Two－generator elliptic subgroups of SL（2，C）

メタデータ	言語：eng
	出版者：
	公開日：2017－10－04
	キーワード（Ja）：
	キーワード（En）：
	作成者： メールアドレス： 所属：
URL	http：／／hdl．handle．net／2297／19537

Two-generator elliptic subgroups of $S L(2, C)$

Katsumi Inoue

Abstract

We classify all two-generator, purely elliptic subgroup of $S L(2, C)$ by means of the order of generators and the crossing angle of their axes.

Key words

Möbius transformations, regular polyhedral groups, discrete groups, purely elliptic two-generator subgroup of $S L(2, C)$,

1 Introduction

We denote by H^{3} the upper-half space and regard it as the 3 -dimensional hyperbolic space. The special linear group $S L(2, C)$ acts in H^{3} as a group of hyperbolic isometries. For an elliptic element $f \in S L(2, C)$, denote by A_{f} the geodesic joining two fixed points of f on $\hat{C}=\partial H^{3}$ and call it the axis of f. For two elliptic elements $f, g \in$ $S L(2, C)$, let $\langle f, g\rangle$ be the group generated by f, g. It is well known that $\langle f, g\rangle$ is purely elliptic if and only if $A_{f} \cap A_{g} \neq \phi^{1)}$. In this paper, we classify all two-generator, purely elliptic subgroups of $S L(2, C)$.

By $M\left(\hat{R}^{3}\right)$ we denote the group of Möbius transformations acting on $\hat{R}^{3}=R^{3} \cup\{\infty\}$. The special orthogonal group $S O$ (3) acts in the unit ball B^{3} in R^{3} as a rotation group. Let $\langle f, g\rangle$ be a purely elliptic subgroup of $S L(2, C)$. Then there exist x_{0} $\in A_{f} \cap A_{g}$ and $h \in M\left(\hat{R}^{3}\right)$ so that $h\left(H^{3}\right)=B^{3}, h\left(x_{0}\right)$ $=0$ and $h\langle f, g\rangle h^{-1} \subset S O(3)$. Since $h\left(A_{f}\right)$ is the geodesic through the origin joining two fixed points of $h f h^{-1}, h\left(A_{f}\right)$ is also called the axis of $h f h^{-1}$. Thus, for the study of purely elliptic subgroups, it suffices to investigate subgroups of $S O(3)$. From now on, we assume $f, g \in S O(3)$. By $\operatorname{ord}(f)$ we denote the order of f. For non-trivial elements f, g, $\langle f, g\rangle$ may be discrete or not. Suppose that $\langle f, g\rangle$ is discrete. Then the classification theory of
elementary Kleinian groups yields that $\langle f, g\rangle$ can be classified into five kinds ${ }^{3}$: a cyclic group, a dihedral group, a tetrahedral group, a hexahedral group and a dodecahedral group ${ }^{3}$. The last three kinds are regular polyhedral groups. To describe the non-discrete case, we need some preparations.

For a subgroup G of $S O$ (3), we define

$$
F_{G}=\left\{\xi \in S^{2}=\partial B^{3} \mid g(\xi)=\xi \text { for some } g \in G-\{i d\}\right\} .
$$

For $k=2,3, \ldots,+\infty$, we also define a subset of F_{G} as

$$
F_{G}^{k}=\left\{\xi \in F_{G} \mid g(\xi)=\xi, \operatorname{ord}(g)=k\right\} .
$$

To describe the action of non-discrete groups on S^{2}, we regard $\operatorname{cl}\left(B^{3}\right)$ as the earth. Denote by N, S and E the North Pole, the South Pole and the equator, respectively. A non-discrete group G is said to belong to the class I and denoted by $G \in C_{I}$, if there exists $h \in S O(3)$ so that $F_{h G h^{-1}}=h\left(F_{G}\right)=\{N$, $S\}$. A group G belongs to the class II $C_{I I}$ if there exists $h \in S O(3)$ so that $c l\left(h\left(F_{G}\right)\right)=\{N, S\} \cup E, h\left(F_{G}\right)$ $\cap E \subset f\left(F_{G}^{2}\right)$ and $h\left(F_{G}^{k}\right) \cap E=\phi$ for $k \geq 3$. A group G belongs to the class III $C_{I I I}$ if $\operatorname{cl}\left(F_{G}^{\infty}\right)=S^{2}$. We shall show in Theorem 1 that each non-discrete group in $S O(3)$ belongs to either $C_{I}, C_{I I}$ or $C_{I I I}$.

For non-trivial elements $f, g \in S O(3)$, denote by $\theta(f, g)$ the crossing angle formed by A_{f} and A_{g} at the origin. Note that $\theta(f, g)$ is contained in $[0, \pi / 2]$. In terms of $\operatorname{ord}(f), \operatorname{ord}(g)$ and $\theta(f, g)$, we classify

[^0]all two-generator subgroups of $S O$ (3) into eight kinds.

