A novel synthesis of
3，4，5，6－tetrahydro－7－hydroxy－1H－azepino［5，4，3－cd］ indole derivatives from serotonin1

メタデータ	言語：eng
	出版者：
	公開日：2017－10－04
	キーワード（Ja）：
	キーワード（En）：
	作成者：
	メールアドレス：
	所属：
URL	http：／／hdl．handle．net／2297／29567

A NOVEL SYNTHESIS OF 3,4,5,6-TETRAHYDRO-7-HYDROXY-1 \mathbf{H} -

 AZEPINO[5,4,3-cd]INDOLE DERIVATIVES FROM SEROTONIN ${ }^{1}$Koji Yamada, ${ }^{\text {a }}$ Sakiko Teranishi, ${ }^{\text {b }}$ Ayako Miyashita, ${ }^{\text {b }}$ Minoru Ishikura, ${ }^{\text {a }}$ and Masanori Somei*b,2

${ }^{\text {a }}$ Faculty of Pharmaceutical Sciences, Health Science University of Hokkaido, Ishikari-Tobetsu, Hokkaido, 061-0293, Japan
${ }^{\text {b }}$ Faculty of Pharmaceutical Sciences, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan e-mail address: somei.home@topaz.plala.or.jp

Abstract

Utilizing novel Nb -substituted serotonins, 5- and/or 6-substituted 3,4,5,6-tetrahydro-7-hydroxy-1 H -azepino[5,4,3-cd]indole derivatives are produced simply by treating serotonins with aldehydes under basic conditions. Synthesis of 2,2a,3,4,5,6-hexahydro-7-hydroxy-1H-azepino[5,4,3-cd]indole-2one derivatives is also reported.

In our synthetic project for discovering new biologically active compounds, we have thus far succeeded in the creation of efficient synthetic methods ${ }^{3 a-d}$ with high originality rate, ${ }^{\text {4a,cee }}$ intellectual property factor, ${ }^{4, \mathrm{~b}, \mathrm{~b}}$ and application potential factor ${ }^{4, \mathrm{~b}, \mathrm{~b}}$ culminating in the production of novel leads for an α_{2} blocker, ${ }^{3 \mathrm{~d}, 5}$ an inhibitor of platelet aggregation, ${ }^{3 \mathrm{c}, 6}$ an anti-osteoporosis agent, ${ }^{3 \mathrm{~d}, 7}$ and potent root growth promotor. ${ }^{3 a, b, 8}$ These results are based on our hypothesis ${ }^{8,9}$ that any metabolite of tryptophan has each own function in vivo, and the combination of each structure is a promising method for designing a new possible drug. ${ }^{9}$

1
a) $R^{1}=R^{2}=H$
b) $R^{1}=O H, R^{2}=H$
c) $R^{1}=H, R^{2}=$ acyl

2
a) $\mathrm{R}=\mathrm{H}$; b) $\mathrm{R}=\mathrm{CO}_{2} \mathrm{H}$

3

$R^{1}-R^{8}=$ an appropriate substituent

Tryptamine $^{10}(\mathbf{1 a})$, serotonin ${ }^{11}(\mathbf{1 b})$, aurantioclavine ${ }^{12} \quad$ (2a), and clavicipitic acid ${ }^{12}$ (2b) are well known natural products metabolized from tryptophan (Figure 1). Tryptamine (1a) is a minor amine in our body and its function has not been established yet. ${ }^{10}$ We created Nb -acyltryptamines (1c) and found them having potent activity as an α_{2}-blocker. ${ }^{3 c, d, 5}$ Recently, we have also disclosed that $\mathbf{1 c}$ is an inhibitor for osteoblast differentiation ${ }^{13}$ and apoptosis, ${ }^{14}$ and even a stimulator of mineralization in osteoblasts. ${ }^{14}$ Serotonin (1b) is an important chemical transmitter in the central nervous system. ${ }^{11}$ Aurantioclavine (2a), and clavicipitic acid ($\mathbf{2 b}$) are members of ergot alkaloid. ${ }^{12}$
According to our hypothesis, ${ }^{8,9}$ when we unite the skeleton of $\mathbf{1 b}$ with that of $\mathbf{1 c}, \mathbf{2 a}$, and $\mathbf{2 b}$, we get novel chimera compounds such as Nb -substituted serotonin derivatives (3) and 3,4,5,6-tetrahydro-7-hydroxy- $1 H$-azepino[5,4,3-cd]indole derivatives (4). In addition, we can expect that compounds (1c) would be metabolized in our body to the corresponding 5 -hydroxy compounds (3). The multimodal bioactivity of $\mathbf{1 c}$ might be originated from the function of $\mathbf{3}$ themselves. Therefore, we could expect $\mathbf{3}$ and $\mathbf{4}$ to become useful candidates for new biologically active substances.

On the other hand, in our preliminary study ${ }^{15}$ aiming at the synthesis of both compounds, $\mathbf{3}$ and $\mathbf{4}$, we reported an interesting finding that under basic conditions the reaction of $\mathbf{1 b}$ with acetaldehyde and benzaldehyde generated 6-substituted 3,4,5,6-tetrahydro-7-hydroxy-1H-azepino[5,4,3-cd]indoles (5), despite under acidic conditions the well known Pictet-Spengler ${ }^{16}$ reaction took place resulting in the formation of 1-substituted 6-hydroxy- β-carbolines ($\mathbf{6}$, Scheme 1).

With an attempt to enlarge the scope of our above findings and to find new biologically active compounds, we now wish to describe the preparation of novel Nb -substituted serotonins (3) and 5and/or 6-substituted 3,4,5,6-tetrahydro-7-hydroxy-1 H -azepino[5,4,3-cd]indole derivatives (4).

I. Synthesis of Novel $\mathbf{N b}$-Substituted Serotonins

To meet our end, we needed various Nb -substituted serotonin derivatives. They are obtained by acylation of serotonin, followed by reduction of the resultant Nb -acylated serotonins (Scheme 2). Thus, serotonin hydrochloride $(\mathbf{1 b} \cdot \mathbf{H C l})$ was reacted with pentanoic acid by mixed anhydride method using methyl chloroformate in $\mathrm{DMF}-\mathrm{CHCl}_{3}$ in the presence of $\mathrm{Et}_{3} \mathrm{~N}$ at room temperature to give Nb pentanoylserotonin (7a) in 92% yield. Similar reactions of $\mathbf{1 b} \cdot \mathrm{HCl}$ with nonanoic acid, hexadecanoic acid, cyclohexanecarboxylic acid, and benzoic acid afforded Nb -nonanoyl- (7b), Nb-hexadecanoyl- (7c),

Nb -cyclohexylcarbonyl- (7d), and Nb -benzoylserotonins (7e) in 96, 88, 97, and 90% yields, respectively. Subsequent reduction of $\mathbf{7 a}$ with LiAlH_{4} in refluxing THF afforded Nb -pentylserotonin ($\mathbf{8 a}$) in 85% yield. The compounds, $\mathbf{7 b}, \mathbf{7 c}$, and $\mathbf{7 d}$, were similarly converted to Nb -nonyl- ($\mathbf{8 b}$), Nb -hexadecyl- (8c), and Nb -cyclohexylmethylserotonins ($\mathbf{8 d}$) in 81,89 , and 74% yields, respectively. It is interesting to note that the reduction of $7 \mathbf{e}$ under the same reduction conditions produced the desired Nb -benzylserotonin ($\mathbf{8 e}$) in only 47% yield together with 21% yield of unwanted $\mathbf{1 b}$ and 13% yield of the unreacted starting material. Addition of excess amount of LiAlH_{4} and longer refluxing time did not improve the yield effectively. As an alternative method, the reductive benzylation utilizing benzaldehyde and sodium cyanoborohydride was employed to $\mathbf{1 b} \cdot \mathrm{HCl}$, but the yield of $\mathbf{8 e}$ was almost the same 56%.

Since various types of Nb -substituted serotonins are known as biologically active alkaloids, ${ }^{17}$ it would be safe to expect that the compounds, $\mathbf{7}$ and $\mathbf{8}$, have biological activities as well.

II. Synthesis of Novel 5- and 6-Substituted 3,4,5,6-Tetrahydro-7-hydroxy-1H-azepino[5,4,3$c d$]indole Derivatives

Employing our basic conditions ${ }^{15}$ to the reaction of the above-mentioned Nb -substituted serotonins (8a-e) with aldehydes, selective preparation of various 5 - and 6 -substituted 3,4,5,6-tetrahydro-7-hydroxy- $1 H$-azepino[5,4,3-cd]indole derivatives was successfully realized.
Thus, the reaction of $\mathbf{8 a}$ with acetaldehyde in $\mathrm{Et}_{3} \mathrm{~N}-\mathrm{MeOH}$ at room temperature for 2.5 h afforded 3,4,5,6-tetrahydro-7-hydroxy-6-methyl-5-pentyl-1H-azepino[5,4,3-cd] indole (10a) in 90% yield without the formation of the corresponding β-carboline ($\mathbf{9 a}$). Under similar reaction conditions, $\mathbf{8 b}, \mathbf{8 c}, \mathbf{8 d}$, and $\mathbf{8 e}$ reacted with acetaldehyde to give $\mathbf{1 0 b}, \mathbf{1 0 c}, \mathbf{1 0 d}$, and $\mathbf{1 0 e}$ in $97,91,80$, and 89% yields, respectively. When decanal was employed instead of acetaldehyde in the reaction of $\mathbf{8 a}, \mathbf{8 b}$, and $\mathbf{8 c}$, the corresponding 11a, 11b, and 11c were obtained in 76, 81, and 76% yields, respectively. In all of the above reactions, formation of the corresponding β-carbolines as by-products was not detected at all.

The 5-unsubstituted 3,4,5,6-tetrahydro-7-hydroxy-6-methyl-1H-azepino[5,4,3-cd]indole (12a) was obtained in 91% yield by the reductive debenzylation of $\mathbf{1 0 e}$ with $10 \% \mathrm{Pd} / \mathrm{C}$ at 1 atm hydrogen. The compound (12a) would be a useful starting material for the preparations of various 5 -substituted derivatives. Treatment of $\mathbf{1 0 e}$ with $\mathrm{Ac}_{2} \mathrm{O}$ and $\mathrm{Boc}_{2} \mathrm{O}$ afforded 12b and 12c in 95 and 52% yields, respectively.

We next examined whether we can prepare 3,4,5,6-tetrahydro-7-hydroxy- $1 H$-azepino[5,4,3-cd]indoles having a bulky substituent at the 5- and 6 -positions employing $\mathbf{8 a}$ as a serotonin component. At room temperature the reaction of $\mathbf{8 a}$ with benzaldehyde (13a) in $\mathrm{Et}_{3} \mathrm{~N}-\mathrm{MeOH}$ did not take place, but the reflux temperature and longer reaction time (15 h) made it possible to form 3,4,5,6-tetrahydro-7-hydroxy-5-pentyl-6-phenyl- 1 H -azepino[5,4,3-cd]indole (14a) in 86% yield. Under the same conditions, slow reaction took place upon the reaction of $\mathbf{8 a}$ with more crowded 2-methylpropanal (13b). The desired
product
3,4,5,6-tetrahydro-7-hydroxy-6-isopropyl-5-pentyl-1H-azepino[5,4,3-cd]indole (14b), was obtained in 49% yield in addition to 11% yield of unwanted 10a and 23% yield of unreacted starting material. In the reaction of 8a with bulky 2,2-dimethylpropanal (13c) at reflux temperature for 15 h , the formation of the desired product (14c) was not detected at all, while 10a and unreacted starting material were obtained in 15 and 66% yields, respectively. The severe steric hindrance between 5 and 6 positions clearly precluded the formation of the seven-membered ring.

The isolation of 10a in the above two reactions proved the presence of the competing reaction of 8a with acetaldehyde, formed in situ from $\mathrm{Et}_{3} \mathrm{~N}$. The mechanism of the formation of acetaldehyde from $\mathrm{Et}_{3} \mathrm{~N}$ in the reaction system is explained in detail in our previous paper. ${ }^{15}$

Scheme 2

III. Synthesis of $\mathbf{2 , 2 a}, \mathbf{3}, 4,5,6$-Hexahydro-7-hydroxy-1H-azepino[5,4,3-cd] indole-2-one Derivatives

Treatment of 5-benzyl-3,4,5,6-tetrahydro-7-hydroxy-6-methyl- 1 H -azepino[5,4,3-cd]indole (10e) with bromine in AcOH produced 5-benzyl-2,2a,3,4,5,6-hexahydro-7-hydroxy-6-methyl-1 H -azepino[5,4,3$c d$]indole-2-one (15a) and its 8-bromo derivative (16a) in 16 and 83% yields, respectively (Scheme 3). The formation of $2,2 \mathrm{a}, 3,4,5,6$-hexahydro-7-hydroxy- 1 H -azepino[5,4,3-cd]indole-2-one skeleton can be explained by the initial generation of 2-bromo-3,4,5,6-tetrahydro-7-hydroxy- 1 H -azepino[5,4,3-cd]indole, followed by hydrolysis of the labile 2-bromo substituent. Similarly, 5-cyclohexylmethyl derivatives, 15b and 16e, were prepared from 10 d in 17 and 52% yields, respectively.

