MIBG 指標の標準化のための散乱線除去への試み: IDW 法による MIBG 定量指標の安定化

金沢大学附属病院 核医学診療科 松尾信郎,中嶋憲一, 奥田光一,絹谷清剛

はじめに

¹²³Iメタヨードベンジルグアニジン(MIBG)心筋シンチグラムは心臓の交感神 経性の機能を評価するために広く使用されている¹⁻⁹⁾。交感神経性活動がうっ血性 心不全の重症になるにつれて増加するが、うっ血性心不全の重症度や予後を MIBG シンチグラフィのパラメータに基づいて評価することができる。心臓核医学会を含 めた多くの学会が作成した日本循環器学会ガイドラインの中で MIBG の心不全評 価の有用性をクラス I としている。心臓 / 縦隔(H/M)比および洗い出しといった MIBG シンチグラフィで得られる指標は、交感神経性の活動評価に使用することが できる。MIBG 摂取が少ない患者は最も予後が悪いことが知られている。H/M の正 常値は各施設において異なる。¹²³I-MIBG 研究は多くの国々で臨床指標として使わ れているが、MIBG 指標の標準化はまだ完全には行なわれていない。H/M の算出に 影響する変動要因として、カメラとコリメータの選択、散乱成分の除去法、肝の高 集積の影響、ROI の大きさと位置などがある¹⁾。適切な標準化の無い¹²³I-MIBG の 使用は、異なる条件²⁾下の心筋の交感神経活動の生理学の理解のために単なる研 究のための道具に制限されることとなる。MIBG が広く臨床で使用されるためには 心筋への取り込みの施設間差を標準化する必要がある。

様々なガンマカメラ・システムで MIBG 摂取を測定するための標準化法を行う にはコリメータごとでの基準値を示すことが重要となる。コリメータ選択の影響は, 本質的に H/M 比に影響を及ぼす。低エネルギーコリメータは,心臓の¹²³ I-MIBG イメージングにしばしば適用される。最近 Inoue らは,中エネルギー(ME)のコ リメータが高い定量性を提供し MIBG 研究の信頼性を向上させる可能性がある事 を報告した³⁾。

本研究では、様々なカメラ・コリメータの組合せの中で H/M の値を標準化する ことができると仮定した¹⁾。マルチウィンドウ法によって、定量化における改良を ー層よく達成することができる。我々はコリメータの違いと機種の違いによる補正 が可能かという点、そして、ファントム実験から臨床例への応用が可能かという点 について検討した。さらに、過去の MIBG 関連の報告論文の比較し我々の仮説が 当てはまるかどうかを検討した。

方 法

ファントム模型の準備は、平面像での H/M 比の測定のために設計した。この研 究の目的が隔壁通過と散乱の除去により様々なコリメータタイプや異種メーカーの H/M 比を標準化することであるため、できるだけ構造を単純化した。4 つのタイプ のアクリルのスライス部分は、1 つのスライス当たり 5mm の厚さで、様々な数の 組み合わせで整えた¹⁾。ファントム研究において真の H/M 比は、0.147/cm として 水のための¹²³I に、線減弱係数(μ)を仮定するモデルの中で数学上計算した。減 衰標準方程式(x が板の厚さだった場合、それは e^{4x} である)を使用した。スライ スは薄いスライスの 0.05mm に分割した。また、計算には、Mathematica ソフトウ ェア (version 5.2; Wolfram Research, Champaign, IL, USA)を使用した。2 つのファ ントム(テーブル 1)からの前部・後面像と共にH /M を計算した¹⁾。

データ取得と補正法の正面像は、5つのエネルギー・ウィンドウで同時に得られ、 3つの補正法を作るために組み合わせた、つまり、ウィンドウ1~5は132-142、 143-175、176-186、187-208 および 209-294keV であった。¹²³I デュアルのウィン ドウ(IDW)法では 529keV 光子からの散乱線を除去するために高エネルギーの側 でエネルギー・ウィンドウを使用した。その中で、Motomura らの報告したウィン ドウ(176-208keV、IDW0)⁴⁾と、広い上部のウィンドウ(176-294keV、IDW1)と を用いて検査した。エネルギー・ウインドウ設定は図1に示す。Subwindow A を 引いたものを IDW0 とし、subwindow B を引いたものを IDW1 とした。IDW 法は、

長方形の近似による主として隔壁通過を除去する。IDW 法による画像を作成する 場合には、サブウィンドウ画像のためにフィルターは Butterworth を使用し、メイ ンウィンドウ画像からサブウィンドウ画像を減算する。しかしながら、本研究では ROI 内の数値計算のためのみに使用した。