2 Non-discrete groups

In the first place, we consider non-discrete groups. As to the classification of subgroups of $P S L(2 C)$, the following result due to Sullivan is essential.

Proposition $1 .{ }^{5)}$ Let G be a subgroup of $\operatorname{PSL}(2, C)$. Then, after replacing G by a subgroup of index 2 if necessary, there are three possibilities:
(1) G is discrete.
(2) G is solvable and conjugate to a subgroup of similarities.
(3) (a) G is dense in $\operatorname{PSL}(2, C)$, or
(b) G is conjugate to a dense subgroup of $\operatorname{PSL}(2, R)$, or
(c) G is conjugate to a dense subgroup of $S O$ (3).

Suppose that G is a purely elliptic, non-discrete subgroup of $S L(2, C)$. Then the proposition above yields that G is conjugate in $M\left(\hat{R}^{3}\right)$ to either (2) a solvable subgroup of similarities or one of its $Z_{2^{-}}$ extensions, or (3)(c) a dense subgroup of $S O$ (3). Assume that (2) holds. Taking a suitable conjugation in $S L(2, C)$, we may suppose that the fixed point set for G is $\{0, \infty\}$. Then G is isomorphic to a nondiscrete subgroup of $S O(2)$ and hence belongs to C_{I}. Next we suppose that G has a normal subgroup G_{0} of index 2 , which is isomorphic to a non-discrete subgroup of $S O(2)$. Then, for $f_{0} \in G-G_{0}$, we have a coset decomposition $G=G_{0}+f_{0} G_{0}$. The element f_{0} is of order 2 , so is $f_{0} g$ for each $g \in G_{0}$. Hence $F_{f_{0} G_{0}}$ forms a dense subset of a great circle on S^{2}. Therefore we conclude $\mathrm{G} \in C_{I I}$. Finally we suppose that G satisfies (3)(c). Taking a suitable conjugation, we may assume that G is a subgroup of $S O(3)$ and acts in B^{3}. Since G is dense in $S O(3)$, so is F_{G} in S^{2}. To prove that G belongs to $C_{I I I}$, it suffices to show $F_{G}^{\infty} \neq \phi$. So we prove

Lemma 1. Let G be a non-discrete subgroup of $S O(3)$. Assume that G does not leave any great circle on S^{2} invariant. Then G contains an element of infinite order.

Proof. We prove this lemma by contradiction.

So we assume that every element in G is of finite order. Since G is non-discrete, G is an infinite group. On the other hand, Selberg's lemma shows that every finitely generated subgroup of G is finite. As a consequence, we find a finite subset X_{0} of G such that the order of the group $\left\langle X_{0}\right\rangle\left|\left\langle X_{0}\right\rangle\right|$ is finite and greater than 60 . It follows that $\left\langle X_{0}\right\rangle$ is conjugate in $M\left(\hat{R}^{3}\right)$ to an elementary Kleinian group. Therefore we deduce that $\left\langle X_{0}\right\rangle$ is a cyclic, a dihedral or a regular polyhedral group. Note that the order of each regular polyhedral group is at most 60^{6}. Hence the group $\left\langle X_{0}\right\rangle$ is cyclic or dihedral. In any case, there exists a set V which consists of two antipodal points on S^{2} so that V is left invariant by $\left\langle X_{0}\right\rangle$. Hence we define a subgroup G_{0} of G by $G_{0}=\{g \in G \mid g(V)=V\}$. Let Y be an arbitrary finite subset of G. As its order $\left|\left\langle X_{0} \cup Y\right\rangle\right|$ is greater than 60 , the group $\left\langle X_{0} \cup Y\right\rangle$ is either cyclic or dihedral, too. Since V is left invariant by $\left\langle X_{0}\right\rangle$, it is also $\left\langle X_{0} \cup Y\right\rangle$-invariant. It implies that $\left\langle X_{0} \cup Y\right\rangle$ is a subgroup of G_{0} and hence G_{0} contains every finitely generated subgroup of G. It means $G=G_{0}$ and G leaves a great circle on S^{2} invariant. It contradicts the assumption and our lemma is established.
We summarize the argument above as the following form.
Theorem 1. Let G be a non-discrete subgroup of $S O$ (3). Then G belongs to either $C_{I}, C_{I I}$ or $C_{I I I}$.
Let G be a group generated by $f, g \in S O(3)$. From now on, we add the condition $\operatorname{ord}(f) \geq \operatorname{ord}(g)$ in the notation $G=\langle f, g\rangle$. Obviously we have the following equivalences:

$$
\begin{aligned}
& G=\langle f, g\rangle \in C_{I} \Leftrightarrow \theta(f, g)=0 \text { and } \operatorname{ord}(f)=\infty . \\
& G=\langle f, g\rangle \in C_{I I} \Leftrightarrow(1) \theta(f, g)=\pi / 2 \text { and } \operatorname{ord}(f)=\infty, \\
& \operatorname{ord}(g)=2 \text { or } \\
& \text { (2) } \theta(f, g) / \pi \text { is irrational and } \\
& \operatorname{ord}(f)=\operatorname{ord}(g)=2 .
\end{aligned}
$$

As an immediate consequence of Theorem 1, we have the following which is closely related to Jørgensen's result ${ }^{4}$.

