Skeletal Muscle Ventricles in Pulmonary Circulation and Myoventriculoplasty of the Right Ventricle

メタデータ	言語: jpn
	出版者:
	公開日: 2017-10-04
	キーワード (Ja):
	キーワード (En):
	作成者:
	メールアドレス:
	所属:
URL	http://hdl.handle.net/2297/8090

骨格筋を利用した右心補助循環に関する基礎的研究

金沢大学医学部外科学第一講座(主任:岩 香教授)

渡 邊 剛

(平成1年1月25日受付)

重症心不全など従来外科手術適応外とされてきた疾患に対して、骨格筋を用いての循環補助の可 能性を検討することを目的として基礎的実験をおこなった.方法はA群(n=6)として広背筋にてロール を作成し、その内腔に弁付き流入流出路をもつバルーンを挿入し骨格筋ポンプとし、循環模擬回路とし てポンプ機能を検討した.骨格筋ポンプは刺激頻度の上昇,前負荷の増加,後負荷の減少により拍出量 およびポンプ内圧の上昇が認められた. B,群 (n=25)では、準備手術として右広背筋に心室デマンド型 ペースメーカーを移植し6-12ケ月の慢性電気刺激を行った後、二期手術として同筋によりA群と同様 な骨格筋ポンプを作成した.流入路は人工血管を上下大静脈または右心房に接続,流出路は肺動脈主幹 部に接続し骨格筋ポンプを駆動させた、骨格筋ポンプによる右心バイパス機能を部分右心バイパスと、 完全右心バイパスの各条件下で検討した. 骨格筋ポンプ非駆動時, 大動脈圧 (aortic pressure, AoP), 大 動脈血流量 (aortic blood flow AoF), 左房圧 (left atrial pressure, LAP). 肺動脈圧 (pulmonary artery pressure, PAP) は部分右心バイパスと,完全右心バイパスの各条件設定の下で有意に低下し,骨 格筋ポンプ拡張末期圧 (pouch end-diastolic pressure, pouch EDP) は有意に上昇したが、骨格筋ポンプ 駆動によりそれらの有意な上昇と pouch EDP の有意な低下を認め、骨格筋ポンプの循環補助効果が認 められ、また完全右心バイパス時においても循環維持が十分可能であった、ポンプ駆動時の補助流量と 中心静脈圧との関係をみると、有意な相関が認められ、骨格筋ポンプの流入圧に比例し拍出量が増加す ることが示された. C群 (n=9) では体外循環を用いて, 有茎骨格筋による右室自由壁再建を行い骨格筋 刺激による右心機能補助効果を検討した.置換骨格筋非駆動時に骨格筋による新生右心室自由壁の奇異 性運動を認めたが,骨格筋駆動により同期収縮と AoP, LAP, PAP の有意な上昇を認めた.B群では慢 性電気刺激を行った骨格筋の組織学的検討及び、組織血流量測定を比較検討した. 6-12週の長期の電 気刺激を行った右広背筋は、刺激を行っていない対側筋に比べ組織血流量測定では平均63%の有意な増 加を認めた.慢性刺激筋の組織学的検討では,対照に比較し myosin adenosine triphosphatase (myosin ATPase) 染色にて I 型筋線維の著明な増加が認められ, II 型筋線維 (fast twitch muscle) から 疲労抵抗性の I 型筋線維 (slow-twitch muscle) への転換が証明された.以上, 長期の電気刺激を行った 骨格筋による右心系の循環補助の可能性を実験的に証明した.

Key words skeletal muscle, electrical conditioning, biomechanical cardiac assist, cardiomyoplasty, right ventricular bypass

心室筋が広範囲に傷害された高度な心不全を伴う虚 血性心疾患,心不全を来した重症心筋症及び先天性心 室低形成症例は,従来手術適応外とされ,心臓移植お よび人工心臓移植以外救命する方法がないとされてき た.しかし心臓移植も脳死,拒絶反応,ドナーの獲得 等の様々な問題¹⁰⁹があり,その対象は限られているの が現状である.また人工心臓,補助心臓も現状では血 栓,溶血,非生理的循環動態のため³¹長期間の使用に

Abbreviations: Ao, aorta; AoF, aortic blood flow; AoP, aortic pressure; ATPase, adenosine triphosphatase; ECG, electrocardiogram; EDP, end-diastolic pressure; HR, heart rate; IVC, inferior vena cave; LAP, left atrial pressure; LV, left ventricle; MG, myograft; PA, pulmonary artery; PAP, pulmonary artery pressure; RA, right atrium;

Fig. 2a. Schema of transection of special latex pouch equiped with inflow and outflow valved conduit. The coil is attached to the center of the pouch to keep it inflated. は問題が残されている.そこで今回著者は,生体自己 組織である骨格筋に着目し,電気刺激を加えた骨格筋 の収縮力を利用した循環補助効果について基礎的研究 を行った.

ì

3

対象および方法

I. 使用動物

雑種成犬40頭 (体重 9 -20kg) を用いた.

II.実験方法及び実験群

 A群:循環模擬回路 (以下 Mock circulation と 略)を用いた骨格筋ポンプ機能の測定

6頭を用いて、骨格筋の電気刺激によって得られる 収縮力を利用した骨格筋のポンプ機能を評価する目的 で行った.塩酸ケタミン(5mg/kg)を筋注後、右腋下 切開を行い左側臥位とし腋窩から背部への切開にて胸 背神経および動静脈を露出し、右広背筋を椎体、肋骨 付着部より遊離し筋弁とした.肋間動脈よりの中枢側

Fig. 2b. Photograph of latex pouch. Priming volume is 120ml. The latissimus dorsi muscle is wrapped around the pouch.

RV, right ventricle; SMV, skeletal muscle ventricle; SMVA, skeletal muscle ventricular assistance; SVC, superior vena cave; Thoracodorsal A. V. N., Thoracodorsal artery, vein, nerve; VVI, ventricular pacing, ventricular sensing, and inhibition (mode of pacemaker)

の側副血行路以外は血紮切離した.遊離しておいた右 広背筋を, 弁付き流入および流出路を持った Latex 製 pouch に1-1.5周に巻き固定した後, ペースメー カー用電極を胸背神経, 神経筋接合部, 広背筋末端に 装着した. pouch の流出流入路には Mock circulation 回路を装着した (図1).

1) 弁付き Latex 製 pouch の作成

pouch 本体は流入流出路を備える頭部, latex 製の 可動部および底部よりなり, pouch 中心部にスプリン グを装着した.容量は約 120ml で,流入路径 18mm, 流出路径 15mm, 弁にはそれぞれ径 20mm のプラス チック製の1葉弁を用いた. pouch 中心部に配したス プリングは, 骨格筋ポンプ形状を常に拡張形態にする 目的で装着した (図2a,b).