<ファントム研究>

低エネルギー高解像度(LEHR)および中エネルギー(ME)のためのコリメー タを使用した。コリメータの感度はそれぞれ 5.5, 6.1 および 5.4cpm/kBq であった。 3つの機種の LEHR は H/M を測定するために使用した。画像は次の SPECT カメラ・ システムを使用して得られた。

プラナー像を次の機種で撮像した。東芝社製 GCA9300A(金沢大学附属病院), 東芝 /Siemens 社製 E.CAM(金沢大学附属病院), GE 社製(東京) Varicam(金沢 循環器病センター)を使用した。

<臨床研究>

心筋の SPECT 標準化に関する日本核医学会のワーキンググループからのデータ を用いて実際の臨床例について検討した。¹²³Iの高エネルギーの光子用に特に設計 された低中エネルギー多目的 (LMEGP) コリメータ (静岡癌センター: E.CAM) も, H/M を計算するために使用された。また,低エネルギー多目的 (LEGP) コリメー タ (東邦大学病院) も H/M を決定するために使用された。これらの2つのコリメ ータにより心臓病のない 33 人の患者において H/M を測定した。この研究で登録 された症例は女性 15 名および男性 18 名,平均年齢 52±22 であった。¹²³I-MIBG (111MBq) を静脈注射した。また,プラナー像は、14 人の患者の中の LEHR コリ メータと共に、および 14 人の患者の中の LME コリメータと共にガンマカメラを 使用して撮像した。この研究については、正面像は、LEGP および LME コリメー タともに注入後 20 分後と 3 時間後に再撮影を行った。データ収集後の H/M 比のデ ータ処理は、心臓、そしてその、上部であるメインウィンドウ像上の縦隔に ROI をセットした。同じ ROI を5 つのサブウィンドウ像上の計算を測定するために使 用された。H/M 比は、平均の縦隔値で心臓の値を割ることで計算した。

統計データ解析は,統計解析ソフトウェア (JMP IN SAS 研究所 (USA, version 5.0.1))を使用して行った。ROIの平均は画像分析に使用した。平均および標準偏差 (SD)を計算した。平均値の分散分析は,コリメータタイプおよび補正したグループについて行なった。対応のある t 検定を補正法の比較に使用した。2 つの変数のための線形回帰ラインは標準線形回帰分析によって計算した。p<0.05 を有意であるとした。

	IDW0	IDW1	補正無し	数学的 計算によるH/M
LEHR	2.13	2.27	1.76	2.60
MEGP	2.46	2.53	2.26	2.60
LMEHR	2.36	2.41	2.12	2.60

図2 LEHR で撮影したファントム画像

表 2 ME コリメータで得られた非補正 H/M 比で 割ることで計算された値

	タイ	プD	タイプロ	З
	Ant.	Post.	Ant.	Post.
IDW0-LEHR				
Toshiba/Siemens:ECAM	0.98	0.99	0.94	0.96
GE:Varicom	1.10	1.02	1.04	1.08
Toshiba:GCA9300	1.02	1.01	1.02	1.04
IDW1-LEHR				
Toshiba/Siemens:ECAM	1.00	1.02	1.00	1.02
GE;Varicom	1.05	1.01	0.97	1.00
Toshiba:GCA9300	1.02	1.01	0.98	0.97

表 3 ME コリメータによる非補正 H/M と LEHR コリメータによる IDW 補正 H/M の間の相関係 数と p 値

	R	p-value
IDW0 <i>補正</i> LEHR		
 Toshiba/Siemens:ECAM 	0.998	0.0012
GE:Varicom	0.994	0.0031
Toshiba:GCA9300	0.994	0.0031
IDW1補正LEHR		
 Toshiba/Siemens:ECAM 	0.999	0.0005
GE:Varicom	0.995	0.0035
<u>Toshiba:GCA9300</u>	0.999	0.0003

結 果

ファントム研究:LEHR と ME コリメータの比較

数学上計算された H/M を表1 に示す。LEHR と ME のコリメータ間の画質に明 瞭な違いがあった。H/M 比は、3 台のカメラに共通して LEHR コリメータに比べ て ME はより高かった。図2 に LEHR で撮影したファントム画像を示す。

表2は、それぞれの H/M を ME コリメータで得られた非補正 H/M 比で割るこ とで計算された値を示す。その、LEHR コリメータで得られた補正 H/M 比は 0.85 ±0.08 であった。IDW0 で補正した H/M 比の結果は 1.01 ± 0.05 であった。また、 IDW1 で補正した H/M 比は 1.0 ± 0.02 であった。表3 に ME コリメータによる非補 正 H/M と LEHR コリメータによる IDW 補正 H/M の間の相関係数とp 値を示す。

