Two-generator elliptic subgroups of SL(2,C)

メタデータ	言語: eng
	出版者:
	公開日: 2017-10-04
	キーワード (Ja):
	キーワード (En):
	作成者:
	メールアドレス:
	所属:
URL	http://hdl.handle.net/2297/19537

Two-generator elliptic subgroups of SL(2,C)

Katsumi Inoue

Abstract

We classify all two-generator, purely elliptic subgroup of SL(2,C) by means of the order of generators and the crossing angle of their axes.

Key words

Möbius transformations, regular polyhedral groups, discrete groups, purely elliptic two-generator subgroup of SL(2, C),

1 Introduction

We denote by H^3 the upper-half space and regard it as the 3-dimensional hyperbolic space. The special linear group SL(2, C) acts in H^3 as a group of hyperbolic isometries. For an elliptic element $f \in SL(2, C)$, denote by A_f the geodesic joining two fixed points of f on $\hat{C} = \partial H^3$ and call it the axis of f. For two elliptic elements $f, g \in$ SL(2, C), let $\langle f, g \rangle$ be the group generated by f, g. It is well known that $\langle f, g \rangle$ is purely elliptic if and only if $A_f \cap A_g \neq \phi^{\text{ II}}$. In this paper, we classify all two-generator, purely elliptic subgroups of SL(2, C).

By $M(\hat{R}^3)$ we denote the group of Möbius transformations acting on $\hat{R}^3 = R^3 \cup \{\infty\}$. The special orthogonal group SO(3) acts in the unit ball B^3 in R^3 as a rotation group. Let $\langle f, g \rangle$ be a purely elliptic subgroup of SL(2, C). Then there exist $x_0 \in A_f \cap A_g$ and $h \in M(\hat{R}^3)$ so that $h(H^3) = B^3$, $h(x_0) = 0$ and $h \langle f, g \rangle h^{-1} \subset SO(3)$. Since $h(A_f)$ is the geodesic through the origin joining two fixed points of hfh^{-1} , $h(A_f)$ is also called the axis of hfh^{-1} . Thus, for the study of purely elliptic subgroups, it suffices to investigate subgroups of SO(3). From now on, we assume $f, g \in SO(3)$. By ord(f) we denote the order of f. For non-trivial elements f, g, $\langle f, g \rangle$ may be discrete or not. Suppose that $\langle f, g \rangle$ is discrete. Then the classification theory of elementary Kleinian groups yields that $\langle f, g \rangle$ can be classified into five kinds³: a cyclic group, a dihedral group, a tetrahedral group, a hexahedral group and a dodecahedral group³. The last three kinds are regular polyhedral groups. To describe the non-discrete case, we need some preparations.

For a subgroup G of SO(3), we define

 $F_G = \{ \boldsymbol{\xi} \in S^2 = \partial B^3 \mid g(\boldsymbol{\xi}) = \boldsymbol{\xi} \text{ for some } g \in G - \{id\} \}.$

For $k = 2, 3, ..., + \infty$, we also define a subset of F_G as

$$F_G^k = \{ \xi \in F_G \mid g(\xi) = \xi, ord(g) = k \}.$$

To describe the action of non-discrete groups on S^2 , we regard $cl(B^3)$ as the earth. Denote by N, S and E the North Pole, the South Pole and the equator, respectively. A non-discrete group G is said to belong to the class I and denoted by $G \in C_I$, if there exists $h \in SO(3)$ so that $F_{hGh^{-1}} = h(F_G) = \{N, S\}$. A group G belongs to the class II C_{II} if there exists $h \in SO(3)$ so that $cl(h(F_G)) = \{N, S\} \cup E, h(F_G) \cap E \subset f(F_G^2)$ and $h(F_G^k) \cap E = \phi$ for $k \ge 3$. A group G belongs to the class III C_{III} if $cl(F_G^\infty) = S^2$. We shall show in Theorem 1 that each non-discrete group in SO(3) belongs to either $C_h C_{II}$ or C_{III} .