2) Mock circulation の作成

流出路側には高さの調節できる adjustable outflow column を接続し,流出路側は同様に adjustable inflow column と reserver を接続し,回路は 37° Cへスパンダー液を満たした(図1).

3) 電気刺激装置

3

電気生理学検査用 multi-programable stimulater BC-02A (フクダ電子, 東京)を用いた.

以上の実験モデルについて,骨格筋ポンプの前負 荷,後負荷,電気刺激頻度,刺激様式を変化させ,骨 格筋ポンプ機能を評価した.また断層エコー検査にて その収縮様式を検討した.

2. B群:慢性刺激を行った骨格筋を用いた骨格筋 ポンプによる右心バイパス

Fig. 3. Method of long-term electrical stimulation of latissimus dorsi muscle.

1) B₁群:上下大静脈-肺動脈間バイパス群

11頭を対象とし,慢性の電気刺激にて抗疲労性を獲 得した骨格筋を用いた骨格筋ポンプの右心系に対する 補助循環効果を検討する目的で行った.

i . 初回手術 (図 3)

塩酸ケタミン (5mg/kg) を筋注後,右腋下切開を行 い広背筋を遊離し筋遠位の側副血行路を切離した後, 心室デマンド型ペースメーカー Model 668 (SIEM-ENS 社,西独), Model 221,225 (Pacesetter 社,米 国) 及び Model 5966,5985 (Medtronic 社,米国) を 埋め込み右胸背神経に電極を縫着し,ジェネレーター 本体を広背筋外側に装着した.刺激様式は初期刺激頻 度70回/min,刺激持続時間0.5msec で電気刺激を 行った.十分な筋の収縮を確認し閉創した.術後は感 染予防にセファゾリン0.5g を4日間筋注した.刺激 頻度は広背筋の収縮状態を観察しつつ,6-12ヶ月の 間に100回/min まで増加させた.

ii . 二期手術

塩酸ケタミン (5mg/kg) を筋注, ペントバルビター ル (30mg/kg) 静注にて導入後, 気管内挿管下人工呼 吸器 (Harvard 社, 米国) により調節呼吸を行った. 麻 酔の維持にはペントバルビタール (5mg/kg/hr) 静注 にて行い筋弛緩剤は投与しなかった.

Thoracodorsal A.V.N.

Latissimus dorsi muscle

Pouch

Fig. 4. 'Skeletal muscle ventricle in pulmonary circulation. The inflow and outflow conduit of the skeletal muscle ventricle is connected to main pulmonary artery and both vena cave. These skeletal muscle ventricles are stimulated at a frequency of 20Hz for 200 msec at fixed rate of 90/min. A, artery; V, vein; N, nerve.

a. 骨格筋弁の作成

左側臥位とし右腋窩から背部への斜切開にて胸背神 経および胸背動静脈を露出し,右広背筋の椎体,肋骨 付着部より遊離し筋弁とした.肋間動脈よりの中枢側 の側副血行路は可及的に温存した.

b. 右心バイパスの作成 (図4)

第5肋間にて両側開胸し,奇静脈を血紮し,全身へ パリン化 (3mg/kg) した後,肺動脈本幹にサイドクラ ンプをかけ,直径 14mm の woven dacron 人工血管 を端側吻合し,また上下大静脈にもそれぞれ,Y字型 人工血管 (18×9mm)の両脚を端側吻合した.その両 端を,A群で用いた弁付き流入および流出路を持った 自作の Latex 製 pouch に接続した.部分および完全 右心バイパスは上下それぞれ大静脈基部に回したテー プの緊縛により行うこととした.

c. 骨格筋ポンプの作成, 駆動

あらかじめ遊離しておいた右広背筋を Latex 製

pouch に1-1.5周に巻き固定した後,ペースメー カー用電極を胸背神経神経筋移行部,広背筋遠位側に 装着し双極刺激を行った.電気刺激にはA群と同様マ ルチプログラマブル,スティミュレーター (BC-02A) を用い,電圧 5V,刺激持続時間0.5msec の4連発刺 激を刺激間隔 50msec,基本刺激周期 650msec で与え 骨格筋ポンプを駆動させた.

d. 骨格筋ポンプ駆動条件

骨格筋ポンプによる右心バイパス機能を検討する目 的で,対照(I),上大静脈バイパス(II),下大静脈 バイパス(III)および完全右心バイパス(IV)の各4 条件下での,骨格筋ポンプ駆動開始,中止試験(以下 on-off studyと略)を行い血行動態の変化を観察した (図5)

2. B₂群:右心房-肺動脈バイパス群

14頭を対象とした.脱血側を1本とし,より簡潔な 回路を作成し骨格筋ポンプの補助循環効果を評価する

Fig. 5. The operative procedures to produce right ventricular bypass (RVB) and to provide circulatory support. The hemodynamic changes with or without skeletal muscele ventricle assistance are evaluated in four conditions. Without caval occulusion (condition I), superior vena caval partial RVB (condition II), inferior vena caval partial RVB (condition III), and total RVB (condition IV).

ことを目的とした.

i . 初回手術

B,群と同様の手法を用いて右広背筋の慢性電気刺激を行った.

ii. 二期手術

麻酔方法及び骨格筋弁,骨格筋ポンプ作成は B₁群 と同様に行った.

a. 右心バイパスの作成 (図 6)

第5肋間にて両側開胸し、全身へパリン化 (3mg/kg) した後、肺動脈本幹に直径 14mm の woven dacron 人工血管を端側吻合し、また右心房にサイド クランプをかけ、直径 18mm の woven dacron 人工 血管を端側吻合した.その両端を、弁付き流入および 流出路を持った前出の Latex 製 pouch に接続した. 完全右心バイパスは、上大静脈より挿入したバルーン カテーテルを三尖弁口で膨らませることにより行った. 骨格筋ポンプの電気刺激は B,群と同様の条件で 行った.

b. 骨格筋ポンプの駆動条件

対照(条件 I),および完全右心バイパス群(条件 II)の各条件下での,骨格筋ポンプの駆動開始,中止 の on-off study を行い血行動態の変化を観察した.

3. 慢性長期電気刺激を行った骨格筋の重量,組織 血流測定,および組織学的検討

B₁B₂群,計10頭を対象に慢性電気刺激後の骨格筋の 抗疲労特性の微小循環,組織学的側面を検討する目的 で行った.

