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　We denote by � 3 the upper-half space and 

regard it as the 3-dimensional hyperbolic space. 

The special linear group �� ( 2, � ) acts in � 3 as a 

group of hyperbolic isometries. For an elliptic 

element ��∈�� ( 2, � ), denote by �� the geodesic 

joining two fixed points of ��on �^�＝∂� 3 and call 

it the axis of ��.  For two elliptic elements ��,���∈ 

�� ( 2,  � ), let 〈 ��, �〉 be the group generated by 

��,���.  It is well known that 〈 ��, �〉 is purely elliptic 

if and only if ��∩��� φ1).  In this paper, we 

classify all two-generator, purely elliptic subgroups 

of �� ( 2, � ).

　By �( �^� 3) we denote the group of  M  o  bius ¨
transformations acting on �^�  3＝� 3∪���. The 

special orthogonal group ���(3) acts in the unit ball 

� 3 in � 3 as a rotation group.  Let 〈 �, �〉 be a purely 

elliptic subgroup of �� ( 2, � ).  Then there exist ��0�

∈ ��∩�� and ��∈ ��( ^�� 3) so that �(� 3)＝� 3, �(��0�)

＝0 and �〈 �, �〉�-1 ⊂��(3).  Since �( ���) is the 

geodesic through the origin joining two fixed 

points of ���-1, �( ���)  is also called the axis of ���
-1.  

Thus, for the study of purely elliptic subgroups, it 

suffices to investigate subgroups of ��(3).  From 

now on, we assume �, ��∈ ��(3).  By ����( ��) we 

denote the order of ��.  For non-trivial elements �, �, 

〈 �, �〉 may be discrete or not . Suppose that 〈 �, �〉 

is discrete. Then the classification theory of 

elementary Kleinian groups yields that 〈 �, �〉 can 

be classified into five kinds3) : a cyclic group, a 

dihedral group, a tetrahedral group, a hexahedral 

group and a dodecahedral group3).  The last three 

kinds are regular polyhedral groups.  To describe 

the non-discrete case, we need some preparations.

　For a subgroup � of ���(3), we define

��＝��∈� 2＝∂�3｜��(�)＝������������∈�－�������.

For � ＝2, 3,...,＋∞, we also define a subset of �� as

���
�
�＝��∈��｜��(�)＝�, ���(�)＝��.

To describe the action of non-discrete groups on 

�2, we regard ���(�3) as the earth.  Denote by �, � 

and � the North Pole, the South Pole and the 

equator, respectively.  A non-discrete group � is 

said to belong to the class I and denoted by �∈���, 

if there exists �∈��(3) so that ����-1＝�(��)＝��, 

��.  A group � belongs to the class II ��� if there 

exists �∈��(3) so that ��(�(��))＝��, ������, �(��)

�����(��2 �) and �(��
��
�)��＝φ for �＞－ 3.  A group � 

belongs to the class III ���� if �� (��
∞ 
��)＝�

 2.  We shall 

show in Theorem 1 that each non-discrete group 

in ��(3) belongs to either ��, ��� or ����.

　For non-trivial elements �, �∈��(3), denote by 

θ( �, �) the crossing angle formed by �� and �� at 

the origin. Note that θ( �, �) is contained in ［0, π/2］. 

In terms of ���( � ), ���(�) and θ( �, �), we classify 

― ２５ ―

��������	
�����
Journal of the Tsuruma Health Science Society  Kanazawa University Vol. ３３（１）

２５～３１ 　 ２００９

�������������	�

����	���������	��		����������

　

Katsumi Inoue

　

��������

　We classify all two-generator, purely elliptic subgroup of �� ( 2,���) by means of 
the order of generators and the crossing angle of their axes.
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M  o  bius transformations,  regular polyhedral groups,  discrete groups,¨
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all two-generator subgroups of ��(3) into eight 

kinds.
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　In the first place, we consider non-discrete 

groups.  As to the classification of subgroups of 

����( 2��), the following result due to Sullivan is 

essential.

　Proposition 1.5)  Let ��be a subgroup of ����( 2, ��). 

Then, after replacing � by a subgroup of index 2 if 

necessary, there are three possibilities:

�　� is discrete.