Further treatment of 16a with diazomethane afforded 16b in 95% yield. The reactions of $\mathbf{1 0 d}$ and 16a with $\mathrm{Ac}_{2} \mathrm{O}$ in pyridine gave $\mathbf{1 7}$ and $\mathbf{1 6 c}$ in 86 and 88% yields, respectively, while the reaction of 16a with
$\mathrm{Boc}_{2} \mathrm{O}$ in the presence of DMAP provided 16d in 46% yield. Similar reactions of 16e with $\mathrm{Ac}_{2} \mathrm{O}$ and $\mathrm{Boc}_{2} \mathrm{O}$ afforded the corresponding $\mathbf{1 6 f}$ and $\mathbf{1 6 g}$ in 83 and 71% yields, respectively. Since the $\mathrm{C}-\mathrm{Br}$ bond of these compounds can be manipulated to various functional groups, these compounds would be useful for the preparation of 8 -substituted 2,2a,3,4,5,6-hexahydro-7-hydroxy-1H-azepino[5,4,3-cd]indole-2ones.

In conclusion, we established that our reaction of serotonins with aldehydes under basic conditions is a general and convenient synthetic method for creating novel 7-hydroxy-3,4,5,6-tetrahydro- 1 H -azepino[5,4,3-cd]indoles. We also succeeded in the synthesis of novel $2,2 \mathrm{a}, 3,4,5,6$-hexahydro- 7 -hydroxy-1H-azepino[5,4,3-cd]indole-2-ones. Biological evaluation of the compounds reported in this paper is now in progress.

EXPERIMENTAL

Melting points were determined on a Yanagimoto micro melting point apparatus and are uncorrected. IR spectra were determined with Horiba FT-720 spectrophotometer and ${ }^{1} \mathrm{H}$-NMR spectra with JEOL GSX 500 spectrometer with tetramethylsilane as an internal standard. MS were recorded on JEOL JMS-SX 102A spectrometer. Preparative thin-layer chromatography (p-TLC) was performed on Merck Kiesel-gel GF_{245} (Type 60) (SiO_{2}). Column chromatography was performed on silica gel ($\mathrm{SiO}_{2}, 100-200$ mesh, from Kanto Chemical Co., Inc.) throughout the present study.
$\mathbf{N b}$-Pentanoylserotonin (7a) from Serotonin $\cdot \mathbf{H C l}(\mathbf{1 b} \cdot \mathbf{H C l})$ - General procedure: a solution of $\mathrm{ClCO}_{2} \mathrm{Me}(254.0 \mathrm{mg}, 2.7 \mathrm{mmol})$ in anhydrous $\mathrm{CHCl}_{3}(5.0 \mathrm{~mL})$ was added to a solution of pentanoic acid ($275.0 \mathrm{mg}, 2.7 \mathrm{mmol}$) and $\mathrm{Et}_{3} \mathrm{~N}\left(545.1 \mathrm{mg}, 5.4 \mathrm{mmol}\right.$) in anhydrous $\mathrm{CHCl}_{3}(5.0 \mathrm{~mL})$ under ice cooling and the mixture was stirred at rt for 20 min . The resulting mixture was added to a solution $\mathbf{o f} \mathbf{1 b} \cdot \mathbf{H C l}$ $(520.3 \mathrm{mg}, 2.5 \mathrm{mmol})$ in anhydrous DMF (5.0 mL) and the mixture was stirred at rt for 30 min . After
addition of $\mathrm{H}_{2} \mathrm{O}$, the whole was extracted with $\mathrm{CHCl}_{3}-\mathrm{MeOH}(95: 5, \mathrm{v} / \mathrm{v})$. The extract was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated under reduced pressure to leave a residue, which was columnchromatographed on SiO_{2} with $\mathrm{CHCl}_{3}-\mathrm{MeOH}(99: 1$, v/v) to give 7a ($583.2 \mathrm{mg}, 92 \%$). 7a: colorless viscous oil. IR (film): $3309,1628,1541,1458,1188 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta: 0.88(3 \mathrm{H}, \mathrm{t}, J=7.4 \mathrm{~Hz})$, $1.30(2 \mathrm{H}$, sex, $J=7.4 \mathrm{~Hz}), 1.52(2 \mathrm{H}$, quint, $J=7.4 \mathrm{~Hz}), 2.12(2 \mathrm{H}, \mathrm{t}, J=7.4 \mathrm{~Hz}), 2.90(2 \mathrm{H}, \mathrm{t}, J=6.8 \mathrm{~Hz}), 3.57$ $\left(2 \mathrm{H}, \mathrm{q}, J=6.8 \mathrm{~Hz}\right.$, collapsed to $\mathrm{t}, J=6.8 \mathrm{~Hz}$ on addition of $\left.\mathrm{D}_{2} \mathrm{O}\right), 5.57(2 \mathrm{H}, \mathrm{br} \mathrm{s}$, disappeared on addition of $\left.\mathrm{D}_{2} \mathrm{O}\right), 6.80(1 \mathrm{H}, \mathrm{dd}, J=8.5,2.2 \mathrm{~Hz}), 6.99\left(1 \mathrm{H}, \mathrm{d}, J=1.7 \mathrm{~Hz}\right.$, collapsed to s on addition of $\left.\mathrm{D}_{2} \mathrm{O}\right), 7.03(1 \mathrm{H}$, d, $J=2.2 \mathrm{~Hz}), 7.22(1 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}), 7.95\left(1 \mathrm{H}, \mathrm{br} \mathrm{s}\right.$, disappeared on addition of $\left.\mathrm{D}_{2} \mathrm{O}\right)$. HR-MS $m / z:$ Calcd for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{2}: 260.1525$. Found: 260.1520 .
 anhydrous $\mathrm{CHCl}_{3}(5.0 \mathrm{~mL})$, nonanoic acid ($426.1 \mathrm{mg}, 2.7 \mathrm{mmol}$), $\mathrm{Et}_{3} \mathrm{~N}(544.4 \mathrm{mg}, 5.4 \mathrm{mmol})$, anhydrous $\mathrm{CHCl}_{3}(5.0 \mathrm{~mL}), \mathbf{1 b} \cdot \mathbf{H C l}(520.0 \mathrm{mg}, 2.5 \mathrm{mmol})$, and anhydrous DMF (5.0 mL) were used. After column chromatography, 7b ($739.0 \mathrm{mg}, 96 \%$) was obtained. 7b: colorless viscous oil. IR (film): 3307, 2925, 2854, 1628, 1541, $1458 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta: 0.87(3 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}), 1.20-1.30(10 \mathrm{H}, \mathrm{m}), 1.58(2 \mathrm{H}$, quint, $J=7.0 \mathrm{~Hz}), 2.11(2 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}), 2.90(2 \mathrm{H}, \mathrm{t}, J=6.8 \mathrm{~Hz}), 3.58(2 \mathrm{H}, \mathrm{q}, J=6.8 \mathrm{~Hz}$, collapsed to t , $J=6.8 \mathrm{~Hz}$ on addition of $\left.\mathrm{D}_{2} \mathrm{O}\right), 5.35\left(1 \mathrm{H}, \mathrm{br} \mathrm{s}\right.$, disappeared on addition of $\left.\mathrm{D}_{2} \mathrm{O}\right), 5.50(1 \mathrm{H}, \mathrm{br} \mathrm{t}, J=6.8 \mathrm{~Hz}$, disappeared on addition of $\left.\mathrm{D}_{2} \mathrm{O}\right), 6.80(1 \mathrm{H}, \mathrm{dd}, J=8.5,2.2 \mathrm{~Hz}), 6.99(1 \mathrm{H}, \mathrm{d}, J=2.0 \mathrm{~Hz}$, collapsed to s on addition of $\left.\mathrm{D}_{2} \mathrm{O}\right), 7.02(1 \mathrm{H}, \mathrm{d}, J=2.2 \mathrm{~Hz}), 7.22(1 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}), 7.93(1 \mathrm{H}, \mathrm{br}$ s, disappeared on addition of $\mathrm{D}_{2} \mathrm{O}$). HR-MS m / z : Calcd for $\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{2}$: 316.2151. Found: 316.2146.
$\mathbf{N b}$-Hexadecanoylserotonin (7c) from $\mathbf{1 b} \cdot \mathbf{H C l}$ - In the general procedure, $\mathrm{ClCO}_{2} \mathrm{Me}(252.5 \mathrm{mg}, 2.7$ mmol), anhydrous $\mathrm{CHCl}_{3}(5.0 \mathrm{~mL})$, hexadecanoic acid ($690.3 \mathrm{mg}, 2.7 \mathrm{mmol}$), $\mathrm{Et}_{3} \mathrm{~N}(544.3 \mathrm{mg}, 5.4$ mmol), anhydrous $\mathrm{CHCl}_{3}(5.0 \mathrm{~mL}), \mathbf{1 b} \cdot \mathbf{H C l}(520.0 \mathrm{mg}, 2.5 \mathrm{mmol})$, and anhydrous DMF (5.0 mL) were used. After column chromatography, $7 \mathbf{c}\left(887.4 \mathrm{mg}, 88 \%\right.$) was obtained. 7 c : $\mathrm{mp} 121-122{ }^{\circ} \mathrm{C}$ (colorless powder, recrystallized from $\mathrm{CHCl}_{3}-\mathrm{MeOH}$). IR (KBr): 3415, 3307, 2918, 2848, 1635, $1541 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 0.88(3 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}), 1.21-1.28(24 \mathrm{H}, \mathrm{m}), 1.57(2 \mathrm{H}$, quint, $J=7.0 \mathrm{~Hz}), 2.11(2 \mathrm{H}, \mathrm{t}$, $J=7.0 \mathrm{~Hz}), 2.90(2 \mathrm{H}, \mathrm{t}, J=6.8 \mathrm{~Hz}), 3.58\left(2 \mathrm{H}, \mathrm{q}, J=6.8 \mathrm{~Hz}\right.$, collapsed to $\mathrm{t}, J=6.8 \mathrm{~Hz}$ on addition of $\left.\mathrm{D}_{2} \mathrm{O}\right)$, $4.93\left(1 \mathrm{H}, \mathrm{br} \mathrm{s}\right.$, disappeared on addition of $\left.\mathrm{D}_{2} \mathrm{O}\right), 5.51(1 \mathrm{H}, \mathrm{br} \mathrm{t}, J=6.8 \mathrm{~Hz}$, disappeared on addition of $\left.\mathrm{D}_{2} \mathrm{O}\right), 6.79(1 \mathrm{H}, \mathrm{dd}, J=8.5,2.2 \mathrm{~Hz}), 7.01\left(1 \mathrm{H}, \mathrm{d}, J=2.0 \mathrm{~Hz}\right.$, collapsed to s on addition of $\left.\mathrm{D}_{2} \mathrm{O}\right), 7.03(1 \mathrm{H}$, d, $J=2.2 \mathrm{~Hz}), 7.23(1 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}), 7.89\left(1 \mathrm{H}, \mathrm{br} \mathrm{s}\right.$, disappeared on addition of $\left.\mathrm{D}_{2} \mathrm{O}\right) . \mathrm{MS} m / z: 414\left(\mathrm{M}^{+}\right)$. Anal. $\mathrm{C}_{26} \mathrm{H}_{42} \mathrm{~N}_{2} \mathrm{O}_{2}$: C, 75.32; H, 10.21; N, 6.76. Found: C, $75.05 ; \mathrm{H}, 10.38 ; \mathrm{N}, 6.72$.
$\mathbf{N b}$-Cyclohexylcarbonylserotonin (7d) from $\mathbf{1 b} \cdot \mathbf{H C l}$ - In the general procedure, $\mathrm{ClCO}_{2} \mathrm{Me}(486.9 \mathrm{mg}$, $5.2 \mathrm{mmol})$, anhydrous $\mathrm{CHCl}_{3}(10 \mathrm{~mL})$, cyclohexanecarboxylic acid ($\left.655.3 \mathrm{mg}, 5.2 \mathrm{mmol}\right), \mathrm{Et}_{3} \mathrm{~N}(1.07 \mathrm{~g}$, 10.3 mmol), anhydrous $\mathrm{CHCl}_{3}(10 \mathrm{~mL}), \mathbf{1 b} \cdot \mathbf{H C l}(995.7 \mathrm{mg}, 4.7 \mathrm{mmol})$, and anhydrous DMF (10 mL) were used. After column chromatography, $\mathbf{7 d}(1.30 \mathrm{~g}, 97 \%)$ was obtained. 7 d : colorless foam. IR (KBr):