For non-trivial elements $f, g \in SO(3)$, denote by $\theta(f, g)$ the crossing angle formed by A_f and A_g at the origin. Note that $\theta(f, g)$ is contained in $[0, \pi/2]$. In terms of ord(f), ord(g) and $\theta(f, g)$, we classify

Division of Health Sciences, Kanazawa University Graduate School of Medical Sciences

all two-generator subgroups of SO(3) into eight kinds.

2 Non-discrete groups

In the first place, we consider non-discrete groups. As to the classification of subgroups of PSL(2C), the following result due to Sullivan is essential.

Proposition 1.⁵⁾ Let *G* be a subgroup of PSL(2, C). Then, after replacing *G* by a subgroup of index 2 if necessary, there are three possibilities:

- (1) G is discrete.
- (2) *G* is solvable and conjugate to a subgroup of similarities.
- (3) (a) G is dense in PSL(2, C), or
 - (b) G is conjugate to a dense subgroup of PSL(2, R), or
 - (c) G is conjugate to a dense subgroup of SO(3).

Suppose that G is a purely elliptic, non-discrete subgroup of SL(2, C). Then the proposition above yields that G is conjugate in $M(\hat{R}^3)$ to either (2) a solvable subgroup of similarities or one of its Z_2 extensions, or (3)(c) a dense subgroup of SO(3). Assume that (2) holds. Taking a suitable conjugation in SL(2, C), we may suppose that the fixed point set for *G* is $\{0, \infty\}$. Then *G* is isomorphic to a nondiscrete subgroup of SO(2) and hence belongs to C_{I} . Next we suppose that G has a normal subgroup G_0 of index 2, which is isomorphic to a non-discrete subgroup of *SO*(2). Then, for $f_0 \in G - G_0$, we have a coset decomposition $G = G_0 + f_0 G_0$. The element f_0 is of order 2, so is f_0g for each $g \in G_0$. Hence $F_{f_0G_0}$ forms a dense subset of a great circle on S^2 . Therefore we conclude $G \in C_{II}$. Finally we suppose that G satisfies (3)(c). Taking a suitable conjugation, we may assume that G is a subgroup of SO(3) and acts in B^3 . Since G is dense in SO(3), so is F_G in S^2 . To prove that G belongs to C_{III} , it suffices to show $F_G^{\infty} \neq \phi$. So we prove

Lemma 1. Let G be a non-discrete subgroup of SO(3). Assume that G does not leave any great circle on S^2 invariant. Then G contains an element of infinite order.

Proof. We prove this lemma by contradiction.

So we assume that every element in G is of finite order. Since G is non-discrete, G is an infinite group. On the other hand, Selberg's lemma shows that every finitely generated subgroup of G is finite. As a consequence, we find a finite subset X_0 of G such that the order of the group $\langle X_0 \rangle | \langle X_0 \rangle |$ is finite and greater than 60. It follows that $\langle X_0 \rangle$ is conjugate in $M(\hat{R}^3)$ to an elementary Kleinian group. Therefore we deduce that $\langle X_0 \rangle$ is a cyclic, a dihedral or a regular polyhedral group. Note that the order of each regular polyhedral group is at most 60⁶. Hence the group $\langle X_0 \rangle$ is cyclic or dihedral. In any case, there exists a set V which consists of two antipodal points on S^2 so that V is left invariant by $\langle X_0 \rangle$. Hence we define a subgroup G_0 of G by $G_0 = \{g \in G \mid g(V) = V\}$. Let Y be an arbitrary finite subset of *G*. As its order $|\langle X_0 \cup Y \rangle|$ is greater than 60, the group $\langle X_0 \cup Y \rangle$ is either cyclic or dihedral, too. Since V is left invariant by $\langle X_0 \rangle$, it is also $\langle X_0 \cup Y \rangle$ -invariant. It implies that $\langle X_0 \cup Y \rangle$ is a subgroup of G_0 and hence G_0 contains every finitely generated subgroup of G. It means $G = G_0$ and G leaves a great circle on S^2 invariant. It contradicts the assumption and our lemma is established.

We summarize the argument above as the following form.

Theorem 1. Let G be a non-discrete subgroup of SO(3). Then G belongs to either C_I , C_{II} or C_{III} .