�　� is solvable and conjugate to a subgroup of 

similarities.

�　�　��is�dense�in�����( 2, ��),�or

　　�　��is conjugate to a dense subgroup of 

����( 2, ��), or

　　�　��is�conjugate�to a dense subgroup of 

���(3).

　Suppose that � is a purely elliptic, non-discrete 

subgroup of ���( 2, ��).  Then the proposition above 

yields that � is conjugate in �( �^� 3) to either (2) a 

solvable subgroup of similarities or one of its �2-

extensions, or (3)(c) a dense subgroup of �� (3). 

Assume that (2) holds.  Taking a suitable conjugation 

in ���( 2, ��), we may suppose that the fixed point 

set for � is �0, ∞�.  Then � is isomorphic to a non-

discrete subgroup of ��(2) and hence belongs to 

��.  Next we suppose that � has a normal subgroup 

�0 of index 2, which is isomorphic to a non-discrete 

subgroup of ��(2).  Then, for �0∈�－�0 , we have a 

coset decomposition �＝�0＋�0�0 .  The element �0 

is of order 2, so is �0 � for each �∈�0 .  Hence ���0�0 

forms a dense subset of a great circle on � 2. 

Therefore we conclude G∈����.  Finally we suppose 

that � satisfies (3)(c). Taking a suitable conjugation, 

we may assume that � is a subgroup of ��(3) and 

acts in �3.  Since � is dense in ��(3), so is �� in �
 2. 

To prove that � belongs to �����, it suffices to show 

��∞
 
��≠φ.  So we prove

　��������  Let � be a non-discrete subgroup of 

��(3). Assume that � does not leave any great 

circle on � 2 invariant.  Then � contains an element 

of infinite order.

　�����.  We prove this lemma by contradiction. 

So we assume that every element in � is of finite 

order.  Since � is non-discrete, ��is an infinite 

group.  On the other hand, Selberg�s lemma shows 

that every finitely generated subgroup of � is 

finite.  As a consequence, we find a finite subset �0 

of � such that the order of the group 〈�0〉｜〈�0〉｜ 

is finite and greater than 60.  It follows that 〈�0〉 is 

conjugate in �( ^� 3) to an elementary Kleinian 

group.  Therefore we deduce that 〈�0〉 is a cyclic, 

a dihedral or a regular polyhedral group.  Note that 

the order of each regular polyhedral group is at 

most 606). Hence the group 〈�0〉 is cyclic or 

dihedral.  In any case, there exists a set � which 

consists of two antipodal points on � 2 so that � is 

left invariant by 〈�0〉. Hence we define a subgroup 

�0 of � by �0 ＝����∈�｜��(�)＝���.  Let � be an 

arbitrary finite subset of �.  As its order ｜ 〈�0∪��〉 ｜

is greater than 60, the group 〈�0∪��〉 is either 

cyclic or dihedral, too.  Since � is left invariant by 

〈�0〉, it is also 〈�0∪��〉 - invariant.  It implies that 

〈�0∪��〉 is a subgroup of �0 and hence �0 

contains every finitely generated subgroup of �.  It 

means �＝�0 and � leaves a great circle on �
 2 

invariant.  It contradicts the assumption and our 

lemma is established.

　We summarize the argument above as the 

following form.

　��������	.  Let � be a non-discrete subgroup 

of �� (3).  Then � belongs to either ���, ��� or �����.

　Let � be a group generated by �, �∈��(3).  

From now on, we add the condition ����( � )＞－ ����(�) 

in the notation �＝〈 �, �〉.  Obviously we have the 

following equivalences :

�＝〈 �, �〉∈�� ⇔θ( �, ��)＝0 and ����( � )＝∞.

�＝〈 �, �〉∈��� ⇔  � θ( �, ��)＝π/2 and ����( � )＝∞, 

����( � )＝2 or 

 � θ( �, ��) /π is irrational and

      ����( � )＝����( � )＝2. 

　As an immediate consequence of Theorem 1, we 

have the following which is closely related to 

Jo/ rgensen�s result4).