ファントム研究:補正した LEHR と ME コリメータの比較

非補正 LEHR 対 ME コリメータ(東芝 /Siemens, E.CAM) y=0.56 x + 0.49 (E.CAM (ME コリメータの x = H/M, 非補正 LEHR の y = H/M) 非補正の LEHR 対M E コリメータ(東芝, GCA9300A))

Ref	No. of subjects	Diagnosis	Age	EE(0/)	follow-up	survival rate		Buoluo	criteria	
	м	F	others	(years)	EF(76)	(monthes)	low risk	hjgh risk	Pvalue	risk
(A)	76	14	66/24/0	52±7	22±8	27	98%	16%	< 0.0001	H/M< 120%
(B)	271	143	107/131/ 176	61±14	49±18	22	95%	85%	0.0002	H/M< 174%
(C)	41	18	59/0/0	55 ± 2	31±1	28	70%	30%	0.01	H/M< 185%

表 4 心不全における MIBG による予後評価

(A) Merlet P, et al. J Nucl Med 33 : 471, 1992.

(B) Nakata T, et al. J Nucl Cardiol 5 : 579, 1998.

(C) Matsuo S, et al. Exp Clin Cardiol 8(2):95-98, 2003.

y = 0.59 x + 0.49 (東芝および GCA9300A (ME コリメータの x = H/M, 非補正 LEHR の y = H/M)

非補正の LEHR 対 ME コリメータ (GE, Varicam)

y = 0.61 x + 0.52 (Ge および Varicam) (x=ME コリメータの H/M,y= 非補正 LEHR の H/M)

ME コリメータで得られた非補正の H/M 比間の関係および LEHR コリメータでの H/M 比は, **表 3**の中で示す。ME コリメータ中の未補正の H/M 比は, LEHR コリメ ータに IDW 法によって補正された H/M 比との正の相関関係があった。

表4 は相関係数,および ME コリメータの非補正の H/M と LEHR コリメータの IDW で得られた H/M の間の相関に関する p 値を示す。

臨床研究

低エネルギー型コリメータ(LEGP と LEHR) (n=18) での正常値の平均は 2.2 ±0.2 (初期像 H/M), 2.3±0.2 (後期像 H/M) であった。一方, 補正した正常値(GE, Varicam) は 2.7±0.3 (初期像 H/M), 3.0±0.3 (後期像 H/M) であった。さらに, LMEGP コリメータ (n=14) の正常値の平均は 2.6±0.3 (初期像 H/M), 2.9±0.2 (後 期像 H/M) であった。

各コリメータでの H/M の分布解析のために、ボックスプロットを作成した。LE 型、LME、補正 LE 型についてのプロットを示す。LE 型と LME 型との間に、初 期像 H/M、後期像 H/M において有意差を認めた(初期像、 2.2 ± 0.2 vs. 2.6 ± 0.3 、 p<0.05;後期像、 2.3 ± 0.2 vs. 2.9 ± 0.2 、p<0.05)。

IDW 法による補正を行うと、補正した LE 型と LME 型との間に、初期像 H/M、後期像 H/M において有意差は認めなかった(初期像、 2.7 ± 0.3 vs 2.6 ± 0.3 ;後期像 3.0 ± 0.4 vs 2.9 ± 0.2 、有意差なし)。図 3 に臨床データを示す。

図 3 心臓病のない症例での MIBG H/M

考 察

核医学画像はガンマ線を利用して作られるためガンマ線の吸収と散乱の影響を受けることは避けることはできない。散乱線は入射位置情報が正確でないことが多く, しばしば画像ボケの原因となりうる。散乱線を補正する方法としてマルチエネルギ ーウィンドウ法がある。この方法では光電ピークのガンマ線を取り込むメインウィ ンドウとは別にサブウィンドウを設定し,サブウィンドウのデータからメインウィ ンドウ内の散乱線成分を推定して引き算する方法である。

今回の検討で用いた方法は2エネルギーウィンドウ(IDW)方式である¹⁴⁾。コ ンプトン領域である低エネルギー部に設定したサブウィンドウで得られたカウント に一定の比率をかけてメインウィンドウのデータから引き算する方法である。この 方法は現在臨床で使用されているほとんどのカメラで使用できる。