Latissimus dorsi muscle

Pouch

Fig. 6. Skeletal muscle ventricle in pulmonary circulation. The inflow and outflow conduit of the skeletal muscle ventricle is connected to main pulmonary artery and right atrium. 1) 組織血流測定

右広背筋刺激開始時を対照とし,広背筋の6分画より血流を測定を行った.6-12ケ月後同筋を遊離し非 刺激時の組織血流を測定し比較検討した.

2) 組織学的検討

i. 筋切片の処理:血行動態の実験後,慢性電気刺激(12ヶ月)を行った右広背筋および対側の刺激を 行っていない左広背筋の1部を全層採取し,生理食塩 水にて洗浄し速やかに少量の包埋剤 CRYO-M-BED (Bright 社,米国)中に没し液体窒素にて凍結した.

ii. 染色:骨格筋線維の型別判定を目的とし myosin adenosine triphosphatase (以下 myosin ATPase)染色を酸性染色 (pH 4.3) およびアルカリ性 染色 (pH 10.7) で行った.

4. 有茎広背筋による右室自由壁再建 (図7a,b)

9頭を対象とし有茎広背筋弁を用いて右室の自由壁 再建を行い,電気刺激を加えた骨格筋弁収縮による右 心補助効果を検討した.

1) 有茎骨格筋弁の作成

B₁群と同様に右広背筋を遊離し,さらに支配血管で ある胸背動静脈以外の鎖骨下動静脈分枝を総て結紮切 離した.胸郭上窩を剝離し右広背筋を心臓付近へ誘導 した.うち5例では十分な距離が得られなかったため 遊離骨格筋弁として血管神経を切除し血行再建を行っ た.

2) 右室自由壁再建

B₁群と同様に麻酔を行い、両側開胸にて心臓を露出 した.大動脈基部、上下大静脈にカニューレーション 後,小児用人工心肺回路を用いて,軽度低体温完全体 外循環を施行した、人工肺は気泡型を用い、充塡液に は乳酸加リンゲルとマンニトール 1000ml と他犬から 採取した新鮮血 500ml を用いた. 大動脈遮断し心筋保 護液注入により心停止を得た後、右室自由壁を右室流 出路から横隔膜面に至るまで全層切除した. 広背筋弁 は新たな右室自由壁を形成するようにトリミングした 後,3-0 プロリン糸にて切除部に連続縫合した.筋弁 は筋線維の走行が右心室の長軸に並行になるように, またその大きさの決定は、切除した右心室に長軸、短 軸それぞれ 1cm を加えた大きさとした. 三尖弁の乳 頭筋は温存し三尖弁閉鎖不全を防止しえた.大動脈遮 断解除後人工心肺から離脱した.遊離した有茎骨格筋 弁は動静脈をそれぞれ大動脈、上大動脈に端側吻合し た. 骨格筋弁には双極の刺激電極を装着し, また右心 房にセンシング用電極を装着した、骨格筋の刺激は、 自己心拍2にたいし1回の割合とし、刺激方法は B₁ 群と同様の連続4発刺激とした。

渡

邊

Fig. 7a. Myoventriculoplasty of right ventricular free wall. A and B, Right ventricular free wall is resected under the cardiopulmonary bypass. C, The right ventricular free wall is reconstructed with the full-thickness myogrft. Myoventriculograft is synchronously stimulated. Thoracodorsal A. V., thoracodorsal artey and vein.

Fig. 7b. Photograph of myoventriculoplasty. MG, myoventriculograft; LV, left vantricle; AVN, artery, vein and nerve.

Ⅲ. 測定項目

本実験において用いた測定項目は,心拍数 (heart rate, HR),大動脈圧 (aortic pressure, AoP),大動脈 血流量 (aortic blood flow, AoF),肺動脈圧 (pulmonary artery pressure, PAP),左房圧 (left atrial pressure, LAP),骨格筋ポンプ内圧 (pouch end-diastolic pressure pouch EDP),中心静脈圧 (central venous pressure, CVP)である.なお大動脈血流量は 電磁血流計 MFV-1200 (日本光電,東京)を大動脈基部 に装着し測定し、C群ではストレインゲージ TE-601T(日本光電,東京)を骨格筋に装着した.各圧は16 チャンネル,ポリグラフ(フクダ電子,東京)を用い記 録測定した.

B₁B₂組織血流測定に用いた装置は電解式水素クリ アランス組織血流計 RBF-2 (バイオメディカルサイエ ンス社, 金沢) およびデータ解析装置 BDA-1-2(バイオ メディカルサイエンス社, 金沢) を用い測定した. IV. 統計学的検定法

4

Stimulation per systole

2 3

Fig. 8. Pouch pressure waveformes in response to increasing number of pulse in each pulse train (stimulation per systole), showing wave summation at 2 to 4 pulses. "Stimulation pattern" showed the waveforms of skeletal muscle ventricle stimulation.

Fig. 9. Isovolumetric pouch pressure against prelood for skeletal muscle ventricles during electrical stimulation (four pulses in each trains). Values are mean \pm S.D. (n=6).

Fig. 10. Flow produced versus preload and afterload of skeletal muscle ventricles during electrical stimulation (four pulses in each trains and 90 trains/min.). Values are mean ±S.D. (n=6). *, p<0.01 by student t-test. ●.....●, afteload are 30 mmHg; ■.....■, afterload are 40 mmHg.

測定結果は平均値±標準偏差値で表示し、B群については各条件設定及び骨格筋ポンプ駆動による血行動態の測定値の平均値の差の検定には、二元配置分散分析後、それぞれ Dunnett または Schefféの多重比較法を用いた.その他は paired t-test により行い危険率5%以下を有意差ありと判定した.

成 績

Mock circulation による骨格筋ポンプ機能及 び特性

1. 刺激様式と等容性収縮

骨格筋ボンプの流出路を閉鎖し、電気刺激を加えた 時の骨格筋ポンプ内圧は、電圧 5V、刺激持続時間0.5 msec、刺激間隔 50msec の 2 連発刺激にて 101± 11mmHg, 3 連発刺激にて 115±14mmHg, 4 連発刺 激にて 143±25mmHg (静止ポンプ内圧 30mmHg) と 刺激頻度の上昇に従い骨格筋ポンプ内圧の上昇が認め られた (図8).また静止時ポンプ内圧の上昇に従い, 骨格筋ポンプ駆動時の内圧は上昇した (図9).

2. 刺激様式, 前負荷, 後負荷と等圧性収縮

Mock circulation の流出流入路の Adjustable columnを変化させた灌流実験では図10に示すごと く,前負荷の増大に従って骨格筋ポンプ拍出量の増加 が認められ,後負荷が 30mmHg と 40mmHg 時の比 較では前者で有意に拍出量が増加した.