3317, 2929, 1631, $1531 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{DMSO}_{6}\right) \delta: 1.10-1.25(3 \mathrm{H}, \mathrm{m}), 1.33(2 \mathrm{H}, \mathrm{q}, J=10.3 \mathrm{~Hz}), 1.60$ $(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J=10.3 \mathrm{~Hz}), 1.65-1.71(4 \mathrm{H}, \mathrm{m}, J=9.3 \mathrm{~Hz}), 2.07(1 \mathrm{H}, \mathrm{tt}, J=11.3,3.0 \mathrm{~Hz}), 2.70(2 \mathrm{H}, \mathrm{t}, J=7.4$ $\mathrm{Hz}), 3.24-3.28\left(2 \mathrm{H}, \mathrm{m}\right.$, collapsed to $\mathrm{t}, J=7.4 \mathrm{~Hz}$ on addition of $\left.\mathrm{D}_{2} \mathrm{O}\right), 6.58(1 \mathrm{H}, \mathrm{dd}, J=8.8,2.2 \mathrm{~Hz}), 6.82$ $(1 \mathrm{H}, \mathrm{d}, J=2.2 \mathrm{~Hz}), 6.99(1 \mathrm{H}, \mathrm{d}, J=2.0 \mathrm{~Hz}), 7.11(1 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}), 7.69(1 \mathrm{H}, \mathrm{br} \mathrm{t}, J=5.5 \mathrm{~Hz}$, disappeared on addition of $\left.\mathrm{D}_{2} \mathrm{O}\right), 8.55\left(1 \mathrm{H}, \mathrm{br} \mathrm{s}\right.$, disappeared on addition of $\left.\mathrm{D}_{2} \mathrm{O}\right), 10.41(1 \mathrm{H}, \mathrm{br} \mathrm{s}$, disappeared on addition of $\mathrm{D}_{2} \mathrm{O}$). HR-MS $m / z:$ Calcd for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{2}:$ 286.1681. Found: 286.1682.
$\mathbf{N b}$-Benzoylserotonin (7e) from $\mathbf{1 b} \cdot \mathbf{H C l}$ - In the general procedure, $\mathrm{ClCO}_{2} \mathrm{Me}(103.4 \mathrm{mg}, 1.1 \mathrm{mmol})$, anhydrous $\mathrm{CHCl}_{3}(2.0 \mathrm{~mL})$, benzoic acid ($127.0 \mathrm{mg}, 1.0 \mathrm{mmol}$), $\mathrm{Et}_{3} \mathrm{~N}(212.5 \mathrm{mg}, 2.1 \mathrm{mmol})$, anhydrous $\mathrm{CHCl}_{3}(2.0 \mathrm{~mL}), \mathbf{1 b} \cdot \mathbf{H C l}(202.7 \mathrm{mg}, 1.0 \mathrm{mmol})$, and anhydrous DMF (2.0 mL) were used. After column chromatography, $7 \mathbf{e}(240.5 \mathrm{mg}, 90 \%)$ was obtained. 7 e : $\mathrm{mp} 208-209{ }^{\circ} \mathrm{C}$ (colorless prisms, recrystallized from MeOH). IR (KBr): 3425, 1645, 1537, 1377, 1186, 939, 850, 795, 710, $625 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-$ NMR (DMSO-d ${ }_{6}$) $\delta: 2.86(2 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}), 3.51(2 \mathrm{H}, \mathrm{td}, J=7.6,6.1 \mathrm{~Hz}), 6.59(1 \mathrm{H}, \mathrm{dd}, J=8.5,2.2 \mathrm{~Hz})$, $6.89(1 \mathrm{H}, \mathrm{d}, J=2.2 \mathrm{~Hz}), 7.06(1 \mathrm{H}, \mathrm{d}, J=2.2 \mathrm{~Hz}), 7.12(1 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}), 7.46(2 \mathrm{H}, \mathrm{t}, J=7.8 \mathrm{~Hz}), 7.52(1 \mathrm{H}$, $\mathrm{tt}, J=7.8,1.5 \mathrm{~Hz}), 7.85(2 \mathrm{H}, \mathrm{dd}, J=7.8,1.5 \mathrm{~Hz}), 8.56(1 \mathrm{H}, \mathrm{t}, J=6.1 \mathrm{~Hz}), 8.57(1 \mathrm{H}, \mathrm{s}$, disappeared on addition of $\left.\mathrm{D}_{2} \mathrm{O}\right), 10.46(1 \mathrm{H}, \mathrm{br} \mathrm{s}) . \mathrm{MS} m / z: 280\left(\mathrm{M}^{+}\right)$. Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2}: \mathrm{C}, 72.84 ; \mathrm{H}, 5.75 ; \mathrm{N}$, 9.99. Found: C, $72.73 ; \mathrm{H}, 5.72 ; \mathrm{N}, 9.86$.
$\mathbf{N b}$-Pentylserotonin (8a) from 7a - General Procedure: $\mathrm{LiAlH}_{4}(765.0 \mathrm{mg}, 20.1 \mathrm{mmol})$ was added to a solution of $7 \mathbf{a}(522.4 \mathrm{mg}, 2.0 \mathrm{mmol})$ in anhydrous THF (20.0 mL) under ice cooling and the mixture was refluxed for 10 h with stirring. After addition of MeOH and 10% Rochelle salt under ice cooling, the whole was extracted with CHCl_{3}. The extract was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated under reduced pressure to leave a residue, which was column-chromatographed on SiO_{2} with $\mathrm{CHCl}_{3}-\mathrm{MeOH}-28 \% \mathrm{NH}_{4} \mathrm{OH}(46: 3: 0.3, \mathrm{v} / \mathrm{v}$) to give $\mathbf{8 a}(417.9 \mathrm{mg}, 85 \%)$. 8a: pale yellow viscous oil. IR (film): 2929, 2856, 1468, $1213 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta: 0.86(3 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}), 1.21-1.32(4 \mathrm{H}, \mathrm{m})$, $1.51(2 \mathrm{H}$, quint, $J=7.0 \mathrm{~Hz}), 2.65(2 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}), 2.92-3.00(4 \mathrm{H}, \mathrm{m}), 6.78(1 \mathrm{H}, \mathrm{dd}, J=8.5,2.2 \mathrm{~Hz})$, $6.95(1 \mathrm{H}, \mathrm{d}, J=2.2 \mathrm{~Hz}), 6.99(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 7.20(1 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}), 7.97(1 \mathrm{H}, \mathrm{br} \mathrm{s}$, disappeared on addition of $\left.\mathrm{D}_{2} \mathrm{O}\right)$. HR-MS m / z : Calcd for $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}: 246.1732$. Found: 246.1737.
$\mathbf{N b}-N o n y l s e r o t o n i n ~(\mathbf{8 b})$ from 7b $\mathbf{~ - ~ I n ~ t h e ~ g e n e r a l ~ p r o c e d u r e , ~} \mathrm{LiAlH}_{4}(889.8 \mathrm{mg}, 18.7 \mathrm{mmol}$), $\mathbf{7 b}$ $(739.0 \mathrm{mg}, 2.3 \mathrm{mmol})$, and anhydrous THF (20.0 mL) were used. After column chromatography, $\mathbf{8 b}$ ($572.5 \mathrm{mg}, 81 \%$) was obtained. 8b: yellow viscous oil. IR (film): 2925, 2854, 1468, 1458, $1213 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-$ NMR (CDCl_{3}) $\delta: 0.87(3 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}), 1.19-1.29(12 \mathrm{H}, \mathrm{m}), 1.49(2 \mathrm{H}$, br quint, $J=7.0 \mathrm{~Hz}), 2.65(2 \mathrm{H}, \mathrm{t}$, $J=7.0 \mathrm{~Hz}), 2.91-2.99(4 \mathrm{H}, \mathrm{m}), 6.77(1 \mathrm{H}, \mathrm{dd}, J=8.5,2.2 \mathrm{~Hz}), 6.95(1 \mathrm{H}, \mathrm{d}, J=2.2 \mathrm{~Hz}), 6.99(1 \mathrm{H}, \mathrm{br}$ s), $7.20(1 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}), 7.95\left(1 \mathrm{H}, \mathrm{br} \mathrm{s}\right.$, disappeared on addition of $\left.\mathrm{D}_{2} \mathrm{O}\right)$. HR-MS m / z : Calcd for $\mathrm{C}_{19} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}: 302.2358$. Found: 302.2359.
$\mathbf{N b}$-Hexadecylserotonin ($\mathbf{8 c}$) from 7c - In the general procedure, LiAlH_{4} ($741.9 \mathrm{mg}, 19.5 \mathrm{mmol}$), 7c
($808.0 \mathrm{mg}, 2.0 \mathrm{mmol}$), and anhydrous THF (20.0 mL) were used. After column chromatography, 8c ($696.4 \mathrm{mg}, 89 \%$) was obtained. 8c: pale brown viscous oil. IR (film): 2924, 2852, 1468, 1458, $1215 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta: 0.88(3 \mathrm{H}, \mathrm{t}, J=6.8 \mathrm{~Hz}), 1.20-1.31(26 \mathrm{H}, \mathrm{m}), 1.49(2 \mathrm{H}$, br quint, $J=6.8 \mathrm{~Hz}), 2.64$ $(2 \mathrm{H}, \mathrm{t}, J=6.8 \mathrm{~Hz}), 2.91-2.99(4 \mathrm{H}, \mathrm{m}), 6.77(1 \mathrm{H}, \mathrm{dd}, J=8.5,2.2 \mathrm{~Hz}), 6.95(1 \mathrm{H}, \mathrm{d}, J=2.2 \mathrm{~Hz}), 7.00(1 \mathrm{H}, \mathrm{br}$ s), $7.20(1 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}), 7.94\left(1 \mathrm{H}\right.$, br s, disappeared on addition of $\left.\mathrm{D}_{2} \mathrm{O}\right)$. HR-MS m / z : Calcd for $\mathrm{C}_{26} \mathrm{H}_{44} \mathrm{~N}_{2} \mathrm{O}: 400.3453$. Found: 400.3460 .
$\mathbf{N b}-$ Cyclohexylmethylserotonin ($\mathbf{8 d}$) from 7d - In the general procedure, $\mathrm{LiAlH}_{4}(712.5 \mathrm{mg}, 15.0$ mmol), 7d ($537.1 \mathrm{mg}, 1.9 \mathrm{mmol}$), and anhydrous THF (20.0 mL) were used. After column chromatography, $\mathbf{8 d}(376.9 \mathrm{mg}, 74 \%)$ was obtained. 8d: yellow foam. IR (KBr): 3292, 2922, 2850, 1456 $\mathrm{cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta: 0.83-0.91(2 \mathrm{H}, \mathrm{m}), 1.08-1.25(3 \mathrm{H}, \mathrm{m}), 1.44-1.53(1 \mathrm{H}, \mathrm{m}), 1.61-1.71(5 \mathrm{H}$, m), $2.50(2 \mathrm{H}, \mathrm{d}, J=6.8 \mathrm{~Hz}), 2.90-2.97(4 \mathrm{H}, \mathrm{m}), 6.76(1 \mathrm{H}, \mathrm{dd}, J=8.8,2.3 \mathrm{~Hz}), 6.94(1 \mathrm{H}, \mathrm{d}, J=2.3 \mathrm{~Hz})$, $6.98\left(1 \mathrm{H}, \mathrm{d}, J=2.0 \mathrm{~Hz}\right.$, collapsed to s on addition of $\left.\mathrm{D}_{2} \mathrm{O}\right), 7.19(1 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}), 7.93(1 \mathrm{H}, \mathrm{br} \mathrm{s}$, disappeared on addition of $\mathrm{D}_{2} \mathrm{O}$). HR-MS $m / z:$ Calcd for $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}: 272.1889$. Found: 272.1885.
$\mathbf{N b}$-Benzylserotonin ($\mathbf{8 e}$) from 7e - In the general procedure, $\mathrm{LiAlH}_{4}(72.5 \mathrm{mg}, 1.9 \mathrm{mmol}$), $7 \mathbf{e}(51.8$ $\mathrm{mg}, 0.2 \mathrm{mmol})$, and anhydrous THF (5.0 mL) were used. After column chromatography, unreacted $\mathbf{7 e}$ ($6.5 \mathrm{mg}, \mathbf{1 3 \%}$), $\mathbf{8 e}(23.0 \mathrm{mg}, 47 \%$), and serotonin ($\mathbf{1 b}, 6.9 \mathrm{mg}, 21 \%$) were obtained. 8e: colorless oil. IR (film): 3410, 3286, 1454, 1215, $750 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta: 2.90-2.92(2 \mathrm{H}, \mathrm{m}), 2.95-2.98(2 \mathrm{H}, \mathrm{m})$, $3.60\left(2 \mathrm{H}, \mathrm{br}\right.$ s, disappeared on addition of $\left.\mathrm{D}_{2} \mathrm{O}\right), 3.81(2 \mathrm{H}, \mathrm{s}), 6.75(1 \mathrm{H}, \mathrm{dd}, J=8.7,2.2 \mathrm{~Hz}), 6.87(1 \mathrm{H}, \mathrm{d}$, $J=2.2 \mathrm{~Hz}), 6.92\left(1 \mathrm{H}, \mathrm{d}, J=1.7 \mathrm{~Hz}\right.$, collapsed to s on addition of $\left.\mathrm{D}_{2} \mathrm{O}\right), 7.16(1 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}), 7.20-7.29$ $(5 \mathrm{H}, \mathrm{m}), 7.97\left(1 \mathrm{H}\right.$, br s, disappeared on addition of $\left.\mathrm{D}_{2} \mathrm{O}\right)$. HR-MS $m / z:$ Calcd for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}: 266.1420$. Found: 266.1418.
$\mathbf{N b}$-Benzylserotonin ($\mathbf{8 e}$) from $\mathbf{1 b} \cdot \mathbf{H C l}$ - A solution of benzaldehyde ($504.5 \mathrm{mg}, 4.8 \mathrm{mmol}$) in MeOH $(5.0 \mathrm{~mL})$ was added to a solution of $\mathbf{1 b} \cdot \mathbf{H C l}(336.3 \mathrm{mg}, 1.6 \mathrm{mmol})$ and $\mathrm{NaCNBH}_{3}(95 \%, 315.0 \mathrm{mg}, 4.8$ $\mathrm{mmol})$ in $\mathrm{MeOH}(20.0 \mathrm{~mL})$ and the mixture was stirred at rt for 30 min . After addition of $\mathrm{H}_{2} \mathrm{O}$, the whole was made alkaline $(\mathrm{pH}=9)$ with $8 \% \mathrm{NaOH}$ and extracted with AcOEt . The extract was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated under reduced pressure to leave a residue, which was columnchromatographed on SiO_{2} with $\mathrm{CHCl}_{3}-\mathrm{MeOH}-28 \% \mathrm{NH}_{4} \mathrm{OH}(46: 3: 0.3$, v/v) to give $\mathbf{8 e}(237.5 \mathrm{mg}, 56 \%)$. 3,4,5,6-Tetrahydro-7-hydroxy-6-methyl-5-pentyl- $\mathbf{1 H}$-azepino[5,4,3-cd]indole (10a) from 8a General Procedure: a solution of acetaldehyde ($15.8 \mathrm{mg}, 0.4 \mathrm{mmol}$) in $\mathrm{MeOH}(3.0 \mathrm{~mL})$ was added to a solution of $\mathbf{8 a}(29.5 \mathrm{mg}, 0.1 \mathrm{mmol})$ in $\mathrm{Et}_{3} \mathrm{~N}(3.0 \mathrm{~mL})$ under ice cooling and the mixture was stirred at rt for 2.5 h . The resulting mixture was evaporated under reduced pressure to leave a residue, which was column-chromatographed on SiO_{2} with $\mathrm{CHCl}_{3}-\mathrm{MeOH}-28 \% \mathrm{NH}_{4} \mathrm{OH}(46: 1: 0.1$, v/v) to give $\mathbf{1 0 a}(29.3 \mathrm{mg}$, 90\%). 10a: colorless foam. IR (KBr): 3400, 2929, 1581, 1435, $1375 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta: 0.86(3 \mathrm{H}$, $\mathrm{t}, J=7.1 \mathrm{~Hz}), 1.20-1.35(4 \mathrm{H}, \mathrm{m}), 1.47(3 \mathrm{H}, \mathrm{d}, J=6.8 \mathrm{~Hz}), 1.55-1.63(2 \mathrm{H}, \mathrm{m}), 2.64-2.70(1 \mathrm{H}, \mathrm{m})$,
$2.75-2.81(1 \mathrm{H}, \mathrm{m}), 2.90(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J=16.1 \mathrm{~Hz}), 3.09(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J=14.5 \mathrm{~Hz}), 3.20(1 \mathrm{H}, \mathrm{ddd}, J=16.1,12.9$, $4.0 \mathrm{~Hz}), 3.58(1 \mathrm{H}, \mathrm{br} \mathrm{t}, J=14.5 \mathrm{~Hz}), 4.33\left(1 \mathrm{H}, \mathrm{br}\right.$ s, disappeared on addition of $\left.\mathrm{D}_{2} \mathrm{O}\right), 4.73(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 6.64$ $(1 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}), 6.94(1 \mathrm{H}, \mathrm{s}), 7.04(1 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}), 7.86\left(1 \mathrm{H}, \mathrm{br} \mathrm{s}\right.$, disappeared on addition of $\left.\mathrm{D}_{2} \mathrm{O}\right)$. HR-MS m / z : Calcd for $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}: 272.1889$. Found: 272.1888.
3,4,5,6-Tetrahydro-7-hydroxy-6-methyl-5-nonyl-1H-azepino[5,4,3-cd]indole (10b) from 8 bb - In the general procedure, acetaldehyde ($15.3 \mathrm{mg}, 0.4 \mathrm{mmol}$), $\mathrm{MeOH}(3.0 \mathrm{~mL}), \mathbf{8 b}(35.0 \mathrm{mg}, 0.1 \mathrm{mmol})$, and $\mathrm{Et}_{3} \mathrm{~N}(3.0 \mathrm{~mL})$ were used. After column chromatography, 10b ($37.0 \mathrm{mg}, 97 \%$) was obtained. 10b: colorless foam. IR (KBr): 3400, 2927, 2852, 1581, 1435, $1375 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta: 0.86(3 \mathrm{H}, \mathrm{t}$, $J=6.8 \mathrm{~Hz}), 1.19-1.31(12 \mathrm{H}, \mathrm{m}), 1.48(3 \mathrm{H}, \mathrm{d}, J=6.6 \mathrm{~Hz}), 1.53-1.69(2 \mathrm{H}, \mathrm{m}), 2.63-2.72(1 \mathrm{H}, \mathrm{m})$, $2.75-2.84(1 \mathrm{H}, \mathrm{m}), 2.91(1 \mathrm{H}$, br d, $J=18.1 \mathrm{~Hz}), 3.09(1 \mathrm{H}$, br d, $J=13.9 \mathrm{~Hz}), 3.21(1 \mathrm{H}$, ddd, $J=16.1,13.0$, $4.0 \mathrm{~Hz}), 3.59(1 \mathrm{H}, \mathrm{br} \mathrm{t}, J=13.0 \mathrm{~Hz}), 4.40\left(1 \mathrm{H}, \mathrm{br}\right.$ s, disappeared on addition of $\left.\mathrm{D}_{2} \mathrm{O}\right), 4.72(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 6.65$ $(1 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}), 6.94(1 \mathrm{H}, \mathrm{s}), 7.04(1 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}), 7.86\left(1 \mathrm{H}, \mathrm{br}\right.$ s, disappeared on addition of $\left.\mathrm{D}_{2} \mathrm{O}\right)$. HR-MS m / z : Calcd for $\mathrm{C}_{21} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}: 328.2514$. Found: 328.2505.

