動態機能測定用テルル化カドミウム(CdTe)

検出器システムとその臨床応用

鈴木 兽

1. はじめに

プローブ型検出器は、核医学の初期の時代には、 主流の座を占めていたが、現在においては、その座 をシンチカメラに譲って、その使用頻度はきわめて 低い。しかし、プローブ型検出器には、機構の簡便 さ故に小型,軽量の測定器を容易に作れるという特 長がある。特に、近年開発された常温で使用可能な 半導体検出器と発展普及の著しいマイクロコンピュ ータとを組み合わせることで,新しい利用方法が開 発されつつある1)2)3)4)。コンピュータ化された半導 体検出器を用いることで、今まで不可能であった日 常生活中の各種臓器の動態機能を連続的に観測する ことが実現するのではないかと大きな期待が寄せら れている。われわれの施設でも,過去数年来,シン グルプローブシステムの臨床応用に取組んできた が5)6),その応用範囲をさらに拡大するために新た にテルル化カドミウム (CdTe) 検出器を用いたシ ステムを開発しつつある。そこで、この機会にわれ われの開発中のシステムの概要とその臨床応用の一 端を紹介することにする。

2. ガンマ線検出器としての CdTe の特性

臨床で使用する場合の CdTe の最大の長所は, 常温で使用できることである。これは,バンドギャ ップエネルギーが1.45 eV と十分大きなためであ り、30℃までは温度によって特性が変化しないと報 告されている⁷⁾。次に,ガンマ線検出器として考え た場合,CdTe の長所は,他の半導体素子と比較し て原子番号が50と高く,その減弱係数が大きいこ とである。これは,小型で検出効率のよい検出器の 作成にあたって考慮すべき重要な条件である。

3. システムの構成

われわれの施設で現在使用中の装置のブロックダ イアグラムを Fig.1 に示す。使用した CdTe 検出 器は, RMD 社製 A-116 型で, 直径 16 mm. 厚さ 2 mm で金属内に封入されており、全重量17g であ る。これに装着するためのコリメータとして,内径 16 mm で, 高さがそれぞれ5 mm, 16 mm のストレ ート型二重類を作成した。コリメータと検出器はプ ラスチックの筒の中に格納されている (Fig.2)。 CdTe 検出器より得られた信号は,前置増幅器 (Fig.2) およびバツファーアンプで増幅され携帯型 データ収集装置に入力される(Fig.1)。携帯型デー タ収集装置は、マイクロプロセッサー、波高分析装 置, ランダムアクセスメモリーなどを内蔵し, 重さ 約800g である。波高分析器により40 KeV 未満の 信号は除去され,0.05秒ごとのデータが、マイク ロコンピュータ (LSI-11/23) に転送され、フロッ ピーディスクに記録される。本システムの特性につ いては、既に報告8)したので詳細について割愛する が,計数率特性としては,40 KeV 以上の積分計数 モードの計測で,100 Kcps で約20%の数え落とし であった。感度については、絶対値は求められてい ないが、われわれの施設にある焦点型コリメータを 装着した直径2インチの NaI 検出器のそれと比較 すると, 高さ5mm, 16mm のコリメータを使用し た場合,それぞれ,約1/2,1/5という値が得られ ている。

A dynamic monitoring system with cadmium telluride (CdTe) detectors and its clinical application Yutaka Suzuki

Department of Radiology, The School of Medicine, Tokai University, 東海大学医学部放射線医学教室 〒259-11 神奈川県伊勢原市望星台

Fig. 1 Schematic diagram of the system. PREAMP : preamplifier, AMP : amplifier, PAH : pulseheight analyser, RAM : random access memory, MPU : main processing unit, I/O : in-put and out-put device, ROM : read only memory, L.C.D. : liquid crystal display.