3. 断層心エコー検査による骨格筋ポンプ収縮様式 の変化

図11に示すように単発刺激から2発,3発,4発と 刺激頻度を上昇させるに従い,骨格筋ポンプの一収縮 当たりの収縮時間の延長が増大し特に4発刺激時, 250msecの収縮時間が得られた.

- II. 骨格筋ポンプによる右心バイパスの血行動態の 変化
- 1. B₁群骨格筋ポンプの各条件下での施行前後での

1 Pulse

3 Pulses

4 Pulses

Fig. 11. Echocardiographical findings of skeletal muscle contraction by the pulse-train stimulation.

血行動態の変化

1) 心拍数

心拍数は,完全右心バイパス時,やや増加を認めた が骨格筋ポンプの on-off による有意な変化は認めら れなかった.

2) 大動脈圧 (図12)

条件II, III, IVでは条件 I に比べそれぞれ有意に低下したが, ポンプ駆動によりそれぞれ有意な大動脈圧の増加を認めた.

3) 大動脈血流量 (図13)

条件II, III, IVでは条件設定でそれぞれ大動脈血流 量は有意に低下したが、ポンプ駆動によりそれぞれ有 意な増加を示した.ポンプ駆動時の増加率は条件II, III. IVにするに従って増加した.

4) 左房圧 (図14)

条件II, III, IVにて左房圧はいずれも有意に低下したが、ポンプ駆動にて各群とも有意な増加を示した.

5) 肺動脈圧 (図15)

条件II, III, IVでは条件設定にて収縮期圧, 拡張期 圧ともそれぞれ低下し特に条件IVでは定常流となった

Fig. 12. Changes in aortic pressure, in mmHg, with and without skeletal muscle ventricular assistance. The dashed lines indicate the changes of aortic systolic pressure (upper) and diastolic pressure (lower) in each four conditions. SVC, superior vena cave; IVC, inferior vena cava; (I), condition I; (II), condition II; (III), condition III; (IV), condition IV; on, skeletal muscle ventricular assistance (SMVA) on; off, SMVA off; *, p<0.05 versus SMVA off; **, p<0.01 versus SMVA off by 2-way ANOVA followed by Dunnett's multiple comparison. ++, p<0.01 versus control by 2-way ANOVA followed by Scheffe's multiple comparison. Values are mean \pm S.D. (N = 11).

Fig. 13. Changes in aortic blood flow, in $1/\min$, with and without skeletal muscle ventricular assistance. The dashed lines indicate the changes of aortic blood flow in each four conditions. **, p<0.01 versus SMVA off by 2-way ANOVA followed by Dunnett's multiple comparison ++, p<0.01 versus control by 2-way ANOVA followed by Scheffé's multiple comparison. Values are mean±S.D. (N=11).

Fig. 14. Changes in left atrial pressure, in mmHg, with and without skeletal muscle ventricular assistance. The dashed lines indicate the changes of left atrial pressure in each four conditions. *, p < 0.05 versus SMVA off; **, p < 0.01 versus SMVA off by 2-way ANOVA followed by Dunnett's multiple comparison, ++, p < 0.01 versus control by 2-way ANOVA followed by Scheffé's multiple comparison, Value are mean \pm S.D. (N = 11).

Fig. 15. Changes in pulmonary artery pressure, in mmHg, with and without skeletal muscle ventricular assistance. The dashed lines indicate the changes of pulmonary arterial systolic pressure (upper) and diastolic pressure (lower) in each four conditions. *, p < 0.05versus SMVA off; **, p < 0.01 versus SMVA off by 2-way ANOVA followed by Dunnett's multiple comparison. +, p < 0.05 versus control: ++, p < 0.01 versus control by 2-way ANOVA followed by Scheffé's multiple comparison. Values are mean±S.D. (N=11).

Control SVC bypass IVC bypass Total bypass (1) (1) (1) (1) (N)

Fig. 16. Changes in pouch end-diastolic pressure, in mmHg, with and without skeletal muscle venricular assistance. The dashed lines indicate the changes of pounch end-diastolic pressure, in each four conditions. *, p<0.05versus SMVA off; **, p<0.01 versus SMVA off 2-way ANOVA followed by Dunnett's multiple comparison. +, p<0.05 versus control; ++, p<0.01 versus control by 2-way ANOVA followed by Scheffé's multiple comparison. Value are mean±S.D. (N=11). が,ポンプ駆動にてそれぞれ有意な増加を示した.

6) 骨格筋ポンプ拡張末期圧 (図16)

条件III, IVでは条件設定にてそれぞれ有意な上昇を 認めたがポンプ駆動にてそれぞれ有意な低下を認め た.

7) 骨格筋ポンプ補助血流量及び中心静脈圧の関係(図17)

ポンプ駆動時の大動脈血流量の変化量を骨格筋ポン プの補助流量 (ml:Y軸)とし,骨格筋ポンプ拡張末期 圧 (mmHg:X軸)との関係をみると,Y=37.3×-122,相関係数r=0.609,にて有意な(p<0.01)相関を 示し,骨格筋ポンプの拍出量は中心静脈圧の上昇とと もに増加することが示された.

2. B₂群骨格筋ポンプの各条件下における施行前後 での血行動態の変化

1) 心拍数

心拍数は,完全右心バイパス時,やや増加を認めた が骨格筋ポンプの on-off による有意な変化は認めら れなかった.

2) 大動脈圧 (図18)

条件 I にて骨格筋ポンプ駆動により有意な増加を認 めた.条件IIの設定にて条件 I に比べ収縮期圧,拡張 期圧それぞれ有意に低下したが,骨格筋ポンプ駆動に よりそれぞれ有意な大動脈圧の増加を認めた.

3) 大動脈血流量 (図19)

条件 I で骨格筋ポンプ駆動により有意な増加を認めた.条件 IIの設定で条件 I に比べ大動脈血流量は有意に低下したが,骨格筋ポンプ駆動によりそれぞれ有意

I

な増加を示した.

4) 左房圧 (図20)

条件 I にて骨格筋ポンプ駆動により有意な増加を認 めた.条件IIの設定にて条件 I に比べ左房圧は有意に 低下したが,骨格筋ポンプ駆動により有意な増加を示 した.

5) 肺動脈圧 (図21)

条件 I にて骨格筋ポンプ駆動により収縮期, 拡張期 とも有意な増加を示した.条件 II の設定によりそれぞ れ低下し定常流となったが, ポンプ駆動にてそれぞれ 有意な増加を示した.

6) 中心静脈圧 (図22)

条件 I にて骨格筋ポンプ駆動により有意な低下を認 めた.条件IIの設定にて有意な上昇を認めたが骨格筋 ポンプ駆動にてそれぞれ有意な低下を認めた.