Let *G* be a group generated by *f*, $g \in SO(3)$. From now on, we add the condition $ord(f) \ge ord(g)$ in the notation $G = \langle f, g \rangle$. Obviously we have the following equivalences:

 $G = \langle f, g \rangle \in C_I \Leftrightarrow \theta (f, g) = 0 \text{ and } ord (f) = \infty.$ $G = \langle f, g \rangle \in C_{II} \Leftrightarrow (1) \ \theta (f, g) = \pi/2 \text{ and } ord (f) = \infty,$ ord (g) = 2 or(2) $\theta (f, g)/\pi \text{ is irrational and}$ ord (f) = ord (g) = 2.

As an immediate consequence of Theorem 1, we have the following which is closely related to Jørgensen's result⁴.

Corollary 1. Let G be a purely elliptic subgroup of SL(2, C). Assume that G does not leave any circle in C invariant. Then G is discrete if and only if each cyclic subgroup of G is discrete. If the assumption of this corollary is not satisfied, we can construct a counter example as follows: Let *G* be a group consisting of all rotations of finite order which fix $0, \infty$. Of course *G* is non-discrete, but every finitely generated subgroup is discrete.

3 Regular polyhedral groups

Each discrete subgroup of SO(3) is a cyclic, a dihedral or a regular polyhedral group. So, to consider a discrete group $\langle f, g \rangle$, we may restrict f, g to elements in one of these groups. It suffices to investigate only regular polyhedral groups. First, we deal with the tetrahedral groups.

[I] The tetrahedral group. A tetrahedral group is generated by rotations f_1, \ldots, f_4 of order 3, and g_1 , g_2, g_3 of order 2. Each f_i is a rotation by $2\pi/3$ about the axis through a vertex and the center of the opposite face. Each g_i is a rotation by π about the axis joining two midpoints of opposite edges. For $\{f, g\} \subset \langle f_1, \ldots, g_3 \rangle$, only two cases can occur for $\langle f, g \rangle$ to be a tetrahedral group.

- (1) $\theta(f, g) = \arctan 2\sqrt{2} = 70.5287 \cdots^{\circ}$ and ord(f) = ord(g) = 3.
- (2) $\theta(f,g) = \arctan \sqrt{2} = 54.7376 \cdots^{\circ}$ and ord(f) = 3, ord(g) = 2.

In any other combination, $\langle f, g \rangle$ is a cyclic or a dihedral group.

[II] The hexahedral group. A hexahedral group is generated by three kinds of rotations: rotations f_1, f_2, f_3 of order 4, g_1, \ldots, g_4 of order 3 and h_1, \ldots, h_6 of order 2. Each f_i , g_i and h_i is a rotation by $\pi/2$, $2\pi/3$ and π about the axis through two centers of opposite faces, two opposite vertices and two midpoints of opposite edges, respectively. We find six combinations of $\{f, g\} \subset \langle f_1, \ldots, h_6 \rangle$ for $\langle f, g \rangle$ to be a regular polyhedral group. In (1),..., (4) $\langle f, g \rangle$ is a hexahedral group and a tetrahedral group in (5), (6).

- (1) $\theta(f, g) = \pi/2 \text{ and } ord(f) = ord(g) = 4.$
- (2) $\theta(f,g) = \arctan \sqrt{2} = 54.7376 \cdots^{\circ}$ and ord(f) = 4, ord(g) = 3.
- (3) $\theta(f,g) = \pi/4 \text{ and } ord(f) = 4, ord(g) = 2.$
- (4) $\theta(f,g) = \arctan(1/\sqrt{2}) = 35.2643...^{\circ}$ and ord(f) = 3, ord(g) = 2.
- (5) $\theta(f,g) = \arctan 2\sqrt{2} = 70.5287 \cdots^{\circ}$ and ord(f) = ord(g) = 3.

(6) $\theta(f,g) = \arctan \sqrt{2} = 54.7376 \cdots^{\circ}$ and ord(f) = 3, ord(g) = 2.