IDW 法を使用することで低エネルギー型コリメータで検査しても ME コリメー タでの値と比較可能となる。この方法は GE,シーメンスおよび東芝といった製造 メーカーを初めとした様々なタイプのガンマカメラに適用可能であった。これらの 会社の LEHR コリメータに IDW 法を使用することで ME コリメータによって得ら れた値と比較可能であることが判明した。したがって,H/M 値は,IDW 補正を備 えた様々なカメラ・コリメータ組合せの中で標準化することができる。さらに,臨 床で,IDW 補正を使用することができ,異なる医療機関での結果を比較すること ができる。

コリメータ選択

ME コリメータによって撮影された H/M, あるいは IDW の法を使用して得られた H/M 比は,ファントム研究での理論値に近似していた。H/M 比が比較的大きな

LEi(LE による初期像 H/M), LMEi (LME による初期像 H/M), c-LEi(IDW により補正した LE による初期像 H/M)。d は後期像。

部位から計算されるので,隔壁通過が解像度に影響する。これまでの MIBG による臨床研究は2グループのコリメータによる研究へと分類することができた。一つは,ME コリメータおよび LME コリメータ⁵⁾を含む¹²³I に対応したコリメータである。これらのコリメータは,隔壁通過が低いという特性を持っている。もう一つのコリメータのグループは,主として^{99m}Tc(¹²³I に対応していない LEHR や LEGP コリメータ)のために設計されている。比較的大量の隔壁通過がおこり,H/M 値をより小さくする傾向がある。

散乱補正したH/M

¹²³I ガンマ光子放射線は、光子の合計数の1.39%に 529の keV 由来の光子を含ん でいる。したがって、529の keV コンポーネントからの散乱した光子の数は、コリ メータに依存する。さらに、高エネルギーの光子はかなりの量の隔壁通過を引き起 こす。また、高いバックグラウンドアクティビティは多発性であり、複雑で、分散 する。隔壁通過が起こることで、トレーサーの実際の分布を反映しないことにな る。散乱補正法(IDW)による補正は現在臨床で利用可能な方法のうちの1つであ る。IDW 法は高エネルギーの光子^{1,4)}の隔壁通過を除去するのに有効である。今回 のファントム研究では、補正された LEHR コリメータを備えた3つの異なるカメラ・ システムは同様の半量的平面の H/M 比を示した。それは ME コリメータのそれに 匹敵する。ME コリメータあるいは LME コリメータは隔壁通過が少なく、真の H/ M に近い。施設間の違いを比較したり以前の臨床のデータを比較することを実現 可能にするために、この研究結果は有用である。コリメータ選択について十分に理 解することで、MIBG 値の標準化を達成できる可能性がある。ME コリメータある いは LEGP コリメータによって得られた補正した H/M 比は、個々の症例の身体的 差異を補正し、個人および施設間結果の比較を可能とする単純な方法である。

臨床的重要性

IDW 法によって MIBG を撮像して臨床に用いることは単純で,高い再現性がある。 この方法は複雑ではなく,特別な設備投資を必要としないので,ほとんどすべての 施設に適用可能である。私たちは補正による MIBG 指標の標準化を行うことで過 去の多数の研究を理解することができるだけでなく,今後 MIBG の撮像を行う際 に IDW 方法を使用することができると考える。各施設で MIBG の H/M を計算する 際に,実際的な方法として IDW 法を使用することが勧められる¹¹⁾。

公表された¹²³I-MIBG 研究では,正確なコリメータ情報はすべての研究から利用 可能ではなかったが,H/M の2 グループの値へ分類することができた。1 つのグル ープでは,LEHR または LEGP のコリメータを使用して,後期像 H/M 比は,2.1~ 2.4 と計算された。別のグループは ME コリメータあるいは LME コリメータを使 用して得られた H/M であり比較的より高い後期像 H/M 比に計算され, 2.8~3.0 を 示した。この研究の結果は, ¹²³I 非対応のコリメータで得られた補正 H/M 値が ¹²³I に対応したコリメータで得られた値に近似し, LEHR で得られた H/M 比が IDW 方 法を使用した後に, ME コリメータのそれに近似するというこの仮説を確認するこ とができた。この研究での様々な種類のコリメータを用いヒトの ¹²³I-MIBG データ を検討することによって, 臨床のデータにファントム結果を適用することができる と判明した。IDW 法による散乱線を除去する方法は, 様々なコリメータを比較可 能な H/M 結果を得ることを可能とする。それは, 複数医療機関による共同調査に 臨床的に重要である。