Corollary 1. Let G be a purely elliptic subgroup of $S L(2, C)$. Assume that G does not leave any circle in C invariant. Then G is discrete if and only if each cyclic subgroup of G is discrete.

If the assumption of this corollary is not satisfied， we can construct a counter example as follows： Let G be a group consisting of all rotations of finite order which fix $0, \infty$ ．Of course G is non－discrete， but every finitely generated subgroup is discrete．

3 Regular polyhedral groups

Each discrete subgroup of $S O$（3）is a cyclic，a dihedral or a regular polyhedral group．So，to consider a discrete group $\langle f, g\rangle$ ，we may restrict f ， g to elements in one of these groups．It suffices to investigate only regular polyhedral groups．First， we deal with the tetrahedral groups．
［I］The tetrahedral group．A tetrahedral group is generated by rotations f_{1}, \ldots, f_{4} of order 3 ，and g_{1} ， g_{2}, g_{3} of order 2 ．Each f_{i} is a rotation by $2 \pi / 3$ about the axis through a vertex and the center of the opposite face．Each g_{i} is a rotation by π about the axis joining two midpoints of opposite edges． For $\{f, g\} \subset\left\langle f_{1}, \ldots, g_{3}\right\rangle$ ，only two cases can occur for $\langle f, g\rangle$ to be a tetrahedral group．
（1）$\theta(f, g)=\arctan 2 \sqrt{2}=70.5287 \cdots{ }^{\circ}$
and $\operatorname{ord}(f)=\operatorname{ord}(g)=3$ ．
（2）$\theta(f, g)=\arctan \sqrt{2}=54.7376 \ldots$ 。
and $\operatorname{ord}(f)=3, \operatorname{ord}(g)=2$ ．
In any other combination，$\langle f, g\rangle$ is a cyclic or a dihedral group．
［ II ］The hexahedral group．A hexahedral group is generated by three kinds of rotations：rotations f_{1}, f_{2}, f_{3} of order $4, g_{1}, \ldots, g_{4}$ of order 3 and h_{1}, \ldots, h_{6} of order 2．Each f_{i}, g_{i} and h_{i} is a rotation by $\pi / 2$ ， $2 \pi / 3$ and π about the axis through two centers of opposite faces，two opposite vertices and two midpoints of opposite edges，respectively．We find six combinations of $\{f, g\} \subset\left\langle f_{1}, \ldots, h_{6}\right\rangle$ for $\langle f, g\rangle$ to be a regular polyhedral group．In（1），．．．，（4）$\langle f, g\rangle$ is a hexahedral group and a tetrahedral group in（5）， （6）．
（1）$\quad \theta(f, g)=\pi / 2$ and $\operatorname{ord}(f)=\operatorname{ord}(g)=4$ ．
（2）$\theta(f, g)=\arctan \sqrt{2}=54.7376 \ldots$ 。 and $\operatorname{ord}(f)=4, \operatorname{ord}(g)=3$ ．
（3）$\quad \theta(f, g)=\pi / 4$ and $\operatorname{ord}(f)=4, \operatorname{ord}(g)=2$ ．
（4）$\theta(f, g)=\arctan (1 / \sqrt{2})=35.2643 \cdots{ }^{\circ}$ and $\operatorname{ord}(f)=3, \operatorname{ord}(g)=2$ ．
（5）$\quad \theta(f, g)=\arctan 2 \sqrt{2}=70.5287 \cdots{ }^{\circ}$ and $\operatorname{ord}(f)=\operatorname{ord}(g)=3$ ．
（6）$\theta(f, g)=\arctan \sqrt{2}=54.7376 \cdots{ }^{\circ}$
and $\operatorname{ord}(f)=3, \operatorname{ord}(g)=2$ ．
［III］The dodecahedral group．Generators of a dodecahedral group are rotations f_{1}, \ldots, f_{6} of order $5, g_{1}, \ldots, g_{10}$ of order 3 and h_{1}, \ldots, h_{15} of order 2. Each f_{i}, g_{i} and h_{i} is a rotation by $2 \pi / 5,2 \pi / 3$ and π about the axis through two centers of opposite faces，two opposite vertices and two midpoints of opposite edges，respectively．There are ten combinations for $\langle f, g\rangle$ to be a regular polyhedral group．Each group in（1），．．．，（8）corresponds to a dodecahedral group，and a tetrahedral group in（9）， （10）．
（1）$\theta(f, g)=\arctan 2=63.4349 \ldots{ }^{\circ}$ and $\operatorname{ord}(f)=\operatorname{ord}(g)=5$ ．
（2）$\theta(f, g)=\arctan (3-\sqrt{5})=37.3773 \cdots{ }^{\circ}$ and $\operatorname{ord}(f)=5, \operatorname{ord}(g)=3$ ．
（3）$\theta(f, g)=\arctan (3+\sqrt{5})=79.1876 \cdots{ }^{\circ}$ and $\operatorname{ord}(f)=5, \operatorname{ord}(g)=3$ ．
（4）$\theta(f, g)=\arctan \{(\sqrt{5}-1) / 2\}=31.7174 \cdots \circ$ and $\operatorname{ord}(f)=5, \operatorname{ord}(g)=2$ ．
（5）$\theta(f, g)=\arctan \{(\sqrt{5}+1) / 2\}=58.2825 \ldots \circ$ and $\operatorname{ord}(f)=5, \operatorname{ord}(g)=2$ ．
（6）$\theta(f, g)=\arctan (2 / \sqrt{5})=41.8103 \cdots{ }^{\circ}$ and $\operatorname{ord}(f)=\operatorname{ord}(g)=3$ ．
（7）$\theta(f, g)=\arctan \{(3-\sqrt{5}) / 2\}=20.9051 \cdots{ }^{\circ}$ and $\operatorname{ord}(f)=3, \operatorname{ord}(g)=2$ ．
（8）$\theta(f, g)=\arctan \{(3+\sqrt{5}) / 2\}=69.0948 \ldots$ 。 and $\operatorname{ord}(f)=3, \operatorname{ord}(g)=2$ ．
（9）$\theta(f, g)=\arctan 2 \sqrt{2}=70.5287 \cdots{ }^{\circ}$ and $\operatorname{ord}(f)=\operatorname{ord}(g)=3$ ．
（10）$\theta(f, g)=\arctan \sqrt{2}=54.7356 \cdots \circ$ and $\operatorname{ord}(f)=3, \operatorname{ord}(g)=2$ ．
In any other case，$\langle f, g\rangle$ is a cyclic or a dihedral group．
By removing duplications，we have seventeen combinations for $\langle f, g\rangle$ to be a discrete group．In any other combination，$\langle f, g\rangle$ is not discrete．