5-Hexadecyl-3,4,5,6-tetrahydro-7-hydroxy-6-methyl-1 H -azepino[5,4,3-cd]indole (10c) from 8c - In the general procedure, acetaldehyde ($15.5 \mathrm{mg}, 0.4 \mathrm{mmol}$), $\mathrm{MeOH}(3.0 \mathrm{~mL}), \mathbf{8 c}(47.2 \mathrm{mg}, 0.1 \mathrm{mmol})$, and $\mathrm{Et}_{3} \mathrm{~N}(3.0 \mathrm{~mL})$ were used. After column chromatography, 10c ($45.7 \mathrm{mg}, 91 \%$) was obtained. 10c: colorless solid. IR (KBr): 3400, 2922, 2852, 1579, 1466, 1435, $1378 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta: 0.88(3 \mathrm{H}$, $\mathrm{t}, J=6.8 \mathrm{~Hz}), 1.20-1.30(26 \mathrm{H}, \mathrm{m}), 1.47(3 \mathrm{H}, \mathrm{d}, J=6.6 \mathrm{~Hz}), 1.50-1.61(2 \mathrm{H}, \mathrm{m}), 2.63-2.69(1 \mathrm{H}, \mathrm{m})$, $2.75-2.81(1 \mathrm{H}, \mathrm{m}), 2.90(1 \mathrm{H}, \mathrm{br}$ d, $J=12.9 \mathrm{~Hz}), 3.08(1 \mathrm{H}$, br d, $J=14.0 \mathrm{~Hz}), 3.20(1 \mathrm{H}, \mathrm{ddd}, J=15.9,12.5$, $5.3 \mathrm{~Hz}), 3.58(1 \mathrm{H}, \mathrm{br} \mathrm{t}, J=12.5 \mathrm{~Hz}), 4.30\left(1 \mathrm{H}, \mathrm{br}\right.$ s, disappeared on addition of $\left.\mathrm{D}_{2} \mathrm{O}\right), 4.71(1 \mathrm{H}, \mathrm{br} \mathrm{q}$, $J=6.6 \mathrm{~Hz}), 6.63(1 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}), 6.93(1 \mathrm{H}, \mathrm{s}), 7.04(1 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}), 7.85(1 \mathrm{H}, \mathrm{br}$ s, disappeared on addition of $\mathrm{D}_{2} \mathrm{O}$). HR-MS m / z : Calcd for $\mathrm{C}_{28} \mathrm{H}_{46} \mathrm{~N}_{2} \mathrm{O}: 426.3610$. Found: 426.3613 .

5-Cyclohexylmethyl-3,4,5,6-tetrahydro-7-hydroxy-6-methyl-1H-azepino[5,4,3-cd]indole (10d) from

 $\mathbf{8 d}$ - In the general procedure, acetaldehyde ($14.5 \mathrm{mg}, 0.3 \mathrm{mmol}$), $\mathrm{MeOH}(2.5 \mathrm{~mL}), \mathbf{8 d}(30.0 \mathrm{mg}, 0.1$ $\mathrm{mmol})$, and $\mathrm{Et}_{3} \mathrm{~N}(3.0 \mathrm{~mL})$ were used. After column chromatography, 10d $(26.4 \mathrm{mg}, 80 \%)$ was obtained. 10d: yellow foam. IR (KBr): 3402, 2922, 1579, 1435, $1367 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta: 0.80-0.89(2 \mathrm{H}$, m), $1.10-1.28(3 \mathrm{H}, \mathrm{m}), 1.46(3 \mathrm{H}, \mathrm{d}, J=6.7 \mathrm{~Hz}), 1.59(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 1.62-1.71(3 \mathrm{H}, \mathrm{m}), 1.80(2 \mathrm{H}, \mathrm{br} \mathrm{t}$, $J=16.8 \mathrm{~Hz}), 2.48(1 \mathrm{H}, \mathrm{br} \mathrm{dd}, J=12.2,6.7 \mathrm{~Hz}), 2.64(1 \mathrm{H}, \mathrm{dd}, J=12.2,6.7 \mathrm{~Hz}), 2.87(1 \mathrm{H}, \mathrm{d}, J=15.9 \mathrm{~Hz})$, $3.01(1 \mathrm{H}$, br d, $J=14.0 \mathrm{~Hz}), 3.22(1 \mathrm{H}, \mathrm{ddd}, J=16.5,12.8,3.7 \mathrm{~Hz}), 3.59(1 \mathrm{H}, \mathrm{br} \mathrm{t}, J=12.8 \mathrm{~Hz}), 4.62(1 \mathrm{H}, \mathrm{br}$ s), $6.64(1 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz}), 6.92(1 \mathrm{H}, \mathrm{s}), 7.03(1 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz}), 7.82(1 \mathrm{H}, \mathrm{s}$, disappeared on addition of $\left.\mathrm{D}_{2} \mathrm{O}\right)$. HR-MS m / z : Calcd for $\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}:$ 298.2046. Found: 298.2051.5-Benzyl-3,4,5,6-tetrahydro-7-hydroxy-6-methyl-1 H -azepino[5,4,3-cd]indole (10e) from 8e - In the general procedure, acetaldehyde ($138.6 \mathrm{mg}, 3.2 \mathrm{mmol}$), $\mathrm{MeOH}(10.0 \mathrm{~mL}), \mathbf{8 e}(270.6 \mathrm{mg}, 1.0 \mathrm{mmol})$, and $\mathrm{Et}_{3} \mathrm{~N}(10.0 \mathrm{~mL})$ were used. After column chromatography, $\mathbf{1 0} \mathbf{e}(264 \mathrm{mg}, 89 \%)$ was obtained. 10e:
colorless foam. IR (KBr): 3400, 1579, 1435, 1371, 1296, $1240 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta: 1.48(3 \mathrm{H}, \mathrm{t}$, $J=7.1 \mathrm{~Hz}), 2.86(1 \mathrm{H}, \mathrm{brdt}, J=16.2,2.7 \mathrm{~Hz}), 3.07(1 \mathrm{H}, \mathrm{dq}, J=14.5,2.3 \mathrm{~Hz}), 3.21(1 \mathrm{H}, \mathrm{ddd}, J=13.3,4.8$, $1.6 \mathrm{~Hz}), 3.63(1 \mathrm{H}, \mathrm{td}, J=13.8,3.2 \mathrm{~Hz}), 3.86(1 \mathrm{H}, \mathrm{d}, J=13.7 \mathrm{~Hz}), 4.00(1 \mathrm{H}, \mathrm{d}, J=13.7 \mathrm{~Hz}), 4.24(1 \mathrm{H}, \mathrm{br} \mathrm{s})$, $4.65(1 \mathrm{H}, \mathrm{q}, J=7.1 \mathrm{~Hz}), 6.65(1 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}), 6.94(1 \mathrm{H}, \mathrm{s}), 7.06(1 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}), 7.23(1 \mathrm{H}, \mathrm{t}, J=7.3$ $\mathrm{Hz}), 7.30(2 \mathrm{H}, \mathrm{t}, J=7.3 \mathrm{~Hz}), 7.37(2 \mathrm{H}, \mathrm{d}, J=7.3 \mathrm{~Hz}), 7.88(1 \mathrm{H}, \mathrm{br} s) . \mathrm{MS} m / z: 292\left(\mathrm{M}^{+}\right)$. HR-MS $m / z:$ Calcd for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}: 292.1576$. Found: 292.1573 .
3,4,5,6-Tetrahydro-7-hydroxy-6-nonyl-5-pentyl-1H-azepino[5,4,3-cd]indole (11a) from 8a General Procedure: A solution of decanal ($57.1 \mathrm{mg}, 0.4 \mathrm{mmol}$) in $\mathrm{MeOH}(3.0 \mathrm{~mL})$ was added to a solution of $\mathbf{8 a}(30.0 \mathrm{mg}, 0.1 \mathrm{mmol})$ in $\mathrm{Et}_{3} \mathrm{~N}(3.0 \mathrm{~mL})$ under ice cooling, and the mixture was stirred at rt for 3.5 h . The resulting mixture was evaporated under reduced pressure to leave a residue, which was column-chromatographed on SiO_{2} with $\mathrm{CHCl}_{3}-\mathrm{MeOH}-28 \% \mathrm{NH}_{4} \mathrm{OH}(46: 1: 0.1$, v/v) to give 11a (35.7 mg , 76%). 11a: colorless viscous oil. IR (film): 3408, 2925, 2854, 1579, 1466, 1437, 1375, $1369 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-$ NMR (CDCl_{3}) $\delta: 0.86(3 \mathrm{H}, \mathrm{t}, J=7.1 \mathrm{~Hz}), 0.87(3 \mathrm{H}, \mathrm{t}, J=7.1 \mathrm{~Hz}), 1.21-1.35(18 \mathrm{H}, \mathrm{m}), 1.39-1.60(2 \mathrm{H}$, $\mathrm{m}), 1.63-1.70(1 \mathrm{H}, \mathrm{m}), 1.78-1.86(1 \mathrm{H}, \mathrm{m}), 2.58-2.64(1 \mathrm{H}, \mathrm{m}), 2.80(1 \mathrm{H}, \mathrm{ddd}, J=12.7,8.3,5.6 \mathrm{~Hz})$, $2.86(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J=16.1 \mathrm{~Hz}), 3.10(1 \mathrm{H}, \mathrm{br}$ d, $J=16.1 \mathrm{~Hz}), 3.24(1 \mathrm{H}, \mathrm{ddd}, J=16.1,12.7,4.3 \mathrm{~Hz}), 3.49(1 \mathrm{H}$, br t, $J=12.7 \mathrm{~Hz}), 4.48(2 \mathrm{H}, \mathrm{br} \mathrm{s}), 6.64(1 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}), 6.91(1 \mathrm{H}, \mathrm{s}), 7.01(1 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}), 7.84(1 \mathrm{H}$, br s, disappeared on addition of $\mathrm{D}_{2} \mathrm{O}$). HR-MS m / z : Calcd for $\mathrm{C}_{25} \mathrm{H}_{40} \mathrm{~N}_{2} \mathrm{O}$: 384.3140. Found: 384.3130.