¹²³ I-MIBG 値は、うっ血性心不全患者に予後の値を持つ多数の研究によって実証 された。心不全予後評価における予後評価ではこれまでに多くの報告がある(**表**4)。 ME コリメータによって得られた値を用いた研究が多くあり、また一方では、低エ ネルギーコリメータでの値を使用した研究もある。また、ほとんどの以前のデータ は低エネルギーコリメータの使用により蓄積されている。したがって、この研究の 結果は、従来の心不全予後研究の結果を比較することに利用できるかもしれない。 また、MIBG を使用した多くの臨床研究結果の比較を可能とする。さらにこの研究 により LEHR コリメータに IDW 法によって補正することで MIBG 研究さらには脂 肪酸代謝製剤 (BMIPP)を用いた研究の H/M の標準化が可能となる。¹²³I-MIBG は 心臓交感神経の画像化が行える唯一の SPECT 検査法である。臨床研究に関しては わが国が世界に先駆けて行ってきた。本研究によって標準化された指標によりさら に臨床応用が進む事を期待する。

今後の課題

MIBG の H/M に影響を及ぼす要因として,関心領域(ROI)の設定法は大きな 要因のうちの1つである。私たちは面映像法を評価する際に同じ ROI を使用した。 自動解析は,検査の再現性を改善する可能性がある。MIBG の H/M に影響する要 素としてヨーロッパで使用されている MIBG と日本で使用されているものが違う ことがあげられる。リガンドに対する¹²³Iの放射活性が違うために H/M の値がヨ ーロッパと日本とでは違うことが知られている。

結 論

H/M の補正した値は、機種の違ったコリメータによっても使用できる可能性が ある。補正した LEHR コリメータによる H/M は、IDW 法を用いることで、ME コ リメータの H/M と近似する。IDW 法による散乱線補正法は,臨床例においてさま ざまなコリメータ間での H/M 正面像の標準化を可能とする。

謝 辞

データベースの蓄積および作成に寄与した多くの医師および放射線技師,金沢大 学病院核医学診療科およびアイソトープ部のスタッフの技術援助に感謝する。臨床 のデータを供給していただいた,東邦大学病院の山崎純一先生,山科昌平先生およ び静岡がんセンターの坂田和之先生,金沢循環器病センター 河野匡哉先生,富士 フィルム RI ファーマの石川丈洋氏,細谷徹夫氏,流俊介氏の協力に感謝する。

参考文献

- Nakajima K, Matsubara K, et al. Correction of iodine-¹²³-labeled meta-iodobenzylguanidine uptake with multi-window methods for standardization of the heart-to-mediastinum ratio. J Nucl Cardiol. 14; 843-51, 2007.
- Yamashina S, Yamazaki J. Role of MIBG myocardial scintigraphy in the assessment of heart failure : the need to establish evidence. Eur J Nucl Med Mol Imaging. 31 ; 1353-5, 2004.
- Inoue Y, Suzuki A, et al. Effect of collimator choice on quantitative assessment of cardiac iodine ¹²³ MIBG uptake. J Nucl Cardiol. 10; 623-32, 2003.
- Motomura N, Ichihara T, et al. Practical compensation method of downscattered component due to high energy photon in ¹²³I imaging. Kaku Igaku (Jpn J Nucl Med) 36 ; 997-1005, 1999.
- Matsuo S, Nakamura Y, et al. Impairments of myocardial sympathetic activity may reflect the progression of myocardial damage or dysfunction in hypertrophic cardiomyopathy. J Nucl Cardiol 9 ; 407-12, 2002.
- Matsuo S, takahashi M, et al. Evaluation of cadiac sympathetic innervation with iodine-¹²³metaiodobenzylguanidine imaging in silent myocardial ischemia. J Nucl Med **37**; 712-717, 1996.
- 7) Matsuo S, Nakamura Y, et al. Cardiac sympathetic dysfunction in athlete's heart detected by ¹²³I MIBG scintigraphy. Jpn Circ J 65 ; 371-374, 2001.
- 8) Matsuo S, Nakamura Y, et al. Prognostic value of iodine-123 metaiodobenzylguanidine imaging in patients with heart failure. Exp Clin Cardiol **8**; 95-98, 2003.
- 9) Matsuo S, Matsumoto T, et al. Role of impaired sympathetic nerve function in enhancing

coronary vasoconstriction in patients with hypertrophic cardiomyopathy. Exp Clin Cardiol **12**; 37-41, 2007.

- Matsuo S, Nakajima K, et al. Standardization of the heart-to-mediastinum ratio of iodine-123-labeled-meta-iodobenzylguanidine uptake using dual energy window method : Feasibility of correction from different camera-collimator combinations. Eur J Nucl Med Mol Imaging 36 ; 560-6, 2009.
- Matsuo S, Nakajima K, et al. Characterization of Japanese standards for myocardial sympathetic and metabolic imaging in comparison with per fusion imaging. Ann Nucl Med 23 ; 517-22, 2009.