4 The dodecahedral group

Cases of the tetrahedral and the hexahedral groups are quite simple，so we discuss only the dodecahedral groups．Let P_{1}, \ldots, P_{20} and F_{1}, \ldots, F_{12} be vertices and faces of the regular dodecahedron Δ ，respectively（See Figures 1 and 2）．For each face $F_{k}, k=1, \ldots, 6$ of Δ ，there exists the opposite

Figure 1
face $F_{l}, l=7, \ldots, 12$. Denote by f_{k} the rotation by $2 \pi / 5$ about the line through the centers of F_{k} and F_{l}. This rotation f_{k} is oriented so as to interchange vertices of F_{k} clockwise. Similarly, for each $P_{k}, k=$ $1, \ldots, 10$ we can find the opposite vertex $P_{l}, l=11, \ldots$, 20 . Let g_{k} be the rotation by $2 \pi / 3$ about the line through P_{k} and P_{l}. So as to interchange three vertices around P_{k} clockwise, g_{k} is oriented. Let h_{1} be the rotation by π about the line through the midpoints of edges $P_{1} P_{2}$ and $P_{20} P_{19}$. We denote it by $h_{1}:(1,2)-(20,19)$. In this way, we can enumerate all rotations of order 2 as the following: $h_{2}:(2,3)-$ $(19,18), h_{3}:(3,4)-(18,17), h_{4}:(4,5)-(17,16), h_{5}:(5,1)-$ $(16,20), h_{6}:(1,6)-(20,11), h_{7}:(2,8)-(19,13), h_{8}:(3,10)-$ $(18,15), h_{9}:(4,12)-(17,7), h_{10}:(5,14)-(16,9), h_{11}:(6,7)-$ $(11,12), h_{12}:(7,8)-(12,13), h_{13}:(8,9)-(13,14), h_{14}:(9,10)$ $-(14,15), h_{15}:(10,11)-(15,6)$.

Now we denote by D_{k}, T and D the dihedral group of degree k, the tetrahedral and the dodecahedral group, respectively. The group D is generated by $\mathrm{S}=\left\{f_{1}, \ldots, f_{6}, g_{1}, \ldots, g_{10}, h_{1}, \ldots, h_{15}\right\}$. We consider all two-generator subgroups of D. Since the order of each element in S is prime, it suffices to consider only groups that are generated by two elements in S. We may exclude cyclic subgroups of D.