　����������	.  Let � be a purely elliptic subgroup 

of ��( 2, � ).  Assume that � does not leave any 

circle in � invariant.  Then � is discrete if and only 

if each cyclic subgroup of � is discrete.

�������	
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　If the assumption of this corollary is not satisfied, 

we can construct a counter example as follows : 

Let � be a group consisting of all rotations of finite 

order which fix 0, ∞.  Of course � is non-discrete, 

but every finitely generated subgroup is discrete.
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　Each discrete subgroup of ���(3) is a cyclic, a 

dihedral or a regular polyhedral group. So, to 

consider a discrete group 〈 �, �〉, we may restrict ��, 

� to elements in one of these groups.  It suffices to 

investigate only regular polyhedral groups.  First, 

we deal with the tetrahedral groups.

  ［Ⅰ］ The tetrahedral group.  A tetrahedral group 

is generated by rotations �1,…,  �4 of order 3, and �1, 

�2, �3 of order 2.  Each �� is a rotation by 2π/3 

about the axis through a vertex and the center of 

the opposite face.  Each �� is a rotation by π about 

the axis joining two midpoints of opposite edges. 

For � �, ������〈 �1, … , �3〉, only two cases can occur 

for 〈 �, �〉 to be a tetrahedral group.

�　θ( �, ��)＝arctan 2√2‾＝70.5287・・・°

and ����( � )＝��� ( ��)＝3.

�　θ( �, ��)＝arctan √2‾＝54.7376・・・°

and ����( � )＝3, ��� ( ��)＝2.

In any other combination, 〈 �, �〉 is a cyclic or a 

dihedral group.

  ［Ⅱ］  The hexahedral group.  A hexahedral group 

is generated by three kinds of rotations : rotations 

�1, �2, �3 of order 4, �1,…, �4 of order 3 and �1,…, �6 of 

order 2.  Each ��, �� and �� is a rotation by π/2, 

2π/3 and π about the axis through two centers of 

opposite faces, two opposite vertices and two 

midpoints of opposite edges, respectively.  We find 

six combinations of � �, ������〈 �1,...,�6〉 for 〈 �, �〉 to 

be a regular polyhedral group.  In �,…, � 〈 �, �〉 is 

a hexahedral group and a tetrahedral group in �,

�.

�　θ( �, ��)＝π/2 and ����( � )＝��� ( ��)＝4.

�　θ( �, ��)＝arctan √2‾＝54.7376・・・°

and ����( � )＝4, ��� ( ��)＝3.

�　θ( �, ��)＝π/4 and ����( � )＝4, ��� ( ��)＝2.

�　θ( �, ��)＝arctan ( 1/√2‾ )＝35.2643・・・°

and ����( � )＝3, ��� ( ��)＝2.

�　θ( �, ��)＝arctan 2√2‾＝70.5287・・・°

and ����( � )＝��� ( ��)＝3.

�　θ( �, ��)＝arctan √2‾＝54.7376・・・°

and ����( � )＝3, ��� ( ��)＝2.

  ［Ⅲ］ The dodecahedral group.  Generators of a 

dodecahedral group are rotations  �1,… , �6 of order 

5,  �1,… , �10 of order 3 and �1,… , �15 of order 2. 

Each ��, �� and �� is a rotation by 2π/5, 2π/3 and π 

about the axis through two centers of opposite 

faces, two opposite vertices and two midpoints of 

opposite　edges, respectively. There are ten 

combinations for 〈 �, �〉 to be a regular polyhedral 

group.  Each group in �,… , � corresponds to a 

dodecahedral group, and a tetrahedral group in �, 

�.

�  θ( �, ��)＝arctan 2＝63.4349・・・°

and ����( � )＝��� ( ��)＝5.

�  θ( �, ��)＝arctan ( 3－√5‾ )＝37.3773・・・°

and ����( � )＝5, ��� ( ��)＝3.

�  θ( �, ��)＝arctan ( 3＋√5‾ )＝79.1876・・・°

and ����( � )＝5, ��� ( ��)＝3.

�  θ( �, ��)＝arctan �(√5‾－1)/2�＝31.7174・・・°

and ����( � )＝5, ��� ( ��)＝2.

