($67.8 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 15.5,22.2,28.2,33.2$, 42.5, 107.7, 125.8, 128.2, 128.3, 128.5, 141.6, 168.8; HRMS calcd for $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{NO}$: 217.1467, found: 217.1465. The second eluate gave 21a (10.0 mg , 9\%) as a colorless oil, whose ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectrum showed it to be a mixture of two isomers: IR $\left(\mathrm{CHCl}_{3}\right) v 1625 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $(270 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 0.90(3 \mathrm{H} \times 1 / 2, \mathrm{t}, J=7.3 \mathrm{~Hz}), 0.95(3 \mathrm{H} \times 1 / 2, \mathrm{t}, J=7.3 \mathrm{~Hz}), 1.71-1.78(2 \mathrm{H} \times 1 / 2, \mathrm{~m})$, $1.87-1.98(2 \mathrm{H} \times 1 / 2, \mathrm{~m}), 2.10(3 \mathrm{H} \times 1 / 2, \mathrm{~s}), 2.13(3 \mathrm{H} \times 1 / 2, \mathrm{~s}), 2.81-2.85(2 \mathrm{H} \times 1 / 2, \mathrm{~m}), 3.03(1 / 2 \mathrm{H}, \mathrm{br} \mathrm{t})$, 3.10-3.16 ($2 \mathrm{H} \times 1 / 2, \mathrm{~m}$), $3.55(1 / 2 \mathrm{H}, \mathrm{br}-\mathrm{t}), 3.83(1 / 2 \mathrm{H}, \mathrm{br}$ d), $4.55(1 / 2 \mathrm{H}, \mathrm{dd}, J=9.2,6.7 \mathrm{~Hz}), 4.73(1 / 2 \mathrm{H}$, br d), $5.52(1 / 2 \mathrm{H}, \mathrm{br}), 7.06-7.30(4 \mathrm{H}, \mathrm{m})$; ${ }^{13} \mathrm{C}$ NMR $\left(67.8 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 11.1,11.3,22.4,25.0$, 27.6, 29.2, 35.1, 35.4, 66.2, 126.2, 126.3, 126.9, 127.3, 129.0, 130.5, 131.5, 139.5, 140.3, 140.7, 141.1, 170.1, 170.8; HRMS calcd for $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{NO}$: 217.1467, found: 217.1469. The third eluate gave 20a (49.0 $\mathrm{mg}, 45 \%$) as a colorless oil, whose ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectrum showed it to be a mixture of two isomers: IR $\left(\mathrm{CHCl}_{3}\right) \cup 1630 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 1.41(3 \mathrm{H}, \mathrm{d}, J=6.8 \mathrm{~Hz}), 1.66(3 \mathrm{H} \times 3 / 4$, s), 1.89-2.17 ($2 \mathrm{H}, \mathrm{m}$), $2.00(3 \mathrm{H} \times 1 / 4, \mathrm{~s}), 2.65-2.99(2 \mathrm{H}, \mathrm{m}), 3.01-3.13(2 \mathrm{H}, \mathrm{m}), 3.23-3.46(2 \mathrm{H}, \mathrm{m}), 3.66$ $(3 / 4 \mathrm{H}, \mathrm{dt}, J=9.2 .4 .5 \mathrm{~Hz}), 3.88(1 / 4 \mathrm{H}, \mathrm{dd}, J=12.8,3.0 \mathrm{~Hz}), 7.10-7.30(4 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR (67.8 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 16.8,17.7,21.0,21.8,28.5,30.0,31.6,32.1,34.4,47.6,47.9,55.5,59.3,123.9,124.8$, 126.4, 126.5, 126.8, 128.9, 129.7, 139.7, 141.1, 141.6, 142.8, 169.9, 170.5; HRMS calcd for $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{NO}$: 217.1467, found: 217.1467.

3-Acetyl-1,2,3,4,5,6-hexahydro-1-phenyl-3-benzazocine (20b), 2-acetyl-1-benzyl-1,3,4,5-tetrahydro-2(2H)-benzazepine (21b) and N-(2-phenylethenyl)- N -(3-phenylpropyl)acetamide (22b) According to the general procedure described above for the radical reaction of 14a, compound (19b) ($110 \mathrm{mg}, 0.307$ mmol) was treated with $\mathrm{Bu}_{3} \mathrm{SnH}(134 \mathrm{mg}, 0.461 \mathrm{mmol})$ and $\mathrm{ACN}(15.0 \mathrm{mg}, 0.0612 \mathrm{mmol})$, After usual work-up, the residue was chromatographed on silica gel (hexane/AcOEt, 4:1). The first eluate gave 22b ($34.6 \mathrm{mg}, 40 \%$) as a colorless oil, whose ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectrum showed it to be a mixture of two rotamers: $\operatorname{IR}\left(\mathrm{CHCl}_{3}\right) \cup 1635,1670 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, for one rotamer) $\delta(\mathrm{ppm}): 1.85-2.0$ $(2 \mathrm{H}, \mathrm{m}), 2.28(3 \mathrm{H}, \mathrm{s}), 2.65-2.75(2 \mathrm{H}, \mathrm{m}), 3.76(2 \mathrm{H}, \mathrm{t}, J=7.3 \mathrm{~Hz}), 5.74(1 \mathrm{H}, \mathrm{d}, J=14.0 \mathrm{~Hz}), 7.13-7.36$ $(11 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR ($67.8 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 22.1,22.2,27.9,28.7,32.0,32.9,33.1,62.1,110.6$, $111.0,125.3,125.6,125.8,126.0,126.3,126.4,126.5,126.9,127.6,128.38,128.45,128.54,128.6$, 128.7, 136.5, 136.8, 140.5, 141.3, 169.0, 169.2; HRMS calcd for $\mathrm{C}_{19} \mathrm{H}_{21}$ NO: 279.1623, found: 279.1622.