[III] The dodecahedral group. Generators of a dodecahedral group are rotations f_1, \ldots, f_6 of order 5, g_1, \ldots, g_{10} of order 3 and h_1, \ldots, h_{15} of order 2. Each f_i, g_i and h_i is a rotation by $2\pi/5, 2\pi/3$ and π about the axis through two centers of opposite faces, two opposite vertices and two midpoints of opposite edges, respectively. There are ten combinations for $\langle f, g \rangle$ to be a regular polyhedral group. Each group in (1),..., (8) corresponds to a dodecahedral group, and a tetrahedral group in (9), (0).

- (1) $\theta(f, g) = \arctan 2 = 63.4349...^{\circ}$ and ord(f) = ord(g) = 5.
- (2) $\theta(f,g) = \arctan(3-\sqrt{5}) = 37.3773\cdots^{\circ}$ and ord(f) = 5, ord(g) = 3.
- (3) $\theta(f, g) = \arctan(3 + \sqrt{5}) = 79.1876 \cdots^{\circ}$ and ord(f) = 5, ord(g) = 3.
- (4) $\theta(f, g) = \arctan \{(\sqrt{5} 1)/2\} = 31.7174 \cdots^{\circ}$ and ord(f) = 5, ord(g) = 2.
- (5) $\theta(f,g) = \arctan \{(\sqrt{5}+1)/2\} = 58.2825 \cdots^{\circ}$ and ord(f) = 5, ord(g) = 2.
- (6) $\theta(f,g) = \arctan(2/\sqrt{5}) = 41.8103...^{\circ}$ and ord(f) = ord(g) = 3.
- (7) $\theta(f,g) = \arctan\{(3-\sqrt{5})/2\} = 20.9051\cdots^{\circ}$ and ord(f) = 3, ord(g) = 2.
- (8) $\theta(f,g) = \arctan\{(3+\sqrt{5})/2\} = 69.0948\cdots^{\circ}$ and ord(f) = 3, ord(g) = 2.
- (9) $\theta(f,g) = \arctan 2\sqrt{2} = 70.5287 \cdots^{\circ}$ and ord(f) = ord(g) = 3.
- (10) $\theta(f, g) = \arctan \sqrt{2} = 54.7356 \cdots^{\circ}$ and ord(f) = 3, ord(g) = 2.

In any other case, $\langle f, g \rangle$ is a cyclic or a dihedral group.

By removing duplications, we have seventeen combinations for $\langle f, g \rangle$ to be a discrete group. In any other combination, $\langle f, g \rangle$ is not discrete.

4 The dodecahedral group

Cases of the tetrahedral and the hexahedral groups are quite simple, so we discuss only the dodecahedral groups. Let P_1, \ldots, P_{20} and F_1, \ldots, F_{12} be vertices and faces of the regular dodecahedron Δ , respectively (See Figures 1 and 2). For each face $F_k, k = 1, \ldots, 6$ of Δ , there exists the opposite

face F_l , l=7, ..., 12. Denote by f_k the rotation by $2\pi\,/5$ about the line through the centers of F_k and F_l . This rotation f_k is oriented so as to interchange vertices of F_k clockwise. Similarly, for each P_k , k =1,..., 10 we can find the opposite vertex P_l , l=11,...,20. Let g_k be the rotation by $2\pi/3$ about the line through P_k and P_l . So as to interchange three vertices around P_k clockwise, g_k is oriented. Let h_1 be the rotation by π about the line through the midpoints of edges P_1P_2 and $P_{20}P_{19}$. We denote it by $h_1: (1,2) - (20,19)$. In this way, we can enumerate all rotations of order 2 as the following: h_2 : (2,3) – (19,18), h_3 : (3,4) – (18,17), h_4 : (4,5) – (17,16), h_5 : (5,1) – $(16,20), h_6: (1,6) - (20,11), h_7: (2,8) - (19,13), h_8: (3,10) (18,15), h_9: (4,12) - (17,7), h_{10}: (5,14) - (16,9), h_{11}: (6,7) - (16,9)$ $(11,12), h_{12}: (7,8) - (12,13), h_{13}: (8,9) - (13,14), h_{14}: (9,10)$ $-(14,15), h_{15}: (10,11) - (15,6).$

Now we denote by D_k , T and D the dihedral group of degree k, the tetrahedral and the dodecahedral group, respectively. The group D is generated by $S = \{ f_1, ..., f_6, g_1, ..., g_{10}, h_1, ..., h_{15} \}$. We consider all two-generator subgroups of D. Since the order of each element in S is prime, it suffices to consider only groups that are generated by two elements in S. We may exclude cyclic subgroups of D.