�  θ( �, ��)＝arctan �(√5‾＋1)/2�＝58.2825・・・°

and ����( � )＝5, ��� ( ��)＝2.

�  θ( �, ��)＝arctan ( 2/√5‾ )＝41.8103・・・°

and ����( � )＝��� ( ��)＝3.

�  θ( �, ��)＝arctan �( 3－√5‾ )/2�＝20.9051・・・°

and ����( � )＝3, ��� ( ��)＝2.

�  θ( �, ��)＝arctan �( 3＋√5‾ )/2�＝69.0948・・・°

and ����( � )＝3, ��� ( ��)＝2.

�  θ( �, ��)＝arctan 2√2‾＝70.5287・・・°

and ����( � )＝��� ( ��)＝3.

�  θ( �, ��)＝arctan √2‾＝54.7356・・・°

and ����( � )＝3, ��� ( ��)＝2.

In any other case, 〈 �, �〉 is a cyclic or a dihedral 

group. 

　By removing duplications, we have seventeen 

combinations for 〈 �, �〉 to be a discrete group.  In 

any other combination, 〈 �, �〉 is not discrete.
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　Cases of the tetrahedral and the hexahedral 

groups are quite simple, so we discuss only the 

dodecahedral groups. Let �1 ,… , �20 and �1 ,… , �12 

be vertices and faces of the regular dodecahedron 

Δ, respectively ( See Figures 1 and 2). For each 

face ���, � ＝1 ,… , 6 of Δ, there exists the opposite 

― ２７ ―
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face �� ,��＝7 , … ,12.  Denote by �� the rotation by 

2π/5 about the line through the centers of ��� and 

���.  This rotation �� is oriented so as to interchange 

vertices of �� clockwise.  Similarly, for each ���, �＝

1 ,…, 10 we can find the opposite vertex ��,��＝11 ,…, 

20.  Let �� be the rotation by 2π/3 about the line 

through �� and ��.  So as to interchange three 

vertices around �� clockwise, �� is oriented. Let �1 

be the rotation by π about the line through the 

midpoints of edges �1�2 and �20 �19 . We denote it 

by �1 : (1,2)－(20,19).  In this way, we can enumerate 

all rotations of order 2 as the following : �2 : (2,3)－

(19,18), �3  : (3,4)－(18,17), �4 : (4,5)－(17,16), �5 : (5,1)－

(16,20), �6 : (1,6)－(20,11), �7 : (2,8)－(19,13), �8 : (3,10)－

(18,15), �9 : (4,12)－(17,7), �10 : (5,14)－(16,9), �11 : (6,7)－

(11,12), �12 : (7,8)－(12,13), �13 : (8,9)－(13,14),  �14 : (9,10)

－(14,15), �15 : (10,11)－(15,6).

　Now we denote by ���, � and � the dihedral 

group of degree �, the tetrahedral and the 

dodecahedral group, respectively.  The group � is 

generated by S＝� �1,…, �6, �1,…, �10, �1,…, �15�.  We 

consider all two-generator subgroups of �.  Since 

the order of each element in � is prime, it suffices 

to consider only groups that are generated by two 

elements in �.  We may exclude cyclic subgroups 

of �.

　Subgroups of � generated by two elements in � 

are classified into six types as the followings : � 

〈 ��, ��〉,  � 〈 ��, ��〉  � 〈��, ��〉 � 〈 ��, ��〉  � 〈 ��, ��〉 

and � 〈���, ��〉.  In any case, it suffices to show 

when �＝1

�  〈 ��, ��〉, �, �＝1,…,6 and �≠�.

We may assume �＝2.  As �1 �2 (���)＝��  (�＝1, 20) 

and  �1 �2 transposes �5 , �2 and �6 cyclically, we 

deduce  �1 �2＝�1 .  Similarly,  �2 �1 (���)�＝���(�＝2, 19) 

and  �2 �1  transposes �1 , �3  and �8  cyclically, so we 

have  �2 �1＝�2 .  In this way, we obtain ��∈〈 �1,  �2〉

for �＝1,… ,10. On the other hand �1 �2 interchanges 

�1 and �2, so we have �1 �2＝�1. Therefore we 

conclude ��∈〈 �1,  �2〉 for �＝1,…,15 and hence 〈 �1,  �2〉

＝�.  Let � be the dihedral angle of Δ and set �＝

θ( �1, �2 ).  Since sin�＝2/√5‾ ,�＞π/22） and �＋�

＝π, we have �＝arctan 2.