The second eluate gave 21b ($22.9 \mathrm{mg}, 27 \%$) as a colorless oil: IR $\left(\mathrm{CHCl}_{3}\right) v 1630 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (270 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 1.66-2.00(3 \mathrm{H}, \mathrm{m}), 1.91$ and 1.97 (total $3 \mathrm{H}, \mathrm{s}$), 2.82-2.86 ($1 \mathrm{H}, \mathrm{m}$), 3.14-3.19 (2 H , m), $3.33(1 / 2 \mathrm{H}, \mathrm{dd}, J=14.0,8.5 \mathrm{~Hz}), 3.47-3.64(1 \mathrm{H}, \mathrm{m}), 4.61(1 / 2 \mathrm{H}, \mathrm{br} \mathrm{d}), 4.94(1 / 2 \mathrm{H}, \mathrm{t}, J=7.3 \mathrm{~Hz})$, 5.97 ($1 / 2 \mathrm{H}, \mathrm{br}$), 6.84-7.21 ($9 \mathrm{H}, \mathrm{m}$); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ (ppm): 22.2, 22.3, 27.6, 29.1, 35.2, $35.4,37.1,38.5,41.0,65.8,126.1,126.3,126.7,127.1,127.5,128.3,128.57,128.66,128.71,129.1$, 130.5, 131.5, 137.7, 139.6, 139.8, 140.3, 170.0, 170.5; HRMS calcd for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{NO}$: 279.1623, found: 279.1629. The third eluate gave 20b (20.6 mg , 24\%) as a colorless oil, whose ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectrum showed it to be a mixture of two rotamers: IR $\left(\mathrm{CHCl}_{3}\right)$ v $1630 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $(270 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 1.72(3 \mathrm{H} \times 2 / 3, \mathrm{~s}), 2.01(3 \mathrm{H} \times 1 / 3, \mathrm{~s}), 2.04-2.20(2 \mathrm{H}, \mathrm{m}), 2.80-2.85(1 \mathrm{H}, \mathrm{m}), 3.03(1 \mathrm{H}, \mathrm{t}$, $J=14 \mathrm{~Hz}), 3.17(2 / 3 \mathrm{H}, \mathrm{br}), 3.30(1 / 3 \mathrm{H}, \mathrm{br}), 3.43(1 / 3 \mathrm{H}, \mathrm{br}), 3.71(2 / 3 \mathrm{H}, \mathrm{br}), 3.79-3.87[(1+2 / 3) \mathrm{H}, \mathrm{m}]$, $4.08(1 / 3 \mathrm{H}, \mathrm{m}), 4.51-4.54(1 / 3 \mathrm{H}, \mathrm{m}), 4.66(2 / 3 \mathrm{H}, \mathrm{dd}, J=10.3,4.8 \mathrm{~Hz}), 6.79-7.49(9 \mathrm{H}, \mathrm{m}),{ }^{13} \mathrm{C}$ NMR (125 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 21.1,21.9,28.5,30.9,31.7,32.4,45.4,47.7,48.3,52.2,55.8,126.4,126.5,126.7$, 126.8, 126.93, 126.97, 127.03, 128.2, 128.4, 128.5, 128.6, 128.9, 129.6, 139.7, 141.0, 141.2, 141.4, 142.1, 142.2, 170.2, 170.7; HRMS calcd for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{NO}$: 279.1623, found: 279.1627.

ACKNOWLEDGEMENT

This work was supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Sciences and Technology of Japan.

REFERENCES

1. T. Taniguchi, A. Ishita, M. Uchiyama, O. Tamura, O. Muraoka. G. Tanabe, and H. Ishibashi, J. Org. Chem., 2005, 70, 1922.
2. T. Taniguchi, D. Yonei, M. Sasaki, O. Tamura, and H. Ishibashi, Tetrahedron, 2008, 64, 2634.
3. For recent and limited examples of 8-endo-selective radical cyclization, see: (a) L. Liu, Q. Chen, Y.-D. Wu, and C. Li, J. Org. Chem., 2005, 70, 1539. (b) E. Bacque, F. Pautrat, and S. Z. Zard, Org. Lett., 2003, 5, 325.
4. H. Ishibashi, M. Uegaki, M. Sakai, and Y. Takeda, Tetrahedron, 2001, 57, 2115.

[^0]: ${ }^{\dagger}$ This paper is dedicated to Dr. Keiichiro Fukumoto on the occasion of his 75th birthday.