Subgroups of D generated by two elements in S are classified into six types as the followings: (1)

Figure 2

 $\langle f_i, f_j \rangle$, (2) $\langle g_i, g_j \rangle$ (3) $\langle h_i, h_j \rangle$ (4) $\langle f_i, g_j \rangle$ (5) $\langle f_i, h_j \rangle$ and (6) $\langle g_i, h_j \rangle$. In any case, it suffices to show when i = 1

(1) $\langle f_i, f_j \rangle$, i, j = 1,...,6 and $i \neq j$.

We may assume j=2. As $f_1f_2(P_k) = P_k$ (k=1, 20) and $f_1 f_2$ transposes P_5 , P_2 and P_6 cyclically, we deduce $f_1f_2 = g_1$. Similarly, $f_2f_1(P_k) = P_k$ (k=2, 19) and f_2f_1 transposes P_1 , P_3 and P_8 cyclically, so we have $f_2f_1 = g_2$. In this way, we obtain $g_k \in \langle f_1, f_2 \rangle$ for k=1,...,10. On the other hand f_1g_2 interchanges P_1 and P_2 , so we have $f_1g_2 = h_1$. Therefore we conclude $h_k \in \langle f_1, f_2 \rangle$ for k=1,...,15 and hence $\langle f_1, f_2 \rangle$ = D. Let ξ be the dihedral angle of Δ and set $\vartheta =$ $\theta(f_1, f_2)$. Since sin $\xi = 2/\sqrt{5}$, $\xi > \pi/2^{2^{10}}$ and $\xi + \vartheta$ $= \pi$, we have $\vartheta = \arctan 2$.

(2) $\langle g_i, g_j \rangle$ *i*, *j*, = 1,...,10 and *i* ≠ *j*.

We discuss these groups by classifying them into two cases.

(i) The case where fixed vertices of g_1 and g_j belong to a common edge, i.e. j=2, 5, 6. Without loss of generalities, we may set j=2. As $g_2g_1(F_1) = F_1$ and $g_2g_1(P_1) = P_3$, it follows $g_2g_1 = f_1^{-3}$ and $f_1 \in \langle g_1, g_2 \rangle$. Noting $g_1f_1g_1^{-1} = f_2$, we conclude $\langle g_1, g_2 \rangle \supset \langle f_1, f_2 \rangle = D$. Denote by *a* the length of edges of Δ . We set $\vartheta = \theta(g_1, g_2)$. Since the radius of the circumscribed sphere of Δ is $\sqrt{3}(\sqrt{5} + 1)a/4^2$, we obtain $\cos \vartheta = \sqrt{5}/3$ and so $\vartheta = \arctan(2/\sqrt{5})$.

(ii) The case where fixed vertices of g_1, g_j do not

belong to any common edge, i.e. j = 3, 4, 7, 8, 9, 10. We may assume j = 3 and denote $\vartheta = \theta$ (g_1, g_3).

Since the length of the edge P_1P_3 is $(\sqrt{5} + 1)a/2$, the second cosine formula yields $\vartheta = \arctan 2\sqrt{2}$. In general, two generators of order 3 whose axes cross at the angle $\arctan 2\sqrt{2}$ generate the tetrahedral group *T*. So we conclude $\langle g_1, g_3 \rangle = T$.

(3) $\langle h_i, h_j \rangle$, *i*, *j* = 1,...,15 and *i* ≠ *j*.

Since both generators are of order two, it follows that $\langle h_i, h_j \rangle$ is D_k for each *i*, *j*, $i \neq j$. We divide this case into three parts.

(i) j = 2, 5, 6, 7, 8, 10, 13, 15. In this case we know $\vartheta = \theta (h_1, h_j) = 2\pi / 5$, $\langle h_i, h_j \rangle = D_5$.