4. 臨床応用

臨床応用としてこれまでに,脳脊髄液 (CSF)短 絡流量の測定,各種負荷時の左室ポンプ機能の測定 を試みてきたので,これらの一端を紹介する。

1) CSF 短絡流量の測定

CSF 短絡流量(F)は、短絡装置のリザーバー内 に RI を注入後、同部の時間放射能曲線を求める と、リザーバー内容量(V)と時間放射能曲線の半 減時間(T1/2)より、理論的には次式で算出され る。即ち、F=0.698 V/T_{1/2}、しかし、現実には、 リザーバー内の CSF と RI が完全に混和しないた め、この関係式が成立しないことが多い。そこで、 あらかじめ同一種類の短絡装置を用い、注入ポンプ で設定した既知の流量とその際の時間放射能曲線の T1/2の関係式を求め、これをマイクロコンピュー タに入力しておき、実際の患者の短絡装置で得られ た T1/2の値を入力して、CSF 短絡流量を推定し た。

患者の頭部皮下に埋め込まれた短絡装置のリザー バー内に 100 μ Ci の ⁹⁹^mTcO₄ を注入した後, 5 mm 長のコリメータを装着した CdTe 検出器をリザー バー上に頭部バンドで固定し, 3 秒間隔のデータを 任意の時間収集した。収集終了後, ブラウン管上に

Fig. 3 Changes in a time-activity curve obtained during head being continuously raised. At 25 degree head raised position, CSF has suddenly started to flow.

Fig. 4 Flow rate changes by patient position. 0.36 ml/min flow rate in recumbent becomes nearly zero in sitting position but restored its rate of 0.38 ml/min in upright position.

読み出した時間放射能曲線について,任意の関心時 間区域を指定すると,その間の T1/2 が求められ, それにもとづいて流量が自動的に算出され,管面に 表示される。このシステムの最大の特長は,患者の 体位に制約されることなく,動いている最中でも連 続的にデータを収集できる点にある。Fig.3 は,臥 位では CSF の流が認められなかったにもかかわら ず,頭部を徐々に挙上していき,25度に達した時 点で突然流れ出した一例を示している。これによっ て,短絡装置に開存していることを容易に知ること ができた。我々は,これまでに臥位で CSF の流れ が認められなかったにもかかわらず,頭部挙上するの みで毎分 0.1 ml 以上の流量の出現した症例を水頭 症 40 例中 12 例に経験している⁹。Fig.4 は, 臥位, 立位では,毎分 0.3 ml 以上の短絡流量が認められ たにもかかわらず,坐位では流れが中断した症例で ある。坐位では,短絡チューブが折れ曲がったため に,このような現象を生じたものと思われる。本シ ステムによるこれまでの測定結果から,短絡管内の CSF の流れは間欠的であり,種々の要因により微 妙に変化しているものと想像される。このような CSF 短絡流量の変化を,シンチカメラで観測する ことは不可能といわないまでも,きわめて困難であ ろう。

2) 左室ポンプ機能の評価

通常の方法で 20 mCi の99mTc により赤血球を in

- 48 -

vivo 標識した後,患者に専用のベストを着用させ, シンチカメラ下で,左室およびバックグラウンド領 域として右上肺野にそれぞれ16mm 長のコリメー タを装着した CdTe 検出器を固定する(Fig.5)。サ ンプリング間隔0.05秒で任意の時間(最長3時間) データを収集する。得られたデータは,以下の三種 類の解析法によって処理される。i)1ブロック分 のデータ(6.4秒間,128データポイント)につい てその平均値と標準偏差より左室駆出率(LVEF)

Fig. 6 Smoothed beat-by-beat left ventricular curve and estimated LVEF.

を求め,トレンドグラムとして表示する。バックグ ラウンドは,右上肺の時間放射能曲線の同一ブロッ ク内の平均カウントとする。物理学的減衰は,ブロ ック単位に補正する。ii) 任意の1ブロックについ て,3点スムージングを10回施行し,カーブ上の 山とそれに対応する谷を求め,おのおののカウント 数より,通常の方法でLVEFを算出し,平滑化さ れたカーブと共に表示する(Fig.6)。iii) 任意の1 ブロック内の心拍ごとのカーブを加算し,1個の左 室時間放射能曲線を作成する。この曲線をもとに, LVEF,1/3 LVEF,最大駆出速度(PER), PERまで の時間,最大充満速度(PFR), PFR までの時間, 心拍数を算出し,カーブと共に表示する(Fig.7)。 また,これらの諸指標の経時的変化をトレンドグラ

Fig. 7 Summed left ventricular curve and estimated left ventricular parameters.

Fig. 8 Changes of left ventricular and background curves, and left ventricular parameters estimated during and after exercise.