Subgroups of D generated by two elements in S are classified into six types as the followings: (1)

Figure 2
$\left\langle f_{i}, f_{j}\right\rangle$, (2) $\left\langle g_{i}, g_{j}\right\rangle(3)\left\langle h_{i}, h_{j}\right\rangle(4)\left\langle f_{i}, g_{j}\right\rangle$ (5) $\left\langle f_{i}, h_{j}\right\rangle$ and (6) $\left\langle g_{i}, h_{j}\right\rangle$. In any case, it suffices to show when $i=1$
(1) $\left\langle f_{i}, f_{j}\right\rangle, i, j=1, \ldots, 6$ and $i \neq j$.

We may assume $j=2$. As $f_{1} f_{2}\left(P_{k}\right)=P_{k}(k=1,20)$ and $f_{1} f_{2}$ transposes P_{5}, P_{2} and P_{6} cyclically, we deduce $f_{1} f_{2}=g_{1}$. Similarly, $f_{2} f_{1}\left(P_{k}\right)=P_{k}(k=2,19)$ and $f_{2} f_{1}$ transposes P_{1}, P_{3} and P_{8} cyclically, so we have $f_{2} f_{1}=g_{2}$. In this way, we obtain $g_{k} \in\left\langle f_{1}, f_{2}\right\rangle$ for $k=1, \ldots, 10$. On the other hand $f_{1} g_{2}$ interchanges P_{1} and P_{2}, so we have $f_{1} g_{2}=h_{1}$. Therefore we conclude $h_{k} \in\left\langle f_{1}, f_{2}\right\rangle$ for $k=1, \ldots, 15$ and hence $\left\langle f_{1,} f_{2}\right\rangle$ $=D$. Let ξ be the dihedral angle of Δ and set $\vartheta=$ $\theta\left(f_{1}, f_{2}\right)$. Since $\sin \xi=2 / \sqrt{5}, \xi>\pi / 2^{2)}$ and $\xi+\vartheta$ $=\pi$, we have $\vartheta=\arctan 2$.
(2) $\left\langle g_{i}, g_{j}\right\rangle i, j,=1, \ldots, 10$ and $i \neq j$.

We discuss these groups by classifying them into two cases.
(i) The case where fixed vertices of g_{1} and g_{j} belong to a common edge, i.e. $j=2,5,6$. Without loss of generalities, we may set $j=2$. As $g_{2} g_{1}\left(F_{1}\right)=$ F_{1} and $g_{2} g_{1}\left(P_{1}\right)=P_{3}$, it follows $g_{2} g_{1}=f_{1}^{3}$ and $f_{1} \in$ $\left\langle g_{1}, g_{2}\right\rangle$. Noting $g_{1} f_{1} g_{1}{ }^{-1}=f_{2}$, we conclude $\left\langle g_{1}, g_{2}\right\rangle$ $\supset\left\langle f_{1}, f_{2}\right\rangle=D$. Denote by a the length of edges of Δ. We set $\vartheta=\theta\left(g_{1}, g_{2}\right)$. Since the radius of the circumscribed sphere of Δ is $\sqrt{3}(\sqrt{5}+1) a / 4^{2}$, we obtain $\cos \vartheta=\sqrt{5} / 3$ and so $\vartheta=\arctan (2 / \sqrt{5})$.
(ii) The case where fixed vertices of g_{1}, g_{j} do not
belong to any common edge, i.e. $j=3,4,7,8,9,10$. We may assume $j=3$ and denote $\vartheta=\theta\left(g_{1}, g_{3}\right)$.
Since the length of the edge $P_{1} P_{3}$ is $(\sqrt{5}+1) a / 2$, the second cosine formula yields $\vartheta=\arctan 2 \sqrt{2}$. In general, two generators of order 3 whose axes cross at the angle $\arctan 2 \sqrt{2}$ generate the tetrahedral group T. So we conclude $\left\langle g_{1}, g_{3}\right\rangle=T$.
(3) $\left\langle h_{i}, h_{j}\right\rangle, i, j=1, \ldots, 15$ and $i \neq j$.

Since both generators are of order two, it follows that $\left\langle h_{i}, h_{j}\right\rangle$ is D_{k} for each $i, j, i \neq j$. We divide this case into three parts.
(i) $j=2,5,6,7,8,10,13,15$. In this case we know ϑ $=\theta\left(h_{1}, h_{j}\right)=2 \pi / 5,\left\langle h_{i}, h_{j}\right\rangle=D_{5}$.
(ii) $j=3,4,11,12$. In this case we see $\vartheta=\pi / 3$ and obtain $\left\langle h_{1}, h_{j}\right\rangle=D_{3}$.
(iii) If $j=9,14$, we deduce $\vartheta=\pi / 2$ and obtain $\left\langle h_{1}\right.$, $\left.h_{j}\right\rangle=D_{2}$.
(4) $\left\langle f_{i}, g_{j}\right\rangle, i=1, \ldots, 6$ and $i=1, \ldots, 10$.