3,4,5,6-Tetrahydro-7-hydroxy-5,6-dinonyl-1 H-azepino[5,4,3-cd]indole (11b) from 8b - In the general procedure, decanal ($57.7 \mathrm{mg}, 0.4 \mathrm{mmol}$), $\mathrm{MeOH}(3.0 \mathrm{~mL}), \mathbf{8 b}(37.2 \mathrm{mg}, 0.1 \mathrm{mmol})$, and $\mathrm{Et}_{3} \mathrm{~N}$ $(3.0 \mathrm{~mL})$ were used. After column chromatography, 11b $(43.8 \mathrm{mg}, 81 \%)$ was obtained. 11b: colorless viscous oil. IR (film): 3402, 2924, 2852, 1577, 1466, 1435, $1369 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta: 0.87(3 \mathrm{H}, \mathrm{t}$, $J=7.1 \mathrm{~Hz}), 0.87(3 \mathrm{H}, \mathrm{t}, J=7.1 \mathrm{~Hz}), 1.21-1.34(26 \mathrm{H}, \mathrm{m}), 1.40-1.60(2 \mathrm{H}, \mathrm{m}), 1.63-1.70(1 \mathrm{H}, \mathrm{m})$, $1.77-1.85(1 \mathrm{H}, \mathrm{m}), 2.58-2.64(1 \mathrm{H}, \mathrm{m}), 2.80(1 \mathrm{H}, \mathrm{ddd}, J=12.5,8.1,6.1 \mathrm{~Hz}), 2.86(1 \mathrm{H}$, br d, $J=15.9 \mathrm{~Hz})$, $3.10(1 \mathrm{H}, \mathrm{br}$ d, $J=15.9 \mathrm{~Hz}), 3.24(1 \mathrm{H}, \mathrm{ddd}, J=15.9,12.5,3.7 \mathrm{~Hz}), 3.48(1 \mathrm{H}$, br t, $J=12.5 \mathrm{~Hz}), 4.28(1 \mathrm{H}$, br s, disappeared on addition of $\left.\mathrm{D}_{2} \mathrm{O}\right), 4.47(1 \mathrm{H}, \mathrm{br}$ dd, $J=10.0,4.5 \mathrm{~Hz}), 6.64(1 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}), 6.91(1 \mathrm{H}$, brs), $7.02(1 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}), 7.83\left(1 \mathrm{H}\right.$, br s, disappeared on addition of $\left.\mathrm{D}_{2} \mathrm{O}\right)$. HR-MS m / z : Calcd for $\mathrm{C}_{29} \mathrm{H}_{48} \mathrm{~N}_{2} \mathrm{O}: 440.3766$. Found: 440.3761.

5-Hexadecyl-3,4,5,6-tetrahydro-7-hydroxy-6-nonyl-1H-azepino[5,4,3-cd]indole (11c) from 8c - In the general procedure, decanal ($56.7 \mathrm{mg}, 0.4 \mathrm{mmol}$), $\mathrm{MeOH}(3.0 \mathrm{~mL}), \mathbf{8 c}(48.5 \mathrm{mg}, 0.1 \mathrm{mmol})$, and $\mathrm{Et}_{3} \mathrm{~N}$ (3.0 mL) were used. After column chromatography, 11c ($49.9 \mathrm{mg}, 76 \%$) was obtained. 11c: colorless viscous oil. IR (film): 3402, 2924, 2852, 1577, 1466, 1435, $1369 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta: 0.87(3 \mathrm{H}, \mathrm{t}$, $J=6.8 \mathrm{~Hz}), 0.88(3 \mathrm{H}, \mathrm{t}, J=6.8 \mathrm{~Hz}), 1.23-1.33(40 \mathrm{H}, \mathrm{m}), 1.49-1.57(2 \mathrm{H}, \mathrm{m}), 1.63-1.69(1 \mathrm{H}, \mathrm{m})$, $1.76-1.84(1 \mathrm{H}, \mathrm{m}), 2.57-2.62(1 \mathrm{H}, \mathrm{m}), 2.77-2.87(2 \mathrm{H}, \mathrm{m}), 3.09(1 \mathrm{H}, \mathrm{br}$ d, $J=14.5 \mathrm{~Hz}), 3.24(1 \mathrm{H}$, ddd, $J=14.5,12.5,4.3 \mathrm{~Hz}), 3.48(1 \mathrm{H}$, ddd, $J=14.5,10.5,3.3 \mathrm{~Hz}), 4.23(1 \mathrm{H}, \mathrm{br} \mathrm{s}$, disappeared on addition of
$\left.\mathrm{D}_{2} \mathrm{O}\right), 4.46(1 \mathrm{H}, \mathrm{dd}, J=10.5,4.4 \mathrm{~Hz}), 6.64(1 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}), 6.91(1 \mathrm{H}, \mathrm{s}), 7.02(1 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}), 7.82$ $\left(1 \mathrm{H}\right.$, br s , disappeared on addition of $\left.\mathrm{D}_{2} \mathrm{O}\right)$. HR-MS m / z : Calcd for $\mathrm{C}_{36} \mathrm{H}_{62} \mathrm{~N}_{2} \mathrm{O}$: 538.4862. Found: 538.4876.

3,4,5,6-Tetrahydro-7-hydroxy-6-methyl-1H-azepino[5,4,3-cd]indole (12a) from $10 \mathrm{e}-\mathrm{A}$ suspension of $\mathbf{1 0 e}(25.2 \mathrm{mg}, 0.01 \mathrm{mmol})$ and $10 \% \mathrm{Pd} / \mathrm{C}(5.4 \mathrm{mg})$ in $\mathrm{MeOH}(3.0 \mathrm{~mL})$ was stirred at rt for 3 h under hydrogen atmosphere. The resulting mixture was filtered and the filtrate was evaporated under reduced pressure to leave a residue, which was column-chromatographed on SiO_{2} with $\mathrm{CHCl}_{3}-\mathrm{MeOH}-28 \%$ $\mathrm{NH}_{4} \mathrm{OH}(46: 10: 1, \mathrm{v} / \mathrm{v})$ to give 12a ($15.8 \mathrm{mg}, 91 \%$). 12a: pale brown oil. IR (film): 3399, 3299, 1579, 1417, $794 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}\right) \delta: 1.49(3 \mathrm{H}, \mathrm{d}, J=6.8 \mathrm{~Hz}), 2.93-3.01(1 \mathrm{H}, \mathrm{m}), 3.10-3.15(2 \mathrm{H}, \mathrm{m})$, $3.35-3.41(1 \mathrm{H}, \mathrm{m}), 4.91(1 \mathrm{H}, \mathrm{q}, J=6.8 \mathrm{~Hz}), 6.63(1 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}), 6.95(1 \mathrm{H}, \mathrm{s}), 7.03(1 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz})$. HR-MS $m / z:$ Calcd for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}: 202.1107$. Found: 202.1110.
7-Acetoxy-5-acetyl-3,4,5,6-tetrahydro-6-methyl-1H-azepino[5,4,3-cd]indole (12b) from 12a Acetic anhydride (1 mL) was added to a solution of 12a $(46.7 \mathrm{mg}, 0.2 \mathrm{mmol})$ in pyridine (2.0 mL) at rt and the mixture was stirred at rt for 2 h . The resulting mixture was evaporated under reduced pressure to leave a residue, which was column-chromatographed on SiO_{2} with $\mathrm{CHCl}_{3}-\mathrm{MeOH}(98: 2, \mathrm{v} / \mathrm{v})$ to give 12b ($63.1 \mathrm{mg}, 95 \%$). 12b: pale brown foam. IR (KBr): 1755, 1628, 1616, $1425 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right.$, rotamer ratio, 5:2. On heating, 12b decomposed) $\delta: 1.42(6 / 7 \mathrm{H}, \mathrm{d}, J=7.3 \mathrm{~Hz}), 1.55(15 / 7 \mathrm{H}, \mathrm{d}, J=7.3 \mathrm{~Hz})$, $2.14(15 / 7 \mathrm{H}, \mathrm{s}), 2.22(6 / 7 \mathrm{H}, \mathrm{s}), 2.37(6 / 7 \mathrm{H}, \mathrm{s}), 2.39(15 / 7 \mathrm{H}, \mathrm{s}), 2.98(5 / 7 \mathrm{H}, \mathrm{dt}, J=15.9,2.4 \mathrm{~Hz})$, $3.09-3.17(4 / 7 \mathrm{H}, \mathrm{m}), 3.34(5 / 7 \mathrm{H}, \mathrm{m}), 3.45(5 / 7 \mathrm{H}, \mathrm{td}, J=13.3,2.6 \mathrm{~Hz}), 3.82-3.93(4 / 7 \mathrm{H}, \mathrm{m}), 4.43(5 / 7 \mathrm{H}$, $\mathrm{dt}, J=13.3,3.4 \mathrm{~Hz}), 5.43(5 / 7 \mathrm{H}, \mathrm{q}, J=7.3 \mathrm{~Hz}), 6.58(2 / 7 \mathrm{H}, \mathrm{q}, J=7.3 \mathrm{~Hz}), 6.83(5 / 7 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}), 6.87$ $(2 / 7 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}), 7.00(2 / 7 \mathrm{H}, \mathrm{br} \mathrm{s}), 7.01(5 / 7 \mathrm{H}, \mathrm{br} \mathrm{s}), 7.17(2 / 7 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}), 7.23(5 / 7 \mathrm{H}, \mathrm{d}, J=8.5$ $\mathrm{Hz}), 8.20\left(2 / 7 \mathrm{H}, \mathrm{br} \mathrm{s}\right.$, disappeared on addition of $\left.\mathrm{D}_{2} \mathrm{O}\right), 8.23\left(5 / 7 \mathrm{H}\right.$, br s, disappeared on addition of $\left.\mathrm{D}_{2} \mathrm{O}\right)$. MS $m / z: 286\left(\mathrm{M}^{+}\right)$. HR-MS $m / z:$ Calcd for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{3}: 286.1318$. Found: 286.1313.
5-tert-Butoxycarbonyl-7-tert-butoxycarbonyloxy-3,4,5,6-tetrahydro-6-methyl-1H-azepino[5,4,3-cd]indole (12c) from 12a - A solution of di-tert-butyl dicarbonate ($45.6 \mathrm{mg}, 0.2 \mathrm{mmol}$) in anhydrous $\mathrm{CHCl}_{3}(2.0 \mathrm{~mL})$ was added to a solution of 12a ($13.3 \mathrm{mg}, 0.07 \mathrm{mmol}$), DMAP ($16.5 \mathrm{mg}, 0.1 \mathrm{mmol}$) in anhydrous $\mathrm{CHCl}_{3}(1.0 \mathrm{~mL})$ at rt and the mixture was stirred at rt for 1 h . After addition of $\mathrm{H}_{2} \mathrm{O}$, the whole was extracted with $\mathrm{CHCl}_{3}-\mathrm{MeOH}(95: 5, \mathrm{v} / \mathrm{v})$. The extract was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated under reduced pressure to leave a residue, which was column-chromatographed on SiO_{2} with $\mathrm{CHCl}_{3}-\mathrm{MeOH}(98: 2, \mathrm{v} / \mathrm{v})$ to give 12c ($13.7 \mathrm{mg}, 52 \%$). 12c: colorless viscous oil. IR (film): 3386, 2979, 1757, 1691, $1668 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right.$, rotamer ratio, $1: 1$. On heating, 12c decomposed) $\delta: 1.40$ $(9 / 2 \mathrm{H}, \mathrm{s}), 1.45(3 / 2 \mathrm{H}, \mathrm{d}, J=7.1 \mathrm{~Hz}), 1.47(9 / 2 \mathrm{H}, \mathrm{s}), 1.49(3 / 2 \mathrm{H}, \mathrm{d}, J=7.1 \mathrm{~Hz}), 1.56(9 / 2 \mathrm{H}, \mathrm{s}), 1.59(9 / 2 \mathrm{H}$, s), $2.97(1 \mathrm{H}, \mathrm{dd}, J=14.3,12.3 \mathrm{~Hz}), 3.18(1 / 2 \mathrm{H}, \mathrm{t}, J=14.3 \mathrm{~Hz}), 3.29(1 / 2 \mathrm{H}, \mathrm{t}, J=14.3 \mathrm{~Hz}), 3.50(1 \mathrm{H}, \mathrm{m})$, $3.97(1 / 2 \mathrm{H}, \mathrm{d}, J=14.3 \mathrm{~Hz}), 4.12(1 / 2 \mathrm{H}, \mathrm{d}, J=14.3 \mathrm{~Hz}), 5.91(1 / 2 \mathrm{H}, \mathrm{q}, J=7.1 \mathrm{~Hz}), 6.19(1 / 2 \mathrm{H}, \mathrm{q}, J=7.1 \mathrm{~Hz})$,
$6.89-6.93(1 \mathrm{H}, \mathrm{m}), 6.97(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 7.13-7.18(1 \mathrm{H}, \mathrm{m}), 8.08-8.13(1 \mathrm{H}, \mathrm{m}$, disappeared on addition of $\mathrm{D}_{2} \mathrm{O}$). HR-MS $m / z:$ Calcd for $\mathrm{C}_{22} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{5}: 402.2155$. Found: 402.2152.