(ii) j = 3, 4, 11, 12. In this case we see $\vartheta = \pi/3$ and obtain $\langle h_1, h_j \rangle = D_3$.

(iii) If j = 9, 14, we deduce $\vartheta = \pi/2$ and obtain $\langle h_1, h_j \rangle = D_2$.

(4) $\langle f_i, g_j \rangle$, i = 1,...,6 and i = 1,...,10.

Any g_j (j=1, ..., 10) does not leave the axis of f_1 invariant. Thus, for each j, there exists k $(\neq 1)$ so that $g_j f_1 g_j^{-1} = f_k$. Therefore we conclude $\langle f_1, g_j \rangle \supset \langle f_1, f_k \rangle = D$. To calculate $\vartheta = \theta(f_1, g_j)$, we consider two possibilities:

(i) The case where F₁ contains a fixed vertex of g_j, that is j = 1,...,5.

(ii) The case where F₁ contains no fixed vertices of g_j, i.e. j = 6,...,10.

Figure 3

In both cases, we investigate the regular icosahedron Λ which is the dual polyhedron of Δ . We denote by E the vertex of Λ which corresponds to the center of the face F_1 of Δ . Centers of faces of Λ which correspond to vertices P_1, P_6 of Λ are denoted by B, A respectively (See Figure 3). Let O be the center of the circumscribed sphere of Λ (Δ). By setting $\angle BOA = \vartheta_1$, $\angle EOB = \vartheta_2$, we have $\theta(f_1, g_1) = \vartheta_2$ and $\theta(f_1, g_6) = \vartheta_1 + \vartheta_2$. Let η be the dihedral angle of Λ . Since sin $\eta = 2/3$ and $\eta + \vartheta_1 =$ π , we see $\tan \vartheta_1 = 2/\sqrt{5}$. We denote by *b* the length of edges of Λ . It is well known that the radii of the inscribed and circumscribed spheres of Λ are $(3+\sqrt{5})b/4\sqrt{3}$ and $\sqrt{5}+\sqrt{5}b/2\sqrt{2}$, respectively²). By observing the triangle $\triangle OBE$, we have $\tan \vartheta_2 =$ $3-\sqrt{5}$ and so $\tan(9_1+9_2)=3+\sqrt{5}$. Therefore we obtain $\theta(f_1, g_1) = \arctan(3-\sqrt{5})$ and $\theta(f_1, g_6) =$ $\arctan(3+\sqrt{5})$.

(5) $\langle f_i, h_j \rangle$, i = 1,...,6 and j = 1,...,15.

We classify these groups into three cases.

(i) The case where F_1 contains an invariant edge of h_j , i.e. j = 1, ..., 5.

Since $h_j f_1 h_j^{-1} = f_{1+j}$ for each j, it implies $\langle f_1, h_j \rangle \supset \langle f_1, f_{1+j} \rangle = D$. We set $\theta(f_1, h_1) = 9$. As $29 + \xi = \pi$ with sin $\xi = 2/\sqrt{5}$, $\xi > \pi/2$, we see $\cos 29 = 1/\sqrt{5}$. Therefore we conclude $\theta(f_1, h_1) = \arctan\{(\sqrt{5} - 1)/2\}$.

(ii) The case where F_1 does not contain invariant edges of h_j and one of them contains a vertex of F_1 , that is j = 6, ..., 10. We may assume j = 6. Since $h_6 f_1 h_6^{-1} = f_4^{-1}$, it follows $\langle f_1, h_6 \rangle \supset \langle f_1, f_4 \rangle = D$. We have $2\theta (f_1, h_6) + \theta (f_1, h_4) = \pi$ and $\theta (f_1, h_4) = \arctan 2$ from the case (1). So we obtain $\tan 2\theta (f_1, h_6) = -2$ and hence $\theta (f_1, h_6) = \arctan \{(\sqrt{5} + 1)/2\}$.

(iii) The case where the axes of f_1 and h_j cross at right angles, i.e. j = 11, ..., 15.