(mmHg)

Fig. 18. Changes in aortic pressure, in mmHg, with and without skeletal muscle ventricular assistance. The dashed lines indicate the changes of aortic systolic pressure (upper) and diastolic pressure (lower) in each conditions. (I), condition I; (II), condition II; **, p<0.01 versus SMVA off by 2-way ANOVA followed by Dunnett's multiple comparison. ++, p<0.01 versus control by 2-way ANOVA followed by Scheffé's multiple comparison. Values are mean±S.D. (N=14). 7) 骨格筋ポンプ補助血流量及び中心静脈圧の関係 (図23)

ポンプ駆動時の大動脈血流量の変化量を骨格筋ポン プの補助流量 (ml:Y軸)とし,骨格筋拡張末期圧 (mmHg:X軸)との関係をみると,Y=52.7×-298, 相関係数 r=0.753,にて有意な (p=<0.01)相関を示 し,骨格筋ポンプの拍出量は中心静脈圧の上昇ととも に増加することが示された.

Ⅲ.慢性長期電気刺激を行った骨格筋の組織血流測 定,および組織学的検討

1. 骨格筋組織血流の変化 (図24)

広背筋の6分画より血流測定の平均値を長期慢性刺 激前後により比較すると刺激前は48.6±13.8ml/min/ 100gであったが、刺激後77.7±18.3ml/min/100g,平 均63.4%の有意な(p<0.01)増加を認めた。

12ケ月慢性刺激を行った右広背筋(下段)と対側の 非刺激対照筋(上段)の比較では酸性(pH=4.3) myosin ATPase 染色にて,著明な差異が認められ た.即ち非刺激筋において myosin ATPase 染色にて 濃染する I 型筋線維(type I slow twitch fiber) がほと んど認められずII型線維で占められているが,慢性刺 激筋においては I 型筋線維が大部分を占め,長期の慢 性刺激により II型筋線維より I 型筋線維への転換(以 下 transformation と略)が示された.

IV. 骨格筋による右心室自由壁再建の血行動態,および移植骨格筋動態の変化

人工心肺より離脱後,骨格筋非駆動の状態では移植 骨格筋自由壁は収縮期に突出を示すいわゆる奇異性運 動を認めた.しかし右心房電位感知による移植骨格筋 の2:1駆動時,移植骨格筋自由壁は収縮し血行動態

(mmHg)

Fig. 20. Changes in left atrial presure, in mmHg, with and without skeletal muscle ventricular assistance. The dashed lines indicate the changes of left atrial pressure in each conditions. *, p<0.05 versus SMVA off; **, p<0.01 versus SMVA off by 2-way ANOVA followed by Dunnett's multiple comparison. ++, p<0.01 versus control by 2-way ANOVA followed by Scheffé's multiple comparison. Values are mean±S.D. (N=14).

の著明な改善を認めた.血行動態とストレインゲージ による移植骨格筋の動きの変化を示す(図26).

1. 大動脈圧,及び肺動脈圧は収縮期,拡張期とも それぞれ平均 101/50mmHg, 29/14mmHg より 147/ 64mmHg, 37/21mmHg と有意な上昇を示した(図 27).

2. 左房圧,及び大動脈血流量はそれぞれ平均5.9 mmHg, 0.891/min より10.4mmHg, 1.31/min へ有 意な上昇を示した(図28).

C群は慢性長期刺激を行っていない筋を用いた急性 期実験であったため全例30分以内にその補助効果は消 失したが,骨格筋による右心室自由壁再建は十分可能 であり,骨格筋弁は電気刺激による収縮により,収縮 能を持つパッチ (dynamic patch)として十分な右心補 助効果が認められた.

Fig. 21. Changes in pulmonary artery pressure, in mmHg, with and without skeletal muscle ventricular assistance. The dashed lines indicate the changes of pulmonary arterial systolic pressure (upper) and diastolic pressure (lower) in each conditions. *, p < 0.05 versus SMVA off; **, p < 0.01 varsus SMVA off by 2-way ANOVA followed by Dunnett's multiple comparison. ++, p < 0.01 versus control by 2-way ANOVA followed by Scheffé's multiple comparison. Values are mean±S.D. (N=14).

ļ

考 察

骨格筋の心臓血管外科領域への応用の試みはかなり 古く、1933年プエルトリコの Jesus らが心臓外傷に対 して骨格筋を用いた修復を行ったのが最初と言われ る⁹. 1935年には Beck が狭心症患者の心室壁表面に、 虚血心筋への間接的冠血行再建を目的として大胸筋フ ラップを移植し、その後彼は20例の追試を行い多数例 で症状の改善を認めたと報告した⁵⁶⁹. 同様な骨格筋を 利用した間接的冠血行再建および骨格筋による心筋補 強、置換の基礎的臨床的研究は文献的にかなり散見さ れる^{7~10}. 電気刺激による骨格筋の収縮力を利用した 循環補助の最初の試みは1959年 Kantrowitz により始 まった¹¹¹¹². 横隔膜を左心室および大動脈周囲に巻き 付け横隔神経の電気刺激を行いその補助効果を報告し ている. 1964年には Nakamura ら¹³¹が横隔膜を利用

Fig. 22. Changes in central venous pressue, in mmHg, with and without skeletal muscle ventricular assistance. The dashed lines indicate the changes of central venous pressure in each conditions. **, p < 0.01 versus SMVA off by 2-way ANOVA followed by Dunnett's multiple comparison. ++, p < 0.01 versus control by 2-way ANOVA followed by Scheffé's multiple comparison. Values are mean±S.D. (N=14).

した心房腔の拡大と左心補助効果を報告した.1966年 Termet ら¹⁰は初めて広背筋を応用し心臓に巻き,心 室細動の状態で15から20分の循環維持に成功してい る.1973年 Kusaba ら¹⁵⁰, von Recum ら¹⁶⁰が骨格筋を 心室壁に縫着,または一部置換にて心室腔拡大を試み

Fig. 23. Relation between central venous pressure, in mmHg, and the rate of assistant flow, in ml/min, generated by skeletal muscle ventricles. Skeletal muscle ventricles stimulated at four pulses in each trains and a fixed rate of 90 trains/min.

ている.しかし横隔膜などの菲薄な筋を用いたこと, 筋の電気刺激が単発刺激であったこと、そして早期の 筋疲労などのため十分な補助効果が得られずそれらの 研究は一時中断していた.しかし最近になり骨格筋の 疲労現象の克服と、電気刺激方法の研究の進歩によ り、骨格筋の心臓外科への応用の研究が再び盛んに行 われるようになりつつあるのが現状である.