3,4,5,6-Tetrahydro-7-hydroxy-5-pentyl-6-phenyl- $1 H$-azepino[5,4,3-cd]indole (14a) from 8a -A

 solution of benzaldehyde ($\mathbf{1 3 a}, 39.4 \mathrm{mg}, 0.4 \mathrm{mmol})$ in $\mathrm{MeOH}(3.0 \mathrm{~mL})$ was added to a solution of $\mathbf{8 a}$ ($30.0 \mathrm{mg}, 0.1 \mathrm{mmol}$) in $\mathrm{Et}_{3} \mathrm{~N}(3.0 \mathrm{~mL}$) under ice cooling, and the mixture was refluxed for 15 h with stirring. The resulting mixture was evaporated under reduced pressure to leave a residue, which was column-chromatographed on SiO_{2} with $\mathrm{CHCl}_{3}-\mathrm{MeOH}-28 \% \mathrm{NH}_{4} \mathrm{OH}(46: 1: 0.1$, v/v) to give $\mathbf{1 4 a}$ (35.8 mg , 86%). 14a: mp $166-168{ }^{\circ} \mathrm{C}$ (colorless powder, recrystallized from CHCl_{3}-hexane). IR (KBr): 3448, 3273, 2952, 2931, 1583, 1491, 1435, $1378 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta: 0.91(3 \mathrm{H}, \mathrm{t}, J=7.1 \mathrm{~Hz}), 1.32-1.42$ $(4 \mathrm{H}, \mathrm{m}), 1.65(2 \mathrm{H}$, quint, $J=7.1 \mathrm{~Hz}), 2.78-2.86(3 \mathrm{H}, \mathrm{m}), 2.94(1 \mathrm{H}, \mathrm{dt}, J=12.5,7.1 \mathrm{~Hz}), 3.13(1 \mathrm{H}, \mathrm{td}$, $J=14.4,2.9 \mathrm{~Hz}), 3.21-3.28(1 \mathrm{H}, \mathrm{m}), 3.98\left(1 \mathrm{H}\right.$, br s, disappeared on addition of $\left.\mathrm{D}_{2} \mathrm{O}\right), 5.72(1 \mathrm{H}, \mathrm{s}), 6.71$ $(1 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}), 6.96(1 \mathrm{H}, \mathrm{s}), 7.14(2 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz}), 7.15(1 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}), 7.19(1 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz})$, $7.24(2 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}), 7.91\left(1 \mathrm{H}\right.$, br s, disappeared on addition of $\left.\mathrm{D}_{2} \mathrm{O}\right)$. MS m/z: $334\left(\mathrm{M}^{+}\right)$. Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}: \mathrm{C}, 79.00 ; \mathrm{H}, 7.84 ; \mathrm{N}, 8.38$. Found: C, 78.98; H, 7.91; N, 8.38.3,4,5,6-Tetrahydro-7-hydroxy-6-isopropyl-5-pentyl-1H-azepino[5,4,3-cd]indole (14b) from 8a - A solution of 2-methylpropanal ($\mathbf{1 3 b}, 27.2 \mathrm{mg}, 0.4 \mathrm{mmol})$ in $\mathrm{MeOH}(3.0 \mathrm{~mL})$ was added to a solution of $\mathbf{8 a}$ ($30.0 \mathrm{mg}, 0.1 \mathrm{mmol}$) in $\mathrm{Et}_{3} \mathrm{~N}(3.0 \mathrm{~mL}$) under ice cooling, and the mixture was refluxed for 15 h with stirring. The resulting mixture was evaporated under reduced pressure to leave a residue, which was column-chromatographed on SiO_{2} with $\mathrm{CHCl}_{3}-\mathrm{MeOH}-28 \% \mathrm{NH}_{4} \mathrm{OH}(46: 1: 0.1,46: 3: 0.3$, v/v) to give 14b ($18.5 \mathrm{mg}, 49 \%$), 10a ($3.6 \mathrm{mg}, 11 \%$), and unreacted $\mathbf{8 a}(4.6 \mathrm{mg}, 23 \%)$ in the order of elution. 14b: colorless viscous oil. IR (film): 3410, 2956, 2929, 2870, 1577, 1466, 1435, $1363 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right)$ $\delta: 0.79(3 \mathrm{H}, \mathrm{d}, J=6.6 \mathrm{~Hz}), 0.87(3 \mathrm{H}, \mathrm{t}, J=6.9 \mathrm{~Hz}), 1.15(3 \mathrm{H}, \mathrm{d}, J=6.6 \mathrm{~Hz}), 1.23-1.34(4 \mathrm{H}, \mathrm{m})$, $1.46-1.58(2 \mathrm{H}, \mathrm{m}), 2.04-2.11(1 \mathrm{H}, \mathrm{m}), 2.56(1 \mathrm{H}, \mathrm{dq}, J=6.4,6.2 \mathrm{~Hz}), 2.65(1 \mathrm{H}, \mathrm{dq}, J=6.4,6.2 \mathrm{~Hz}), 2.94$ ($1 \mathrm{H}, \mathrm{dt}, J=15.5,4.2 \mathrm{~Hz}$), 3.01 ($1 \mathrm{H}, \mathrm{dt}, J=14.2,4.6 \mathrm{~Hz}$), 3.08 ($1 \mathrm{H}, \mathrm{ddd}, J=17.3,10.3,3.7 \mathrm{~Hz}$), 3.51 (1 H , ddd, $J=17.3,10.3,3.7 \mathrm{~Hz}), 4.07(1 \mathrm{H}, \mathrm{d}, J=9.5 \mathrm{~Hz}), 4.20\left(1 \mathrm{H}\right.$, br s, disappeared on addition of $\left.\mathrm{D}_{2} \mathrm{O}\right), 6.64$ $(1 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}), 6.89(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 7.03(1 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}), 7.77(1 \mathrm{H}, \mathrm{br} \mathrm{s}$, disappeared on addition of $\mathrm{D}_{2} \mathrm{O}$). HR-MS m / z : Calcd for $\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}: 300.2202$. Found: 300.2203.
5-Benzyl-8-bromo- (16a) and 5-Benzyl-2,2a,3,4,5,6-hexahydro-7-hydroxy-6-methyl-1H-azepino-[5,4,3-cd]indol-2-one (15a) from 10e - A solution ($1.5 \mathrm{~mL}, 0.6 \mathrm{mmol}$) of Br_{2} in AcOH [prepared with $\mathrm{Br}_{2}(287.9 \mathrm{mg}, 1.8 \mathrm{mmol})$ and $\mathrm{NaOAc}(24.5 \mathrm{mg}, 0.3 \mathrm{mmol})$ in $\left.\mathrm{AcOH}(5.0 \mathrm{~mL})\right]$ was added to a solution of $\mathbf{1 0 e}(54.1 \mathrm{mg}, 0.2 \mathrm{mmol})$ in $\mathrm{AcOH}(5.0 \mathrm{~mL})$, and the mixture was stirred at rt for 2 h . After addition of $10 \% \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ (ca. 0.5 mL), the whole was evaporated under reduced pressure to leave a residue, which was column-chromatographed on SiO_{2} with $\mathrm{CHCl}_{3}-\mathrm{MeOH}(97: 3,95: 5$, v/v) to give $\mathbf{1 6 a}(59.3 \mathrm{mg}, 83 \%)$ and $\mathbf{1 5 a}(9.2 \mathrm{mg}, 16 \%)$ in the order of elution. 16a: mp $100-105{ }^{\circ} \mathrm{C}$ (colorless fine needles,
recrystallized from CHCl_{3}-hexane). IR (KBr): 1705, $1620,1599,1450,1313 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}$ (pyridine$\left.\mathrm{d}_{5}\right) \delta: 1.60(3 \mathrm{H}, \mathrm{d}, J=7.1 \mathrm{~Hz}), 1.99-2.12(2 \mathrm{H}, \mathrm{m}), 3.13(1 \mathrm{H}, \mathrm{dt}, J=14.6,2.4 \mathrm{~Hz}), 3.59(1 \mathrm{H}, \mathrm{br} \mathrm{t}, J=12.8$ $\mathrm{Hz}), 3.78(2 \mathrm{H}, \mathrm{s}), 3.91(1 \mathrm{H}, \mathrm{dd}, J=12.8,4.3 \mathrm{~Hz}), 5.12(1 \mathrm{H}, \mathrm{q}, J=7.1 \mathrm{~Hz}), 7.24(1 \mathrm{H}, \mathrm{s}), 7.24(1 \mathrm{H}, \mathrm{t}, J=7.3$ $\mathrm{Hz}), 7.31(2 \mathrm{H}, \mathrm{t}, J=7.3 \mathrm{~Hz}), 7.45(2 \mathrm{H}, \mathrm{d}, J=7.3 \mathrm{~Hz}), 11.61\left(1 \mathrm{H}, \mathrm{br} \mathrm{s}\right.$, disappeared on addition of $\left.\mathrm{D}_{2} \mathrm{O}\right)$. HR-MS m/z: Calcd for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{BrN}_{2} \mathrm{O}_{2}: 388.0610,386.0630$. Found: 388.0598, 386.0625. Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{BrN}_{2} \mathrm{O}_{2}$: C, 58.93 ; H, 4.95; N, 7.23. Found: C, $58.68 ; \mathrm{H}, 4.97$; N, 7.30. 15a: colorless solid. IR (KBr): 3201, 1699, 1618, $1469 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\right.$ pyridine- $\left.\mathrm{d}_{5}, 6{ }^{\circ} \mathrm{C}\right) \delta: 1.64(3 \mathrm{H}, \mathrm{d}, J=7.3 \mathrm{~Hz}), 2.00-2.16$ $(2 \mathrm{H}, \mathrm{m}), 3.18(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J=14.6 \mathrm{~Hz}), 3.63(1 \mathrm{H}, \mathrm{br} \mathrm{t}, J=14.0 \mathrm{~Hz}), 3.82(1 \mathrm{H}, \mathrm{d}, J=14.0 \mathrm{~Hz}), 3.87(1 \mathrm{H}, \mathrm{d}$, $J=14.0 \mathrm{~Hz}), 3.90(1 \mathrm{H}, \mathrm{dd}, J=12.8,4.3 \mathrm{~Hz}), 5.09(1 \mathrm{H}, \mathrm{q}, J=7.3 \mathrm{~Hz}), 6.76(1 \mathrm{H}, \mathrm{d}, J=8.1 \mathrm{~Hz}), 6.97(1 \mathrm{H}, \mathrm{d}$, $J=8.1 \mathrm{~Hz}), 7.21(1 \mathrm{H}, \mathrm{t}, J=7.3 \mathrm{~Hz}), 7.29(2 \mathrm{H}, \mathrm{t}, J=7.3 \mathrm{~Hz}), 7.48(2 \mathrm{H}, \mathrm{d}, J=7.3 \mathrm{~Hz}), 10.88(1 \mathrm{H}, \mathrm{br} \mathrm{s}$, disappeared on addition of $\mathrm{D}_{2} \mathrm{O}$). HR-MS m / z : Calcd for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{2}: 308.1525$. Found: 308.1506.