In this case we can easily see $\theta(f_1, h_j) = \pi/2$ and hence $\langle f_1, h_j \rangle = D_5$.

(6) $\langle g_i, h_j \rangle$, i = 1,...,10 and j = 1,...,15.

This case is divided into four parts.

(i) The case where P_1 belongs to an invariant edge E_j of h_j , i.e. j = 1, 5, 6.

We deal only with $\langle g_1, h_1 \rangle$. Noting $h_1g_1(F_1) = F_1$ and $h_1g_1(P_1) = P_2$, we have $h_1g_1 = f_1^{-1}$ and hence $f_1 \in \langle g_1, h_1 \rangle$. Since $h_1f_1h_1^{-1} = f_2$, it implies $\langle g_1, h_1 \rangle \supset \langle f_1, f_2 \rangle = D$. We define $\theta(g_1, h_1) = \vartheta$. Denote the length of the edge P_1P_2 by *a*. Since *r*, the length of OP_1 , is the radius of the circumscribed sphere of Δ , $r = \sqrt{3} (\sqrt{5} + 1) a/4$ and hence $\cos \vartheta = \sqrt{3} (\sqrt{5} + 1)/6$. Therefore we obtain $\vartheta = \arctan\{(3 - \sqrt{5})/2\}$.

(ii) The case where P_1 and E_j belong to a common face and P_1 is opposite to E_j in this face, that is j =3, 12, 14. We may suppose j = 3. As $g_1^{-1}h_3(F_5) = F_5$, $g_1^{-1}h_3(P_4) = P_{14}$, it follows $g_1^{-1}h_3 = f_5^{-2}$ and $f_5 \in \langle g_1, h_3 \rangle$. Since $h_3 f_5 h_3^{-1} = f_3$, we know $\langle g_1, h_3 \rangle \supset \langle f_3, f_5 \rangle =$ *D*. Denote $\theta(g_1, h_3) = \vartheta$. Then we can see $2\vartheta +$ $\theta(g_1, g_6) = 2\vartheta + \arctan(2/\sqrt{5}) = \pi$. So we obtain $\vartheta =$ $\arctan\{(3+\sqrt{5})/2\}$.

(iii) The case where P_1 adjoins an invariant edge E_j of h_j i. e. j=2, 4, 7, 10, 11, 15. We set j=2. As $h_2g_1(P_4)=P_4$, $h_2g_1(P_3)=P_{12}$, it implies $h_2g_1=g_4^{-1}$ and $\langle g_1, h_2 \rangle = \langle g_1, g_4 \rangle$. Obviously we have $\theta(g_1, g_4) = \theta(g_1, g_3)$. Therefore, from (2)(ii), we obtain $\langle g_1, h_2 \rangle = \langle g_1, g_4 \rangle = T$, a tetrahedral group, and hence $\theta(g_1, h_2) = \arctan 2\sqrt{2}$.

(iv) The case where P_1 and E_j do not belong to any common face, that is j=8, 9, 13. In this case we can easily obtain $\theta(g_1, h_j) = \pi/2$ and $\langle g_1, h_j \rangle = D_3$.

Thus we complete the proof of the dodecahedral case.

5. Two-generator groups

Let us state our main result.

Theorem 2. Let f, g be non-trivial elements in SO(3). Then the following holds:

- [I] discrete case
- If θ(f, g)=0 and ord(f)<∞, then ⟨f, g⟩ is a finite cyclic group.
- (2) (a) If $\theta(f, g) = \pi/2$ and $ord(f) < \infty$, ord(g) = 2, or
 - (b) If θ (f, g)/π is non-zero rational and ord (f) = ord (g) = 2, then ⟨f, g⟩ is a dihedral group.
- (3) (a) If $\theta(f, g) = \arctan 2\sqrt{2}$ and ord(f) = ord(g)= 3, or
 - (b) $\theta(f, g) = \arctan \sqrt{2}$ and ord(f) = 3, ord(g) = 2, then $\langle f, g \rangle$ is a tetrahedral group.
- (4) (a) If $\theta(f, g) = \pi/2$ and ord(f) = ord(g) = 4, or
 - (b) If $\theta(f, g) = \arctan \sqrt{2}$ and ord(f) = 4, ord(g) = 3, or
 - (c) If $\theta(f, g) = \pi/4$ and ord(f) = 4, ord(g) = 2, or
 - (d) If $\theta(f, g) = \arctan(1/\sqrt{2})$ and ord(f) = 3, ord(g) = 2, then $\langle f, g \rangle$ is a hexahedral group.