�  〈 ��,���〉 �, �,＝1,…,10 and �≠��.

We discuss these groups by classifying them into 

two cases.

��   The case where fixed vertices of �1 and �� 

belong to a common edge, i.e. �＝2, 5, 6.  Without 

loss of generalities, we may set �＝2.  As �2 �1( �1
 )＝

�1 and �2 �1( �1
 )＝�3 , it follows �2 �1＝��1

3 and ��1∈

〈 �1,��2 〉.　Noting �1 �1�1
-1＝�2 , we conclude 〈 �1,��2 〉

�〈 �1,��2 〉＝�.  Denote by � the length of edges of 

Δ.  We set �＝θ( �1, �2 ).  Since the radius of the 

circumscribed sphere of Δ is √3‾ (√5‾ ＋1) �/42), we 

obtain cos �＝√5‾ /3 and so �＝arctan ( 2/√5‾ ). 

��   The case where fixed vertices of �1, �� do not 
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belong to any common edge, i. e.  �＝3, 4, 7, 8, 9, 10. 

We may assume  �＝3 and denote �＝θ( �1, �3
 ).

Since the length of the edge �1�3 is (√5‾ ＋1) �/2, 

the second cosine formula yields �＝arctan 2 √2‾ . 

In general, two generators of order 3 whose axes 

cross at the angle arctan 2 √2‾ generate the tetrahedral 

group �.  So we conclude 〈 �1,��3
 〉＝�.

�  〈 ��,���
 〉, �, �＝1,…,15 and �≠�.

Since both generators are of order two, it follows 

that 〈 ��,���
 〉 is �� for each �, �, �≠�.  We divide this 

case into three parts.

��   �＝2, 5, 6, 7, 8, 10, 13, 15.  In this case we know �

＝θ( �1, ��
 )＝2π/5, 〈 ��,���

 〉＝�5.

��   �＝3, 4, 11, 12.  In this case we see �＝π/3 and 

obtain 〈 �1,���
 〉＝�3.

��   If  �＝9, 14,  we deduce �＝π/2 and obtain 〈 �1,�

��
 〉＝�2.

�  〈 ��,���
 〉, �＝1,…,6  and �＝1,…,10.

Any ���( �＝1, … ,10) does not leave the axis of  �1 

invariant. Thus, for each �, there exists ��(≠1) so 

that ����1 ��
-1＝���. Therefore we conclude 〈 �1,��� 〉� 

〈 �1,���〉＝�.  To calculate �＝�θ( �1, ��
 ), we consider 

two possibilities :

��   The case where �1 contains a fixed vertex of 

��, that is �＝1,…,5.

��   The case where �1 contains no fixed vertices 

of ��, i.e. �＝6,…,10.

In both cases, we investigate the regular icosahedron 

Λ which is the dual polyhedron of Δ. We denote 

by � the vertex of Λ which corresponds to the 

center of the face �1 of Δ.  Centers of faces of Λ 

which correspond to vertices �1, �6 of Λ are 

denoted by �, � respectively ( See Figure 3 ).  Let 

� be the center of the circumscribed sphere of Λ

(Δ).  By setting ∠���＝�1, ∠���＝�2, we have 

θ( �1, �1
 )＝�2 and θ( �1, �6

 )＝�1＋�2 .  Let � be the 

dihedral angle of Λ.  Since sin���＝2/3 and ���＋�1＝

π, we see tan�1＝2/√5‾  .  We denote by � the 

length of edges of Λ.  It is well known that the radii 

of the inscribed and circumscribed spheres of Λ 

are (3+√5‾ )�/4√3‾ and √5+√5  �/2√2‾ , respectively2). 

By observing the triangle Δ���, we have tan�2＝

3－√5‾  and so tan (�1+�2 )＝3＋√5‾ . Therefore we 

obtain θ( �1, �1
 )＝arctan ( 3－√5‾ ) and θ(  �1, �6

 )＝

arctan ( 3+√5‾ ).