5-Benzyl-8-bromo-2,2a,3,4,5,6-hexahydro-7-methoxy-6-methyl-1H-azepino[5,4,3-cd]indol-2-one

(16b) from 16a - Excess amount of $\mathrm{CH}_{2} \mathrm{~N}_{2}$ in $\mathrm{Et}_{2} \mathrm{O}$ was added to a solution of 16a ($40.9 \mathrm{mg}, 0.1 \mathrm{mmol}$) in $\mathrm{MeOH}(5.0 \mathrm{~mL})$ at rt and the mixture was refluxed for 15 min with stirring. The resulting mixture was evaporated under reduced pressure to leave a residue, which was column-chromatographed on SiO_{2} with $\mathrm{CHCl}_{3}-\mathrm{MeOH}(99: 1, \mathrm{v} / \mathrm{v})$ to give 16b ($40.3 \mathrm{mg}, 95 \%$). 16b: mp $168-169{ }^{\circ} \mathrm{C}$ (colorless prisms, recrystallized from CHCl_{3}-hexane). IR (KBr): 1701, $1604,1452 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}$ (pyridine- d_{5}) $\delta: 1.57(3 \mathrm{H}$, d, $J=7.3 \mathrm{~Hz}$), $1.94(1 \mathrm{H}, \mathrm{dq}, J=2.0,12.5 \mathrm{~Hz}), 2.01-2.06(1 \mathrm{H}, \mathrm{m}), 3.04(1 \mathrm{H}, \mathrm{dt}, J=15.1,2.9 \mathrm{~Hz}), 3.52(1 \mathrm{H}$, br ddd, $J=14.4,12.2,2.0 \mathrm{~Hz}), 3.63(3 \mathrm{H}, \mathrm{s}), 3.68-3.74(2 \mathrm{H}, \mathrm{m}), 3.87(1 \mathrm{H}, \mathrm{dd}, J=12.7,3.9 \mathrm{~Hz}), 4.64(1 \mathrm{H}$, $\mathrm{q}, J=7.3 \mathrm{~Hz}), 7.17(1 \mathrm{H}, \mathrm{s}), 7.27(1 \mathrm{H}, \mathrm{t}, J=7.3 \mathrm{~Hz}), 7.36(2 \mathrm{H}, \mathrm{t}, J=7.3 \mathrm{~Hz}), 7.43(2 \mathrm{H}, \mathrm{d}, J=7.3 \mathrm{~Hz}), 11.77$ $\left(1 \mathrm{H}, \mathrm{s}\right.$, disappeared on addition of $\left.\mathrm{D}_{2} \mathrm{O}\right)$. MS m/z: $402\left(\mathrm{M}^{+}\right), 400\left(\mathrm{M}^{+}\right)$. Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{BrN}_{2} \mathrm{O}_{2} \cdot 1 / 2 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 58.55 ; \mathrm{H}, 5.40 ; \mathrm{N}, 6.83$. Found: C, 58.75; H, 5.29; N, 6.83.

7-Acetoxy-5-benzyl-8-bromo-2,2a,3,4,5,6-hexahydro-6-methyl-1H-azepino[5,4,3-cd]indol-2-one

(16c) from 16a - Acetic anhydride (1.0 mL) was added to a solution of $\mathbf{1 6 a}(34.0 \mathrm{mg}, 0.09 \mathrm{mmol})$ in pyridine (2.0 mL) and the mixture was stirred at rt for 1 h . The resulting mixture was evaporated under reduced pressure to leave a residue, which was column-chromatographed on SiO_{2} with $\mathrm{CHCl}_{3}-\mathrm{MeOH}$ ($98: 2$, v/v) to give $\mathbf{1 6 c}\left(33.0 \mathrm{mg}, 88 \%\right.$). 16c: $\mathrm{mp} 242-244{ }^{\circ} \mathrm{C}$ (decomp., colorless powder, recrystallized from CHCl_{3}-hexane). IR (KBr): 1772, 1722, $1614 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\right.$ pyridine- $\left.\mathrm{d}_{5}, 60{ }^{\circ} \mathrm{C}\right) \delta: 1.55(3 \mathrm{H}, \mathrm{t}$, $J=7.3 \mathrm{~Hz}), 1.94(1 \mathrm{H}, \mathrm{qd}, J=12.2,2.4 \mathrm{~Hz}), 2.02-2.07(1 \mathrm{H}, \mathrm{m}), 2.13(3 \mathrm{H}, \mathrm{s}), 3.09(1 \mathrm{H}, \mathrm{dt}, J=15.1,3.2 \mathrm{~Hz})$, $3.57(1 \mathrm{H}, \mathrm{br} \mathrm{t}, J=12.5 \mathrm{~Hz}), 3.67-3.75(2 \mathrm{H}, \mathrm{m}), 3.87(1 \mathrm{H}, \mathrm{dd}, J=12.5,4.0 \mathrm{~Hz}), 4.33(1 \mathrm{H}, \mathrm{q}, J=7.3 \mathrm{~Hz})$, $7.13(1 \mathrm{H}, \mathrm{s}), 7.26(1 \mathrm{H}, \mathrm{t}, J=7.4 \mathrm{~Hz}), 7.34(2 \mathrm{H}, \mathrm{t}, J=7.4 \mathrm{~Hz}), 7.38(2 \mathrm{H}, \mathrm{d}, J=7.4 \mathrm{~Hz}), 11.54(1 \mathrm{H}, \mathrm{br} \mathrm{s}$, disappeared on addition of $\mathrm{D}_{2} \mathrm{O}$). HR-MS m / z : Calcd for $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{BrN}_{2} \mathrm{O}_{3}: 430.0715,428.0736$. Found: 430.0736, 428.0748. Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{BrN}_{2} \mathrm{O}_{3} \cdot 1 / 2 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 57.54 ; \mathrm{H}, 5.06 ; \mathrm{N}, 6.39$. Found: C, 57.73 ; H, 4.88; N, 6.35.

5-Benzyl-8-bromo-1-tert-butoxycarbonyl-7-tert-butoxycarbonyloxy-2,2a,3,4,5,6-hexahydro-6-meth$\mathbf{y l}$-1 \boldsymbol{H}-azepino $[5,4,3-c d]$ indol-2-one (16d) from 16a - A solution of di-tert-butyl dicarbonate (63.2 mg , $0.3 \mathrm{mmol})$ in anhydrous $\mathrm{CHCl}_{3}(1.0 \mathrm{~mL})$ was added to a solution of $\mathbf{1 6 a}(22.6 \mathrm{mg}, 0.06 \mathrm{mmol})$, DMAP ($4.0 \mathrm{mg}, 0.03 \mathrm{mmol}$), and $\mathrm{Et}_{3} \mathrm{~N}(29.2 \mathrm{mg}, 0.3 \mathrm{mmol})$ in anhydrous $\mathrm{CHCl}_{3}(3.0 \mathrm{~mL})$ at rt , and the mixture was stirred at rt for 30 min . The resulting mixture was evaporated under reduced pressure to leave a residue, which was purified by p-TLC on SiO_{2} developed with CHCl_{3}. Extraction of the band having an $R f$ value of $0.23-0.13$ with $\mathrm{CHCl}_{3}-\mathrm{MeOH}(95: 5, \mathrm{v} / \mathrm{v})$ gave $\mathbf{1 6 d}$ ($15.7 \mathrm{mg}, 46 \%$). 16d: colorless viscous oil. IR (film): 2981, 1799, 1766, 1732, 1593, $1456 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\right.$ pyridine-d $\left._{5}\right) \delta: 1.49(9 \mathrm{H}, \mathrm{s}), 1.63(3 \mathrm{H}$, d, $J=7.1 \mathrm{~Hz}), 1.64(9 \mathrm{H}, \mathrm{s}), 1.90-2.02(2 \mathrm{H}, \mathrm{m}), 2.98(1 \mathrm{H}, \mathrm{d}, J=9.3 \mathrm{~Hz}), 3.46(1 \mathrm{H}, \mathrm{t}, J=13.2 \mathrm{~Hz}), 3.75(2 \mathrm{H}$, s), $4.06(1 \mathrm{H}, \mathrm{dd}, J=12.3,4.0 \mathrm{~Hz}), 4.65(1 \mathrm{H}, \mathrm{q}, J=7.1 \mathrm{~Hz}), 7.29(1 \mathrm{H}, \mathrm{t}, J=7.4 \mathrm{~Hz}), 7.37(2 \mathrm{H}, \mathrm{t}, J=7.4 \mathrm{~Hz})$, $7.43(2 \mathrm{H}, \mathrm{d}, J=7.4 \mathrm{~Hz}), 8.22(1 \mathrm{H}, \mathrm{s})$. HR-MS m / z : Calcd for $\mathrm{C}_{29} \mathrm{H}_{35} \mathrm{BrN}_{2} \mathrm{O}_{6}: 588.1658$, 586.1678. Found: 588.1628, 586.1696.

8-Bromo- (16e) and 5-Cyclohexylmethyl-2,2a,3,4,5,6-hexahydro-7-hydroxy-6-methyl-1H-azepino[5,4,3-cd]indol-2-one (15b) from $10 d-A$ solution ($1.0 \mathrm{~mL}, 0.3 \mathrm{mmol}$) of Br_{2} in AcOH [prepared with $\mathrm{Br}_{2}(252.2 \mathrm{mg}, 1.6 \mathrm{mmol})$ and $\mathrm{NaOAc}(25.1 \mathrm{mg}, 0.3 \mathrm{mmol})$ in $\mathrm{AcOH}(5.0 \mathrm{~mL})$] was added to a solution of $\mathbf{1 0 d}(31.0 \mathrm{mg}, 0.1 \mathrm{mmol})$ in $\mathrm{AcOH}(3.0 \mathrm{~mL})$, and the mixture was stirred at rt for 2 h. After addition of $10 \% \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(0.2 \mathrm{~mL})$, the whole was evaporated under reduced pressure to leave a residue, which was column-chromatographed on SiO_{2} with $\mathrm{CHCl}_{3}-\mathrm{MeOH}-28 \% \mathrm{NH}_{4} \mathrm{OH}(46: 2: 0.2$, v/v) to give 16e ($21.4 \mathrm{mg}, 52 \%$) and $\mathbf{1 5 b}(5.6 \mathrm{mg}, 17 \%)$ in the order of elution. 16e: yellow oil. IR (film): $3236,2924,1701,1618,1448,1315 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}$ (pyridine-d $\left.\mathrm{d}_{5}\right) \delta: 0.72-0.84(2 \mathrm{H}, \mathrm{m}), 1.04-1.22(3 \mathrm{H}$, $\mathrm{m}), 1.51-1.65(4 \mathrm{H}, \mathrm{m}), 1.60(3 \mathrm{H}, \mathrm{d}, J=7.2 \mathrm{~Hz}), 1.69(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J=12.7 \mathrm{~Hz}), 1.80(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J=12.7 \mathrm{~Hz})$, $1.96(1 \mathrm{H}, \mathrm{br}$ qd, $J=13.9,2.4 \mathrm{~Hz}), 2.12(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J=13.9 \mathrm{~Hz}), 2.33-2.41(2 \mathrm{H}, \mathrm{m}), 3.07(1 \mathrm{H}, \mathrm{br} \mathrm{dt}, J=15.1$, $2.9 \mathrm{~Hz}), 3.60(1 \mathrm{H}$, br t, $J=13.4 \mathrm{~Hz}), 3.89(1 \mathrm{H}, \mathrm{dd}, J=12.8,3.8 \mathrm{~Hz}), 5.05(1 \mathrm{H}, \mathrm{q}, J=7.2 \mathrm{~Hz}), 7.18(1 \mathrm{H}, \mathrm{s})$, $10.77\left(1 \mathrm{H}\right.$, br s disappeared on addition of $\left.\mathrm{D}_{2} \mathrm{O}\right), 11.58\left(1 \mathrm{H}, \mathrm{s}\right.$, disappeared on addition of $\left.\mathrm{D}_{2} \mathrm{O}\right)$. HR-MS m / z : Calcd for $\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{BrN}_{2} \mathrm{O}_{2}$: 394.1079, 392.1099. Found: 394.1080, 392.1093. 15b: yellow oil. IR (film): 3255, 2924, 1689, $1467 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\right.$ pyridine- $\left._{5}\right) \delta: 0.77-0.89(2 \mathrm{H}, \mathrm{m}), 1.06-1.24(3 \mathrm{H}, \mathrm{m})$, $1.55-1.70(4 \mathrm{H}, \mathrm{m}), 1.66(3 \mathrm{H}, \mathrm{d}, J=7.3 \mathrm{~Hz}), 1.78(1 \mathrm{H}, \mathrm{brd}, J=12.5 \mathrm{~Hz}), 1.84(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J=12.5 \mathrm{~Hz}), 2.02$ (1 H , br qd, $J=12.7,2.1 \mathrm{~Hz}$), $2.18(1 \mathrm{H}$, br d, $J=12.7 \mathrm{~Hz}$), $2.39-2.52(2 \mathrm{H}, \mathrm{m}), 3.12(1 \mathrm{H}, \mathrm{br} \mathrm{dt}, J=14.6,3.0$ $\mathrm{Hz}), 3.64(1 \mathrm{H}, \mathrm{br} \mathrm{t}, J=13.1 \mathrm{~Hz}), 3.96(1 \mathrm{H}, \mathrm{dd}, J=12.7,3.7 \mathrm{~Hz}), 5.05(1 \mathrm{H}, \mathrm{q}, J=7.3 \mathrm{~Hz}), 6.78(1 \mathrm{H}, \mathrm{d}, J=8.1$ $\mathrm{Hz}), 7.01(1 \mathrm{H}, \mathrm{d}, J=8.1 \mathrm{~Hz}), 10.92\left(1 \mathrm{H}, \mathrm{br}\right.$ s, disappeared on addition of $\left.\mathrm{D}_{2} \mathrm{O}\right), 11.31(1 \mathrm{H}, \mathrm{s}$, disappeared on addition of $\mathrm{D}_{2} \mathrm{O}$). HR-MS m / z : Calcd for $\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{2}: 314.1994$. Found: 314.1989.
7-Acetoxy-8-bromo-5-cyclohexylmethyl-2,2a,3,4,5,6-hexahydro-6-methyl-1H-azepino[5,4,3-cd]in-dol-2-one (16f) from 16e - Acetic anhydride (1.0 mL) was added to a solution of 16e ($22.5 \mathrm{mg}, 0.06$ $\mathrm{mmol})$ in pyridine $(2.0 \mathrm{~mL})$ at rt , and the mixture was stirred at rt for 1.5 h . The resulting mixture was
evaporated under reduced pressure to leave a residue, which was column-chromatographed on SiO_{2} with $\mathrm{CHCl}_{3}-\mathrm{MeOH}-28 \% \mathrm{NH}_{4} \mathrm{OH}(46: 2: 0.2, \mathrm{v} / \mathrm{v})$ to give $\mathbf{1 6 f}(20.8 \mathrm{mg}, 83 \%)$. 16f: colorless solid. IR (KBr): 2924, 1768, 1716, $1612 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}$ (pyridine-d $\left.\mathrm{d}_{5}\right) \delta: 0.77-0.89(2 \mathrm{H}, \mathrm{m}), 1.11-1.29(3 \mathrm{H}, \mathrm{m})$, $1.43-1.68(7 \mathrm{H}, \mathrm{m}), 1.75-1.83(2 \mathrm{H}, \mathrm{m}), 1.91(1 \mathrm{H}, \mathrm{br} \mathrm{q}, J=12.2 \mathrm{~Hz}), 2.07(1 \mathrm{H}, \mathrm{br}$ d, $J=14.0 \mathrm{~Hz}), 2.34$ ($2 \mathrm{H}, \mathrm{br} \mathrm{s}$), $2.43(3 \mathrm{H}, \mathrm{s}), 3.03(1 \mathrm{H}, \mathrm{br} \mathrm{dt}, J=15.0,2.9 \mathrm{~Hz}), 3.57(1 \mathrm{H}, \mathrm{t}, J=13.4 \mathrm{~Hz}), 3.90(1 \mathrm{H}, \mathrm{dd}, J=12.8$, $3.7 \mathrm{~Hz}), 4.33(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 7.15(1 \mathrm{H}, \mathrm{s}), 11.88\left(1 \mathrm{H}\right.$, s, disappeared on addition of $\left.\mathrm{D}_{2} \mathrm{O}\right)$. HR-MS m / z : Calcd for $\mathrm{C}_{21} \mathrm{H}_{27} \mathrm{BrN}_{2} \mathrm{O}_{3}: 436.1185,434.1205$. Found: 436.1186, 434.1197.