Any $g_{j}(j=1, \ldots, 10)$ does not leave the axis of f_{1} invariant. Thus, for each j, there exists $k(\neq 1)$ so that $g_{j} f_{1} g_{j}^{-1}=f_{k}$. Therefore we conclude $\left\langle f_{1}, g_{j}\right\rangle \supset$ $\left\langle f_{1}, f_{k}\right\rangle=D$. To calculate $\vartheta=\theta\left(f_{1}, g_{j}\right)$, we consider two possibilities:
(i) The case where F_{1} contains a fixed vertex of g_{j}, that is $j=1, \ldots, 5$.
(ii) The case where F_{1} contains no fixed vertices of g_{j}, i.e. $j=6, \ldots, 10$.

Figure 3

In both cases, we investigate the regular icosahedron Λ which is the dual polyhedron of Δ. We denote by E the vertex of Λ which corresponds to the center of the face F_{1} of Δ. Centers of faces of Λ which correspond to vertices P_{1}, P_{6} of Λ are denoted by B, A respectively (See Figure 3). Let O be the center of the circumscribed sphere of Λ (Δ). By setting $\angle B O A=\vartheta_{1}, \angle E O B=\vartheta_{2}$, we have $\theta\left(f_{1}, g_{1}\right)=\vartheta_{2}$ and $\theta\left(f_{1}, g_{6}\right)=\vartheta_{1}+\vartheta_{2}$. Let η be the dihedral angle of Λ. Since $\sin \eta=2 / 3$ and $\eta+\vartheta_{1}=$ π, we see $\tan \vartheta_{1}=2 / \sqrt{5}$. We denote by b the length of edges of Λ. It is well known that the radii of the inscribed and circumscribed spheres of Λ are $(3+\sqrt{5}) b / 4 \sqrt{3}$ and $\sqrt{5+\sqrt{5}} b / 2 \sqrt{2}$, respectively ${ }^{2}$. By observing the triangle $\triangle O B E$, we have $\tan \vartheta_{2}=$ $3-\sqrt{5}$ and so $\tan \left(\vartheta_{1}+\vartheta_{2}\right)=3+\sqrt{5}$. Therefore we obtain $\theta\left(f_{1}, g_{1}\right)=\arctan (3-\sqrt{5})$ and $\theta\left(f_{1}, g_{6}\right)=$ $\arctan (3+\sqrt{5})$.
(5) $\left\langle f_{i}, h_{j}\right\rangle, i=1, \ldots, 6$ and $j=1, \ldots, 15$.

We classify these groups into three cases.
(i) The case where F_{1} contains an invariant edge of h_{j}, i.e. $j=1, \ldots, 5$.
Since $h_{j} f_{1} h_{j}^{-1}=f_{1+j}$ for each j, it implies $\left\langle f_{1}, h_{j}\right\rangle \supset$ $\left\langle f_{1}, f_{1+j}\right\rangle=D$. We set $\theta\left(f_{1}, h_{1}\right)=\vartheta$. As $2 \vartheta+\xi=\pi$ with $\sin \xi=2 / \sqrt{5}, \xi>\pi / 2$, we see $\cos 2 \vartheta=1 / \sqrt{5}$. Therefore we conclude $\theta\left(f_{1}, h_{1}\right)=\arctan \{(\sqrt{5}-1) / 2\}$. (ii) The case where F_{1} does not contain invariant edges of h_{j} and one of them contains a vertex of F_{1}, that is $j=6, \ldots, 10$. We may assume $j=6$. Since $h_{6} f_{1} h_{6}{ }^{-1}=f_{4}^{-1}$, it follows $\left\langle f_{1}, h_{6}\right\rangle \supset\left\langle f_{1}, f_{4}\right\rangle=D$. We have $2 \theta\left(f_{1}, h_{6}\right)+\theta\left(f_{1}, h_{4}\right)=\pi$ and $\theta\left(f_{1}, h_{4}\right)=\arctan 2$ from the case (1). So we obtain $\tan 2 \theta\left(f_{1}, h_{6}\right)=-2$ and hence $\theta\left(f_{1}, h_{6}\right)=\arctan \{(\sqrt{5}+1) / 2\}$.
(iii) The case where the axes of f_{1} and h_{j} cross at right angles, i.e. $j=11, \ldots, 15$.
In this case we can easily see $\theta\left(f_{1}, h_{j}\right)=\pi / 2$ and hence $\left\langle f_{1}, h_{j}\right\rangle=D_{5}$.
(6) $\left\langle g_{i}, h_{j}\right\rangle, i=1, \ldots, 10$ and $j=1, \ldots, 15$.