�  〈 ��,���
 〉, �＝1,…,6  and �＝1,…,15.

We classify these groups into three cases.

��   The case where �1 contains an invariant edge 

of ��, i.e.  �＝1,…,5.

Since ��  �1��
-1＝�1+� for each �, it implies 〈  �1,���

 
 〉�

〈 �1,��1+� 〉＝�.  We set θ( �1, �1
 )＝�.  As 2 �+���＝ π 

with sin�＝2/√5‾ , �＞π/2, we see cos 2 �＝1/√5‾ . 

Therefore we conclude θ( �1, �1
 )＝arctan�(√5‾ －1)/2�.

��   The case where �1 does not contain invariant 

edges of �� and one of them contains a vertex of �1, 

that  is  �＝6,… ,10.  We  may  assume  �＝6.  Since  

�6  �1�6
-1＝�4

-1, it follows 〈  �1,��6
 
 〉�〈 �1,��4 〉＝�. We 

have 2θ( �1, �6
 )+θ( �1, �4

 )＝ π and θ( �1, �4
 )＝arctan 2 

from the case (1).  So we obtain tan 2θ( �1, �6
 )＝ －2 

and hence θ( �1, �6
 )＝arctan�( √5‾ +1)/2�.

��   The case where the axes of �1 and �� cross at 

right angles, i.e.  �＝11,…,15. 

In this case we can easily see θ( �1, ��
 )＝π/2 and 

hence 〈  �1,��� 〉＝�5 .

�  〈 ��,��� 〉, �＝1,…,10 and  �＝1,…,15.

This case is divided into four parts.

��   The case where �1 belongs to an invariant 

edge �� of ��, i.e.  �＝1, 5, 6.

We deal only with 〈 �1, �1 〉.  Noting �1�1(�1)＝�1 

and �1�1(�1)＝�2 , we have �1�1＝�1
-1 and hence �1∈

〈 �1, �1 〉.  Since  �1  �1�1
-1＝�2 ,  it  implies 〈 �1, �1 〉���

〈 �1,��2 〉＝�.  We define θ( �1, �1
 )＝�.  Denote the 

length of the edge �1�2 by �. Since �, the length of 
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��1, is the radius of the circumscribed sphere of Δ , 

�＝√3‾ (√5‾ +1) �/4 and hence cos �＝√3‾ (√5‾ +1) /6. 

Therefore we obtain �＝arctan�( 3－ √5‾ )/2�.

��   The case where �1 and �� belong to a common 

face and �1 is opposite to �� in this face, that is �＝

3, 12, 14.  We may suppose �＝3.  As �1
-1
�3(�5)＝�5 ,  

�1
-1
�3(�4)＝�14 , it follows �1

-1
�3＝�5

2
  and  �5∈〈 �1, �3 〉. 

Since �3  �5�3
-1＝�3 , we know 〈 �1, �3 〉�〈 �3 ,��5 〉＝

�.  Denote θ( �1 , �3
 )＝�.  Then we can see 2�+

θ( �1, �6
 )＝2�+arctan ( 2/√5‾ )＝ π.  So we obtain �＝

arctan�( 3+√5‾)/2�.

��   The case where �1 adjoins an invariant edge 

��  of����  i. e.  �＝2, 4, 7, 10, 11, 15.  We set  �＝2.  As 

�2 �1(�4)＝�4, �2 �1(�3)＝�12 , it implies �2 �1＝�4
-1 

and 〈 �1, �2 〉＝〈 �1, �4 〉.  Obviously we have θ( �1, �4
 )

＝ θ( �1, �3
 ).  Therefore,  from  (2) (ii),  we  obtain  

〈 �1,��2 〉＝〈 �1,��4 〉＝�, a tetrahedral group, and 

hence θ( �1, �2
 )＝arctan 2√2‾ .

��   The case where �1 and �� do not belong to 

any common face, that is  �＝8, 9, 13.  In this case 

we can easily obtain θ( �1, ��
 )＝π/2 and 〈 �1,��� 〉＝

�3.

　Thus we complete the proof of the dodecahedral 

case.

�������	
�
�����	�����

　Let us state our main result.