現在の骨格筋の心臓外科への応用の方法は、1つに は心不全に対し収縮力を持った骨格筋収縮を利用した 循環補助と、そして2つの目は心室低形成を伴う先天 性心疾患および左心室瘤など心内修復を必要とする心 不全症例に対する循環補助を含めた心室形成術にある と思われる.前者には骨格筋を直接心室、心房および 大動脈に on-lay patch として装着する方法 (reinforcement method と称する) で前述の Kantrowitz ら^{1111210~177}が報告した.また最近になって報告された骨 格筋駆動による Intra-aortic baloon pumping¹⁸⁹, Extra-aortic baloon pumping¹⁹²⁰⁾また左室心尖部一下 行大動脈バイパスを作成しその中間に弁付き骨格筋ポ ンプを挿入する方法²¹⁾等が含まれる (Biomechanical sequential augmentation method と称する).後者 は,骨格筋より心室心房の一部を置換,拡大するもの で (substitute method と称する),心房¹³⁰,右心室流出 路²²⁰²³, 左心室自由壁²⁴⁰への応用が行われている.

今回行った我々の研究は,B群では骨格筋ポンプを 右心室に並列に接続し Biomechanical parallel augmentation method にて肺循環を行った点で従来 にない試みであった.またC群では右心室自由壁を骨

Fig. 25. (upper); ATPase stain with acid (pH=4.3) preincubation of unstimulated latissimus dorsi muscle. Slow-twitch, type I fiber stains dark. (bottom); ATPase stain with acid preincubation of latissimus dorsi muscle stimulated 100/min for a year. Note that the muscle has converted completely to slow-twitch, type I fibers.

格筋弁にて横隔膜面に至るまで全置換を行ったが、このような基礎的研究は現在のところ見られていない.

血行動態の検討では骨格筋ポンプによる循環補助効 果は明らかに証明された.特に完全右心バイパス時, B₁B₂群ともポンプ駆動を行わない場合大動脈圧,大動 脈血流量の低下,骨格筋ポンプ拡張末期圧または中心 静脈圧の上昇を認め,血圧維持は困難となったが,ポ ンプ駆動にて循環動態は著明に改善した.骨格筋の収 縮力で右心系の循環を維持することが証明され,右心 不全に対する応用の可能性が示された.骨格筋ポンプ の補助流量と流入路圧の関係には正の相関があり, B₁群では上下大静脈脱血による各々の循環補助に比 べ完全右心バイパス時の循環補助流量がより高値で,

Pacing -off

Pacina-on

Fig. 26. Electrical and mechanical events of myoventriculoplasty during sinus rhythm and synchronous pacing of myograft. Representative illustrative tracings of the electrocardiogram (ECG), aortic pressure (AoP), pulmonary artery pressure (PAP), left atrial pressure (LAP), central venous pressure (CVP), and myograft strain gauge. Heavy vertical lines indicate the onset of R wave in ECG. The positive strain gauge deflections (large*) are noted in contrast to without pacing (small*), and augmentation of the pulmonary artery pressure (large*) during synchronous myograft pacing. +, strain gauge is shortening. -, strain gauge is stretching. ポンプの流入圧の上昇により骨格筋ポンプ拍出量が増加し Frank-Starling の法則²⁵⁰²⁰が成り立つものと考えられた.より実際的な右心補助ポンプを目的としたB₂群でも同様な右心補助効果が認められたが、特に前負荷である中心静脈圧の上昇に従い骨格筋ポンプ補助流量の増加率が B₁群に比べ高い傾向が認められた.しかし右心房の atrial kick 作用³⁷によるものか、あるいは脱血管形状の違いによるポンプ流入路抵抗の差によるものかは不明であった.

C群の右室自由壁再建では心拍同期2:1にて骨格 筋刺激を行ったが十分な右心補助効果が認められた. 正常心の右心室の血液駆出のメカニズム²⁰は、1)右 心室自由壁長軸方向の短縮、2)左室収縮にともなう 心室中隔の肥厚と右心室自由壁の心室中隔への接近で あるとされる.Starr²⁰を始めとし右室自由壁の右心機 能へ及ぼす影響は少ないとする報告は多い³⁰³¹⁾が、容 量負荷にて顕性化する右心不全²³、および収縮期に自 由壁の突出を示す右室異形成(Uhl's disease)³³症例で は高度の右心不全が認められることから右心室自由壁 の役割はかなり大きいものと思われる.今回の実験結 果では、右室機能の向上と共に骨格筋の駆動による自 由壁長軸方向の収縮が strain-guage によって明瞭に 観察され右心室自由壁再建の効果が示された.

さて骨格筋を心臓の補助循環として用いる場合の問 題点は2つある.第1点は,骨格筋は心筋と収縮様式 が異なり1発の電気刺激により得られる収縮時間は 50msecときわめて短く³⁴,また細胞間の興奮伝播構 造を持たず1カ所の刺激で全体の筋線維を収縮させる ためには,刺激様式と刺激部位の工夫が必要であるこ と.そして第2点は筋疲労の克服の問題である.

刺激様式について:骨格筋の特性として連続した電 気刺激つまり高頻度刺激 (burst stimulation) により加 重現象が起こり、筋は持続的に収縮する、Dewar²⁴⁾³⁵⁾ ら、はパルス幅、パルス間隔を様々に変化させ骨格筋 の pouch 内圧を観察し、1 サイクル 320msec でパル ス幅 40msec の 4 連発刺激がもっとも効率的でかつ心 筋収縮に類似していると結論した. Acker ら³⁶¹³⁷ は広 背筋にて pouch を作成し電気刺激様式を変化させそ の内圧変化を観察し、45Hz で 200mmHg の pouch 内圧を記録している.今回我々はA群においてパルス 幅 50msec 間隔で連続刺激の比較を行ったが、彼ら同 様に3連発刺激に比べ4連発刺激で有意な内圧上昇が 見られた、Mモード断層エコー検査を用いた骨格筋ポ ンプの1サイクル当たり収縮時間の検討では、心筋と 同様な 250msec の収縮時間を得ることができた. 骨 格筋による心室形成術を行った場合、心電図R波感知

にて高頻度刺激が可能なしかも埋め込み型ペースメー カーの開発が必要となる.Grandjean³⁰らは心筋より 電位を感知し,骨格筋の高頻度刺激を行うCardiomyostimulatorとして骨格筋刺激用埋め込み型ペー スメーカーを試作している.骨格筋の刺激部位につい ては,支配神経を双極刺激する方法³⁰⁴⁰⁰と,筋肉の直接 双極刺激²⁴⁴¹⁰法の両者が報告されている.我々は双極 刺激とし胸背神経の神経筋移行部と筋遠位側間で行う ことで筋線維全体にわたっての十分な収縮を得ること に成功した.神経刺激では筋線維全体にわたる収縮が 可能となる利点があるが,反面高頻度刺激による神経 筋接合部での反応性低下⁴²⁰がある.また筋の双極刺激 では均一な収縮を得ることが難しく,またも慢性期の 急速な闘値上昇が指摘されており⁴³⁰,我々の行った刺 激方法がもっとも確実であると思われた.