This case is divided into four parts.
(i) The case where P_{1} belongs to an invariant edge E_{j} of h_{j}, i.e. $j=1,5,6$.
We deal only with $\left\langle g_{1}, h_{1}\right\rangle$. Noting $h_{1} g_{1}\left(F_{1}\right)=F_{1}$ and $h_{1} g_{1}\left(P_{1}\right)=P_{2}$, we have $h_{1} g_{1}=f_{1}^{-1}$ and hence $f_{1} \in$ $\left\langle g_{1}, h_{1}\right\rangle$. Since $h_{1} f_{1} h_{1}{ }^{-1}=f_{2}$, it implies $\left\langle g_{1}, h_{1}\right\rangle \supset$ $\left\langle f_{1}, f_{2}\right\rangle=D$. We define $\theta\left(g_{1}, h_{1}\right)=\vartheta$. Denote the length of the edge $P_{1} P_{2}$ by a. Since r, the length of
$O P_{1}$, is the radius of the circumscribed sphere of Δ, $r=\sqrt{3}(\sqrt{5}+1) a / 4$ and hence $\cos \vartheta=\sqrt{3}(\sqrt{5}+1) / 6$. Therefore we obtain $\vartheta=\arctan \{(3-\sqrt{5}) / 2\}$.
(ii) The case where P_{1} and E_{j} belong to a common face and P_{1} is opposite to E_{j} in this face, that is $j=$ $3,12,14$. We may suppose $j=3$. As $g_{1}^{-1} h_{3}\left(F_{5}\right)=F_{5}$, $g_{1}^{-1} h_{3}\left(P_{4}\right)=P_{14}$, it follows $g_{1}^{-1} h_{3}=f_{5}^{2}$ and $f_{5} \in\left\langle g_{1}, h_{3}\right\rangle$. Since $h_{3} f_{5} h_{3}{ }^{-1}=f_{3}$, we know $\left\langle g_{1}, h_{3}\right\rangle \supset\left\langle f_{3}, f_{5}\right\rangle=$ D. Denote $\theta\left(g_{1}, h_{3}\right)=\vartheta$. Then we can see $2 \vartheta+$ $\theta\left(g_{1}, g_{6}\right)=2 \vartheta+\arctan (2 / \sqrt{5})=\pi$. So we obtain $\vartheta=$ $\arctan \{(3+\sqrt{5}) / 2\}$.
(iii) The case where P_{1} adjoins an invariant edge E_{j} of h_{j} i. e. $j=2,4,7,10,11,15$. We set $j=2$. As $h_{2} g_{1}\left(P_{4}\right)=P_{4}, \quad h_{2} g_{1}\left(P_{3}\right)=P_{12}$, it implies $h_{2} g_{1}=g_{4}{ }^{-1}$ and $\left\langle g_{1}, h_{2}\right\rangle=\left\langle g_{1}, g_{4}\right\rangle$. Obviously we have $\theta\left(g_{1}, g_{4}\right)$ $=\theta\left(g_{1}, g_{3}\right)$. Therefore, from (2)(ii), we obtain $\left\langle g_{1}, h_{2}\right\rangle=\left\langle g_{1}, g_{4}\right\rangle=T$, a tetrahedral group, and hence $\theta\left(g_{1}, h_{2}\right)=\arctan 2 \sqrt{2}$.
(iv) The case where P_{1} and E_{j} do not belong to any common face, that is $j=8,9,13$. In this case we can easily obtain $\theta\left(g_{1}, h_{j}\right)=\pi / 2$ and $\left\langle g_{1}, h_{j}\right\rangle=$ D_{3}.

Thus we complete the proof of the dodecahedral case.

5. Two-generator groups

Let us state our main result.
Theorem 2. Let f, g be non-trivial elements in $S O(3)$. Then the following holds:

[I] discrete case

(1) If $\theta(f, g)=0$ and $\operatorname{ord}(f)<\infty$, then $\langle f, g\rangle$ is a finite cyclic group.
(2) (a) If $\theta(f, g)=\pi / 2$ and $\operatorname{ord}(f)<\infty, \operatorname{ord}(g)=2$, or
(b) If $\theta(f, g) / \pi$ is non-zero rational and $\operatorname{ord}(f)$ $=\operatorname{ord}(g)=2$, then $\langle f, g\rangle$ is a dihedral group.
(3) (a) If $\theta(f, g)=\arctan 2 \sqrt{2}$ and $\operatorname{ord}(f)=\operatorname{ord}(g)$ $=3$, or
(b) $\theta(f, g)=\arctan \sqrt{2}$ and $\operatorname{ord}(f)=3$, ord (g) $=2$, then $\langle f, g\rangle$ is a tetrahedral group.
(4) (a) If $\theta(f, g)=\pi / 2$ and $\operatorname{ord}(f)=\operatorname{ord}(g)=4$, or
(b) If $\theta(f, g)=\arctan \sqrt{2}$ and $\operatorname{ord}(f)=4, \operatorname{ord}(g)$ $=3$, or
(c) If $\theta(f, g)=\pi / 4$ and $\operatorname{ord}(f)=4, \operatorname{ord}(g)=2$, or
(d) If $\theta(f, g)=\arctan (1 / \sqrt{2})$ and $\operatorname{ord}(f)=3$, $\operatorname{ord}(g)=2$, then $\langle f, g\rangle$ is a hexahedral group.
(5) (a) If $\theta(f, g)=\arctan 2$ and $\operatorname{ord}(f)=\operatorname{ord}(g)=5$, or
(b) If $\theta(f, g)=\arctan (3-\sqrt{5})$ and $\operatorname{ord}(f)=5$, $\operatorname{ord}(g)=3$, or
(c) If $\theta(f, g)=\arctan (3+\sqrt{5})$ and $\operatorname{ord}(f)=5$, $\operatorname{ord}(g)=3$, or
(d) If $\theta(f, g)=\arctan \{(\sqrt{5}-1) / 2\}$ and $\operatorname{ord}(f)=$ $5, \operatorname{ord}(g)=2$, or
(e) If $\theta(f, g)=\arctan \{(\sqrt{5}+1) / 2\}$ and $\operatorname{ord}(f)=$ $5, \operatorname{ord}(g)=2$, or
(f) If $\theta(f, g)=\arctan (2 / \sqrt{5})$ and $\operatorname{ord}(f)=$ ord $(g)=3$, or
(g) If $\theta(f, g)=\arctan \{(3-\sqrt{5}) / 2\}$ and $\operatorname{ord}(f)=$ 3 , $\operatorname{ord}(g)=2$, or
(h) If $\theta(f, g)=\arctan \{(3+\sqrt{5}) / 2\}$ and $\operatorname{ord}(f)=$ 3 , $\operatorname{ord}(g)=2$, then $\langle f, g\rangle$ is a dodecahedral group.
[II] non-discrete case
(1) If $\theta(f, g)=0$ and $\operatorname{ord}(f)=\infty$, then $\langle f, g\rangle$ belongs to C_{I}.
(2) (a) If $\theta(f, g)=\pi / 2$ and $\operatorname{ord}(f)=\infty, \operatorname{ord}(g)=2$, or
(b) If $\theta(f, g) / \pi$ is irrational and $\operatorname{ord}(f)=$ $\operatorname{ord}(g)=2$, then $\langle f, g\rangle$ belongs to $C_{I I}$.
(3) In any other than $[\mathrm{II}(1), \ldots,[\mathrm{II}](2),\langle f, g\rangle$ belongs to $C_{I I I}$.
As a consequence of this theorem, we give a sufficient condition for $\langle f, g\rangle$ to be a group in $C_{I I I}$. Let f, g be non-trivial elements of $S O(3)$. If $\theta(f, g)$ $\neq 0$, then $\langle f, g\rangle$ cannot only be a cyclic group but also a group in C_{I}. On the other hand, it is necessary that $\theta(f, g)=\pi / 2$ or $\operatorname{ord}(f)=\operatorname{ord}(g)=2$ for $\langle f, g\rangle$ to be a dihedral group in $C_{I I}$. Moreover, orders of elements in each regular polyhedral groups are at most $5^{3,5)}$. Hence we obtain

Corollary 2 Let f, g be non-trivial elements in $S O(3)$. If $\theta(f, g)$ is contained in $(0, \pi / 2)$ and $\operatorname{ord}(f)$ >5, then $\langle f, g\rangle$ belongs to $C_{I I I}$.

References

1) Beardon A. F : The geometry of discrete groups. Springer-Verlag. 1983.
2) Ito K (ed.) : Encyclopedic dictionary of mathematics (Second edition). MIT Press. 1987.
3) Ford L. R : Automorphic functions (Second edition). Chelsea. 1951.
4) Jørgensen T:A note on subgroups of SL(2,C). Quart. J.

Math．Oxford SerII．28：202－209， 1977.
5）Sullivan D：Quasiconformal homeomorphism and dynamics II：Structual stability implies hyperbolicity
for Kleinian groups．Acta Math． 150 ：243－260， 1985.
6）Wolf J ：Spaces of constant curvature．Mcgraw－Hill． 1967.

$S L(2, C)$ の 2 元生成，純楕円的部分群

井上 克己

要 旨

$S L(2, C)$ の純楕円的部分群は，離散群としては有限巡回群，2面体群，正4面体群，正 6 面体群，正12面体群からなり，非離散部分群は 3 つのクラス $C_{I}, ~ C_{I I}, ~ C_{I I I}$ に分類され る。本論分はSL $(2, C)$ のすべての 2 元生成純楕円的部分群を，その生成元の位数および軸 の交角により完全に分類した。

[^0]: Division of Health Sciences, Kanazawa University Graduate School of Medical Sciences