　��������	
� Let �, � be non-trivial elements in 

��(3).  Then the following holds :

［Ⅰ］ discrete case

�  If θ( �, � )＝0 and�����( ��)＜ ∞, then 〈  �,�� 〉 is a 

finite cyclic group.

�  �  If θ( �, � )＝ π/2 and ����( ��)＜ ∞, ����( ��)＝2, 

or

　  �  If θ( �, � )/ π is non-zero rational and ����( ��)

＝����( ��)＝2, then 〈  �,�� 〉 is a dihedral group.

�  �  If θ( �, � )＝ arctan 2√2‾  and ����( ��)＝����( ��)

＝3, or

　  �  θ( �, � )＝ arctan √2‾  and ����( ��)＝3, ����( ��)

＝2, then 〈  �,�� 〉 is a tetrahedral group.

�  �  If θ( �, � )＝π/2 and ����( ��)＝����( ��)＝4, or

　  �  If θ( �, � )＝ arctan √2‾ and ����( ��)＝4, ����( ��)

＝3, or

　  �  If θ( �, � )＝π/4 and ����( ��)＝4, ����( ��)＝2, or

　  �  If θ( �, � )＝arctan (1/√2‾ ) and ����( ��)＝3,

　　　����( ��)＝2, then 〈  �,�� 〉 is a hexahedral group.

�  �  If θ( �, � )＝arctan 2 and ����( ��)＝����( ��)＝5, 

or

　  �  If θ( �, � )＝arctan ( 3－√5‾ ) and ����( ��)＝5, 

����( ��)＝3, or

　  �  If θ( �, � )＝arctan ( 3+√5‾ ) and ����( ��)＝5, 

����( ��)＝3, or

　  �  If θ( �, � )＝arctan �( √5‾－1)/2� and ����( ��)＝

5, ����( ��)＝2, or

　  �  If θ( �, � )＝arctan �( √5‾+1)/2� and ����( ��)＝

5, ����( ��)＝2, or

　  �  If θ( �, � )＝arctan ( 2/√5‾) and ����( ��)＝

����( ��)＝3, or

　  �  If θ( �, � )＝arctan �( 3－√5‾ )/2� and ����( ��)＝

3, ����( ��)＝2, or

　  �  If θ( �, � )＝arctan �( 3+√5‾ )/2� and ����( ��)＝

3, ����( ��)＝2, then 〈  �,�� 〉 is a dodecahedral 

group.

［Ⅱ］ non-discrete case

�  If θ( �, � )＝0 and�����( ��)＝ ∞, then 〈  �,�� 〉 

belongs to �� .

�  �  If θ( �, � )＝ π/2 and ����( ��)＝ ∞, ����( ��)＝2, 

or

　  �  If θ( �, � )/π is irrational and ����( ��)＝

����( ��)＝2, then 〈  �,�� 〉 belongs to ����.

�  In any other than [I](1),…,[II](2), 〈  �,�� 〉 belongs 

to �����.

　As a consequence of this theorem, we give a 

sufficient condition for 〈 �,�� 〉 to be a group in ����. 

Let  �,�� be non-trivial elements of ��(3).  If θ( �, � )

≠0, then 〈 �,�� 〉 cannot only be a cyclic group but 

also a group in ���.  On the other hand, it is 

necessary that θ( �, � )＝ π/2 or ����( ��)＝����( ��)＝2 

for 〈 �,�� 〉 to be a dihedral group in ����.  Moreover, 

orders of elements in each regular polyhedral 

groups are at most 53),5).  Hence we obtain

　����������	　Let  �,��  be non-trivial elements in 

��(3).  If θ( �, � ) is contained in (0,  π/2) and ����( ��)

＞5, then 〈 �,�� 〉 belongs to �����.
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井上　克己
　

要　　　旨

　���( �����) の純楕円的部分群は、離散群としては有限巡回群、2 面体群、正 4 面体群、正
 6 面体群、正12面体群からなり、非離散部分群は 3 つのクラス ��、����、���� に分類され
る。本論分は���( �����) のすべての 2 元生成純楕円的部分群を、その生成元の位数および軸
の交角により完全に分類した。