筋疲労の問題について:骨格筋は疲労抵抗性で収縮 の遅い I 型筋線維 (type I slow-twitch muscle fibers) と易疲労性で収縮の早い II 型線維 (type II fast-twitch muscle fibers) が混在している. 嫌気性代 謝を中心としミトコンドリア含有量の少ない II 型筋線 維は高頻度刺激にて容易に筋疲労が出現する⁴⁰. しか し近年骨格筋を4-8週以上の長期にわたり電気刺激 を加えることで、筋線維内のミトコンドリアが増加し II 型筋線維から I 型筋線維への転換が起こることが組 織生化学的に報告され⁴⁰⁴⁵⁻⁴⁷ てきた. 今回我々も同様 に長期電気刺激による骨格筋のトレーニングを行った が、組織学的検討では諸家の報告と同様, myosin ATPase の酸性染色にて濃染する type I の slowtwitch muscle⁴⁸が増加し, II 型 first-twitch muscle から疲労抵抗性の I 型 slow-twitch muscle への転換 が証明された. また筋の組織血流の増加を認め、微小 循環動態的にも慢性長期電気刺激による骨格筋のト レーニング効果が証明された.

臨床においては1985年, Carpentier ら⁴⁹が両心室に わたる巨大な線維腫切除後の欠損部に, 骨格筋にて patch 形成を行い, その後 Magovern ら⁵⁰⁵¹⁾,

1

Fig. 27. Changes in a ortic pressure and pulmonary artery pressure, in mmHg, with and without myograft stimulation. AoP, aortic pressure; PAP, pulmonary artery pressure; *, p < 0.01 by Student t-test. Values are mean \pm S.D. (n=9).

Carpentier グループ⁵²⁰が心筋梗塞後の重症左心不全に 対して左広背筋にて心臓全体を巻き (wrapping) 電気 刺激にて左室駆出率が上昇したと報告し,臨床応用が 開始された.1988年10月現在30例の臨床例が報告され ている⁵³⁾. 骨格筋を用いた補助循環は慢性重症心不全 など心機能の改善が得られず心移植の適応と考えられ る疾患⁵⁴⁻⁵⁷の一部に将来臨床応用が可能と思われ,心 移植と相互補完的な新たな治療概念として確立される ものと思われる.

結 論

雑種成犬40頭を使用し,電気刺激を加えた骨格筋の 収縮力を利用した右心補助循環の実験的検討をおこ なった.

1. 骨格筋ポンプの駆動には高頻度電気刺激が必要 であり、ポンプ収縮能は時間的空間的に加重された.

2. 慢性電気刺激を行った骨格筋ポンプによる右心 室補助循環に成功した.特に完全右心バイパス時,骨 格筋ポンプ非駆動では循環維持が困難であったが,骨 格筋ポンプ駆動により2時間以上にわたる循環維持が 可能であった.

3. 骨格筋の 6-12ケ月の慢性電気刺激により,筋 線維は II 型 fast-twitch muscle から I 型 slowtwitch muscle へと転換し,疲労抵抗性を獲得するこ とが組織学的に証明された.また組織血流量も増加し 微小循環段階での転換も認められた.

4. 有茎広背筋による右室自由壁再建は,その駆動 により右心機能の改善を認め,本来の右室自由壁の働 きを果たしうると考えられた.

謝 辞

稿を終えるに当たり,御指導と御校閲を賜った岩喬教授に 心から謝意を表します.また研究に御協力頂いた第一外科教 室の諸兄,フクダ電子の宮本氏に深謝致します.

本論文の主旨は第40回日本胸部外科学会総会 (1987, 金沢), 第41回日本胸部外科学会総会 (1988, 東京), 第88回日本外科 学会総会 (1987, 新潟), 第52回日本循環器学会学術集会 (198 8, 秋田), 3rd. International Symposium on Transformed Skeletal Muscle for Cardiac Assist and Repair (1988, Canada) において発表した.

Fig. 28. Changes in left atrial pressure, in mmHg, and aortic blood flow, $1/\min$, with and without myograft stimulation. LAP, left atrial pressure; AoF, aortic flow; *, p < 0.01 by Student t-test. Values are mean \pm S.D. (n=9).

渡

邊

文 献

1) Cankovic, S. D., Wheelden, D., Biol, C., Pearce, R. C., Wallwork, J. & English, T. A. H.: Biopsy assessment of fifty hearts during transplantation. J. Thorac. Cardiovasc. Surg., 93, 95-102 (1987).

2) Harjula, A., Baldwin, J. C., Starnes, V. A., Stinson, E. B., & Oyer, P. E.: Proper doner selection for heart-lung transplantation: The Stanford experience. J. Thorac. Cardiovasc. Surg., 94, 874-880 (1987).

3) DeVries, W. C.: The treatment of chronic congestive heart failure with mechanical devices. A. J. Roberts (ed.), Difficult Problems in Adult Cardiac Surgery, 1st ed., p327-351, Year Book Medical Publishers, Cicago. (1985).

4) Walsh, G. & Chiu, R. C. -J.: Skeletal muscle for cardiac repair and assist: A historical overview. In R. C. -J. Chiu (ed.) Biomechanical Cardiac Assist, 1st ed., p103-114, Futura, New York, 1986.

5) Beck, C. S.: The development of a new blood supply to the heart by operation. Ann. Surg., 102, 801-813 (1935).

6) Beck, C. S.: A new blood supply to the heart by operation. Surg. Gynecol. Obstet., 61, 407-410 (1935).

7) Leriche, R.: Essai experimentale de traitment de certains infarctus du myocarde et l'aneurisme du coeur par une graffe de muscle strie. Bill. Soc. Nat. Chir., **59**, 229 (1933).

8) Petrovsky, B. V.: The use of diaphragm grafts for plastic operations in thoracic surgery.J. Thorac. Cardiovasc. Surg., 41, 348 (1961).

9) Vansant, J. H. & Muller, W. H.: Surgical procedures to revascularize the heart. Am. J. Surg., 100, 572-582 (1969).

10) Sola, O. M., Dillard, D. H., Ivey, T. D., Hanada, K., Itoh, T. & Thomas, R.: Autotransplantation of skeletal muscle into myocardium. Circulation, 71, 341-348 (1985).