8-Bromo-1-tert-butoxycarbonyl-7-tert-butoxycarbonyloxy-5-cyclohexylmethyl-2,2a,3,4,5,6-hexahy-dro-6-methyl- 1 H -azepino[5,4,3-cd]indol-2-one (16g) from 16e - A solution of di-tert-butyl dicarbonate ($41.8 \mathrm{mg}, 0.2 \mathrm{mmol}$) in anhydrous $\mathrm{CHCl}_{3}(3.0 \mathrm{~mL})$ was added to a solution of $\mathbf{1 6 e}(13.9 \mathrm{mg}$, $0.04 \mathrm{mmol})$, DMAP ($9.5 \mathrm{mg}, 0.08 \mathrm{mmol}$), and $\mathrm{Et}_{3} \mathrm{~N}\left(22.3 \mathrm{mg}, 0.2 \mathrm{mmol}\right.$) in anhydrous $\mathrm{CHCl}_{3}(2.0 \mathrm{~mL})$ at rt , and the mixture was stirred at rt for 1.5 h . The resulting mixture was evaporated under reduced pressure to leave a residue, which was purified by p-TLC on SiO_{2} developed with $\mathrm{CHCl}_{3}-\mathrm{MeOH}(99: 1$, $\mathrm{v} / \mathrm{v})$. Extraction of the band having an $R f$ value of $0.40-0.30$ with $\mathrm{CHCl}_{3}-\mathrm{MeOH}(95: 5, \mathrm{v} / \mathrm{v})$ gave $\mathbf{1 6 g}$ ($15.0 \mathrm{mg}, 71 \%$). 16g: colorless solid. IR (KBr): 2927, 1797, 1765, 1732, 1456, 1273, 1252, $1149 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\right.$ pyridine-d $\left.{ }_{5}\right) \delta: 0.77-0.87(2 \mathrm{H}, \mathrm{m}), 1.09-1.26(3 \mathrm{H}, \mathrm{m}), 1.46-1.69(7 \mathrm{H}, \mathrm{m}), 1.57(9 \mathrm{H}, \mathrm{s})$, $1.64(9 \mathrm{H}, \mathrm{s}), 1.72-1.91(3 \mathrm{H}, \mathrm{m}), 1.99(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J=13.2 \mathrm{~Hz}), 2.33(2 \mathrm{H}, \mathrm{d}, J=6.6 \mathrm{~Hz}), 2.98(1 \mathrm{H}, \mathrm{dt}$, $J=15.1,2.8 \mathrm{~Hz}), 3.51(1 \mathrm{H}, \mathrm{t}, J=13.3 \mathrm{~Hz}), 4.01(1 \mathrm{H}, \mathrm{dd}, J=12.6,3.8 \mathrm{~Hz}), 4.48(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J=7.0 \mathrm{~Hz}), 8.18$ $(1 \mathrm{H}, \mathrm{s})$. HR-MS m / z : Calcd for $\mathrm{C}_{29} \mathrm{H}_{41} \mathrm{BrN}_{2} \mathrm{O}_{6}$: 594.2128, 592.2148. Found: 594.2127, 592.2136.

7-Acetoxy-5-cyclohexylmethyl-2,2a,3,4,5,6-hexahydro-6-methyl-1H-azepino[5,4,3-cd]indole

from 10 d - Acetic anhydride (1.0 mL) was added to a solution of $\mathbf{1 0 d}$ ($19.3 \mathrm{mg}, 0.07 \mathrm{mmol}$) in pyridine (2.0 mL) at rt , and the mixture was stirred at rt for 3 h . The resulting mixture was evaporated under reduced pressure to leave a residue, which was column-chromatographed on SiO_{2} with $\mathrm{CHCl}_{3}-\mathrm{MeOH}-28 \% \mathrm{NH}_{4} \mathrm{OH}(46: 1: 0.1, \mathrm{v} / \mathrm{v}$) to give 17 ($19.0 \mathrm{mg}, 86 \%$). 17: yellow oil. IR (film): 3400,
 $J=12.5,3.2 \mathrm{~Hz}), 1.18-1.27(3 \mathrm{H}, \mathrm{m}), 1.56-1.72(6 \mathrm{H}, \mathrm{m}), 1.85(2 \mathrm{H}, \mathrm{br} \mathrm{t}, J=12.9 \mathrm{~Hz}), 2.32(3 \mathrm{H}, \mathrm{s})$, $2.61-2.65(1 \mathrm{H}, \mathrm{m}), 2.81(1 \mathrm{H}, \mathrm{dd}, J=12.8,6.7 \mathrm{~Hz}), 3.00(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J=16.4 \mathrm{~Hz}), 3.15-3.22(1 \mathrm{H}, \mathrm{m}), 3.37$ (1 H , ddd, $J=16.4,12.5,4.3 \mathrm{~Hz}$), $3.74(1 \mathrm{H}$, br t, $J=13.4 \mathrm{~Hz}$), $4.82(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 7.07(1 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}), 7.30$ $(1 \mathrm{H}, \mathrm{s}), 7.38(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.5 \mathrm{~Hz})$. HR-MS m / z : Calcd for $\mathrm{C}_{21} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{2}$: 340.2151. Found: 340.2145

REFERENCES AND NOTES

1. a) This report is Part 138 of a series entitled "The Chemistry of Indoles"; b) Part 137: K. Yamada and M. Somei, Heterocycles, 2011, 84, COM-11-S(P)56MS, in press.
2. Professor Emeritus of Kanazawa University. Present address: Matsuhidai 56-7, Matsudo, Chiba 270-

2214, Japan.
3. a) M. Somei, Heterocycles, 2011, 82, 1007; b) M. Somei, S. Sayama, K. Naka, K. Shinmoto, and F. Yamada, Heterocycles, 2007, 73, 537; c) M. Somei, Chemistry, 2007, 62, 116; d) M. Somei, T. Iwaki, F. Yamada, Y. Tanaka, K. Shigenobu, K. Koike, N. Suzuki, and A. Hattori, Heterocycles, 2006, 68, 1565.
4. a) Synthetic philosophy: M. Somei, Heterocycles, 2008, 75, 1021; b) Definitions of intellectual property and application potential factors: M. Somei, F. Yamada, Y. Suzuki, S. Ohmoto, and H. Hayashi, Heterocycles, 2004, 64, 483; c) Definition of originality rate: M. Somei, Y. Fukui, M. Hasegawa, N. Oshikiri, and T. Hayashi, Heterocycles, 2000, 53, 1725; d) M. Somei, Yakugaku Zasshi, 1988, 108, 361; e) M. Somei, J. Synth. Org. Chem. Jpn., 1982, 40, 387.
5. K. Yamada, Y. Tanaka, and M. Somei, Heterocycles, 2009, 79, 635 and references cited therein.
6. M. Somei, K. Yamada, M. Hasegawa, M. Tabata, Y. Nagahama, H. Morikawa, and F. Yamada, Heterocycles, 1996, 43, 1855.
7. N. Suzuki, M. Somei, A. Seki, R. J. Reiter, and A. Hattori, J. Pineal Res., 2008, 45, 229; N. Suzuki, M. Somei, K. Kitamura, R. J. Reiter, and A. Hattori, J. Pineal Res., 2008, 44, 326.
8. M. Somei, Yakugaku Zasshi, 2008, 128, 527.
9. M. Somei, Topics in Heterocyclic Chemistry, Vol. 6, ed. by S. Eguchi, Springer-Verlag, Berlin, 2006, p. 77; M. Somei, Advances in Heterocyclic Chemistry, Vol. 82, ed. by A. R. Katritzky, Elsevier Science, USA, 2002, p. 101; M. Somei, Heterocycles, 1999, 50, 1157; M. Somei, J. Synth. Org. Chem. Jpn., 1991, 49, 205; M. Somei and T. Kawasaki, Heterocycles, 1989, 29, 1251.
10. R. S. Jones, Progress in Neurobiology, 1982, 19, 117.
11. A. Stoll, F. Troxler, J. Peyer, and A. Hofmann, Helv. Chim. Acta, 1955, 38, 1452 and references cited therein; M. M. Rapport, J. Biol. Chem., 1949, 180, 961; M. M. Rapport, A. A. Green, and I. H. Page, Science, 1948, 108, 329; M. M. Rapport, A. A. Green, and I. H. Page, J. Biol. Chem., 1948, 176, 1237.
12. M. Somei, Y. Yokoyama, Y. Murakami, I. Ninomiya, T. Kiguchi, and T. Naito, "The Alkaloids," Vol. 54, ed. by G. A. Cordell, Academic Press, 2000, p. 191 and references cited therein.
13. Y. Mikami, M. Somei, and M. Takagi, J. Biochem., 2009, 145, 239.
14. Y. Mikami, M. Somei, and M. Takagi, Endocrine Journal, 2009, 56, 665.
15. M. Somei, S. Teranishi, K. Yamada, and F. Yamada, Chem. Pharm. Bull., 2001, 49, 1159.
16. E. D. Cox and J. M. Cook, Chem. Rev., 1995, 95, 1157 and references cited therein.
17. M. Somei, F. Yamada, T. Kurauchi, Y. Nagahama, M. Hasegawa, K. Yamada, S. Teranishi, H. Sato, and C. Kaneko, Chem. Pharm. Bull., 2001, 49, 87; M. Somei, H. Morikawa, K. Yamada, and F. Yamada, Heterocycles, 1998, 48, 1117 and references cited therein.