ムとしても表示する10)。

種々の心疾患を有する患者 33 例で,本システム で測定した LVEF およびその他の指標とシンチカ メラ・コンピュータシステムで測定した値とを比較 した結果,よい相関関係が得られている¹¹¹¹²⁾。本シ ステムの臨床的意義は,各種負荷時の左室機能の変 化を,負荷前,中,後と連続的に観測できる点にあ る。Fig.8 は,エルゴメータによる運動負荷時の左 室ポンプ機能をモニターしたものである。ポンプ機 能の各種指標の経時的変化を容易に観察することが できる。また,興味のある時相のデータを詳細に分 析することも可能である。運動負荷に伴なうこのよ うな左室ポンプ機能の急激な変化を,カメラ・コン ピュータシステムで連続的に観測することは不可能 と思われる。

われわれは、現在主として、薬剤負荷時、運動負 荷時の左室機能の変化を観測することを目的として 研究を進めているが、次の課題としては、左室機能 の長時間モニターがある。このためにわれわれは、 新に携帯型データ収集装置からマイクロコンピュー タへ信号を無線で転送するシステムを開発中であ る。このシステムを完成すれば、検査のフレキシビ リティーはさらに増し、長時間モニターも容易にな るものと考えている。

以上の他,臨床応用として,種々の条件下での肺 血液量の変化,肝動脈血流量の変化などの測定を試 みているが,それらについては,またの機会に紹介 することにする。

5. おわりに

われわれの開発した CdTe 検出器システムとそ の臨床応用の一端を紹介した。このシステムによ り、従来のカメラ・コンピュータシステムでは、不 可能であった種々の状況下での動態機能の観測が可 能になった。このことは、核医学に新しい分野を持 たらすものであると考える。

文 献

- Hoffer PB, Berger HJ, Steidley J, et al : A miniature cadmium telluride detector module for continuous monitoring of left ventricular function. Radiolgy 138 : 477-481, 1981.
- Owen JE, Walker RG, Willems D, et al : Cadmium telluride detectors in external measurement of glomerular filtration rate using Tc-99m DTPA (Sn) : comparison with Cr-51 EDTA and Tc-99m DTPA (Sn) plasma sample methods. Clin Ne-

核医学画像診断 Vol.2 No.2 1987.7. — 51 —

phrology 18: 200-203, 1982.

- Wilson RA, Sullivan PJ, Moore RH, et al: An ambulatory ventricular function monitor: validation and preliminary clinical results. Am J Cardiol 52: 601-606, 1983.
- 4) Lahiri A, Crawley JCW, Jones RI, et al: A noninvasive technique for continuous monitoring of left ventricular function using a new solid state mercuric iodide radiation detector. Clin Science 66: 551-556, 1984.
- 5) 鈴木 豊,小野容明,木下栄治ほか:シングルプロ ーブ装置による左室駆出率測定法の基礎的研究. 核 医学 21: 353-360, 1984.
- 6) 井出 満, 兼本成武, 五島雄一郎, 鈴木 豊: オム ニスコープ. 呼と循 32: 1039-1044, 1984.
- 7) Palms JM: Newer developments in detector design and materials. In: Hoffer PB, Beck RN, Gttschalk A eds. Semiconductor detectors in the future of nuclear medicine. New York, Society of

Nuclear Medicine 1971: p57-78.

- 村上 剛,福田利雄,梅本亨他:テルル化カドミウム検出器を用いた動態機能検査装置 Radioisotope 35:20-23,1986.
- 9) Suzuki Y, Matsumae M, Murakami T, et al: Assessment of cerebrospinal fluid shunt flow rates by computerized semiconductor detector system. J Nucl Med 27: 1025, 1986.
- 10) Suzuki Y, Ide M, Murakami T, et al: Radionuclide cardiac monitoring system using dual cadmium telluride (CdTe) detectors: specification and some clinical applications. Nucl Med Communications: in press.
- Ide M, Kanemoto N, Goto U, Suzuki Y : Evaluzation of left ventricular function using a cadmium telluride probe. Nucl Med 25 : A 47-48, 1986.
- 12)井出満,兼本成武,五島雄一郎,鈴木豊:テル ル化カドミウムを用いたシングルプローブによる左 室機能の計測.核医学23:1675-1682,1986.