- (5) (a) If $\theta(f, g) = \arctan 2$ and ord(f) = ord(g) = 5, or
 - (b) If $\theta(f, g) = \arctan(3-\sqrt{5})$ and ord(f) = 5, ord(g) = 3, or
 - (c) If $\theta(f, g) = \arctan(3+\sqrt{5})$ and ord(f) = 5, ord(g) = 3, or
 - (d) If $\theta(f, g) = \arctan \{(\sqrt{5} 1)/2\}$ and ord(f) = 5, ord(g) = 2, or
 - (e) If $\theta(f, g) = \arctan \{(\sqrt{5}+1)/2\}$ and ord(f) = 5, ord(g) = 2, or
 - (f) If $\theta(f,g) = \arctan(2/\sqrt{5})$ and ord(f) = ord(g) = 3, or
 - (g) If $\theta(f, g) = \arctan\{(3-\sqrt{5})/2\}$ and ord(f) = 3, ord(g) = 2, or
 - (h) If $\theta(f, g) = \arctan \{(3+\sqrt{5})/2\}$ and ord(f) = 3, ord(g) = 2, then $\langle f, g \rangle$ is a dodecahedral group.
- [II] non-discrete case
- (1) If $\theta(f, g) = 0$ and $ord(f) = \infty$, then $\langle f, g \rangle$ belongs to C_I .
- (2) (a) If $\theta(f, g) = \pi/2$ and $ord(f) = \infty$, ord(g) = 2, or

(b) If θ(f, g)/π is irrational and ord(f) = ord(g) = 2, then ⟨f, g⟩ belongs to C_{II}.

(3) In any other than [I](1),...,[II](2), ⟨ f, g ⟩ belongs to C_{III}.

As a consequence of this theorem, we give a sufficient condition for $\langle f, g \rangle$ to be a group in C_{III} . Let f, g be non-trivial elements of SO(3). If $\theta(f, g) \neq 0$, then $\langle f, g \rangle$ cannot only be a cyclic group but also a group in C_I . On the other hand, it is necessary that $\theta(f, g) = \pi/2$ or ord(f) = ord(g) = 2 for $\langle f, g \rangle$ to be a dihedral group in C_{II} . Moreover, orders of elements in each regular polyhedral groups are at most $5^{3,5}$. Hence we obtain

Corollary 2 Let *f*, *g* be non-trivial elements in *SO*(3). If $\theta(f, g)$ is contained in (0, $\pi/2$) and *ord*(*f*) >5, then $\langle f, g \rangle$ belongs to C_{III} .

References

- 1) Beardon A. F : The geometry of discrete groups. Springer-Verlag. 1983.
- Ito K (ed.) : Encyclopedic dictionary of mathematics (Second edition). MIT Press. 1987.
- Ford L. R : Automorphic functions (Second edition). Chelsea. 1951.
- 4) Jørgensen T : A note on subgroups of SL(2,C). Quart. J.

Math. Oxford SerII. 28: 202-209, 1977.

- 5) Sullivan D: Quasiconformal homeomorphism and dynamics II: Structual stability implies hyperbolicity
- for Kleinian groups. Acta Math. 150 : 243-260, 1985.
- 6) Wolf J : Spaces of constant curvature. Mcgraw-Hill. 1967.

SL(2, C)の2元生成、純楕円的部分群

井上 克己

要 旨

SL(2, C)の純楕円的部分群は、離散群としては有限巡回群、2面体群、正4面体群、正 6面体群、正12面体群からなり、非離散部分群は3つのクラス C_I、C_{II}、C_{III}に分類され る。本論分はSL(2, C)のすべての2元生成純楕円的部分群を、その生成元の位数および軸 の交角により完全に分類した。