11) Kantrowitz, A. & McKinnon, W. M. P.: The experiment use of the diaphragram as an auxiliary myocardium. Surg. Forum., 9, 266-268 (1959). 12) Kantrowitz, A.: Functioning autogenous muscle used experimentally as an auxiliary ventricle. Trans. Am. Soc. Artif. Org., 6, 305-310 (1960).

13) Nakamura, K. & Glenn, W. W. L.: Graft of the diaphragm as a functioning substitute for the myocardium: An experiment study. J. Surg. Res., 4, 435-439 (1964).

14) Termet, H., Chalencon, J. L., Estour, E., Gaillard, P., & Favre, J. P.: Transplantation sur le myocarde d'un muscle strie excite par pacemaker. Ann. Chir. Thorac. Cardiol., 5, 260-263 (1966).

15) Kusaba, E., Schraut, W., Sawatani, S., Jaron, D., Freed, P. & Kantrowitz, A.: A diaphragmatic graft for augmenting left ventricular function: A feasibility study. Trans. Am. Soc. Artif. Org., 19, 251-257 (1973).

16) Von Recum, A., Stulc, J. P., Hamada, O., Baba, H. & Kantrowitz, A.: Long-term stimulation of a diaphragm muscle pouch. J. Surg. Res., 23, 422-427 (1977).

17) Chachques., J. C., Mitz, V., Hero, M.,
Arhan, P., Gallix, P., Fontaliran, F. & Vilain,
R.: Experimental cardioplasty using the latissimus dorsi muscle flap. J. Cardiovasc. Surg., 26,
457-462 (1985).

18) Stephenson, L. M.: Cardiac assist device. 3rd International Symposium on Transformed Skeletal Muscle for Cardiac Assist and Repair (Meeting Abstract), 26, Canada, 1988.

19) Chiu, R. C. -J., Waish, G. L., Dewar, M. L. & Simon, J. H.: Implantable extra-aortic baloon assist powered fatigue resistant skeletal muscle. J. Thorac. Cardiovasc. Surg., 94, 694-701 (1987).

20) Acker, M. A., Anderson, W. A., Hammond,
R. L., Chin, A. J., Buchanan, J. W., Morse, C.
C., Kelly, A. M. & Stephenson, L. W.: Skeletal muscle ventricle in circulation. J. Thorac. Cardiovasc. Surg., 94, 163-174 (1987).

21) Brown, J. W., Mark, T. & Boyd, M.: Progress toward the use of electrically stimulated skeletal muscle as a cardiac counterpulsation device. 3rd International Symposium on Transformed Skeletal Muscle for Cardiac Assist and Repair (Meeting Abstract), 27, Canada, 1988. Macoviak, J. A., Stephenson, L. W., Spielman, S., Greenspan, A., Likoff, M., Reichek, N. & Edmunds, L. H.: Replacement of ventricular myocardium with diaphramatic skeletal muscle.: Short-term study. J. Thorac. Cradiovasc. Surg., 81, 519-527 (1988).

23) Macoviak, J. A., Stinson, E. B., Starky, T. D., Hansen, D. E., Cahill, P. D., Miller, D. C. & Shamway, N. E.: Myoventriculoplasty and neoventricle myograft cardiac augmentation to establish pulmonary blood flow: Preliminary observation and feasibility studies. J. Thorac. Cardiovasc. Surg., **93**, 210-220 (1987).

24) Dewar, M. L., Drinkwater, D. C., Wittnich, C. & Chiu, R. C. -J.: Synchronously stimulated skeletal muscle graft for myocardial repair. J. Thorac. Cardiovasc. Surg., 87, 325-331 (1984).

25) Frank, O.: Zur dynamik des Herzmuskeles. (Translated by C. B. Chapman and E Wasserman). Am. Heart. J., 58, 282-317 (1959).

26) Patterson, S. W., Piper, H. & Starling, E.
H.: The regulation of the heart beat. J. Physiol. (London), 48, 465 (1914).

27) DiSessa, T. G., Child, J. S., Perloff, J. K., Wu, L., Williams, R. G., Laks, H. & Friedman, W. F.: Systemic venous and pulmonary arterial flow pattern after Fontan's procedure for tricuspid atresia or single ventricle. Circulation 70, 898-902 (1984).

28) Morris, J. J. & Wechsler, A. S.: Right ventricular function: The assessment of contractile performance. In R. L. Fisk (ed.), The Right Heart, lst ed., p3-18, F. A. Davis, Philadelphia, 1987.

29) Starr, I., Jeffers, W. A. & Meada, R. H.: The absence of conspicuous increments of venous pressure after severe damage to the right ventricle of the dog with a discussion of the relation between clinical congestive failure and heart disease. Am. Heart. J., 26, 291-301 (1943).

30) Kagan, A.: Dynamic responces of the right ventricle following extensive damage cauterization. Circulation, **5**, 816-823 (1952).

31) Bakos, A. C. P.: The question of the function of the right ventricular myocardium: An experimental study. Circulation, 1724-1732 (1951).

32) Guiha, R. M., Limas, C. J. & Cohn, J. N.:

Predominant right ventricular dysfunction after ventricular destruction in the dog. Am. J. Cardiol., **33**, 254-258 (1974).

33) Cumming, G. R., Bowman, J. M. & Whytehead, L.: Congenital aplasia of the myocardium of the right ventricle (Uhl's anomaly). Am. Heart J., 70, 671-676 (1965).

34) Vachon, B. R. & Kunov, H.: Mechanical properties of diaphragm muscle in dogs. Med. Biol. Eng., 13, 252-260 (1975).

35) Drinkwater, D., Chiu, R. C. -J., Modry, D., Wittnitch, C. & Brown, P. R.: Cardiac assist and myocardial repair with synchronously stimulated skeletal muscle. Surg. Forum, 31, 271-274 (1980).

36) Acker, M. A., Hommond, R. L., Mannion, J. D., Salmons, S. & Stephenson, L. W.: An autologus biologic pump moter. J. Thorac. Cardiovasc. Surg. 92, 733-746 (1986).

37) Acker, M. A., Hammond, R. L., Mannion, J. D., Salmons, S. & Stephenson, L. W.: Skeletal muscle as a potential power sourse for a cardiovascular pump: assessment in vitro. Science, 236, 324-325 (1987).

38) Grandjean, P. A., Herpers, L., Smits, K., Bourgeois, I., Chachques, J. C. & Carpentier, A.: Implantable electronics and leads for muscular cardiac assist. R. C. -J. Chiu (ed.), Biomechanical Cardiac Assist, 1st ed., p103-114, Futura, New York, 1986.

39) Frey, M., Thoma, H., Huber, S. L. & Steiner, H. E.: The chronically stimulated muscle as an energy source for artificial organs. Eurp. Surg. Res., **16**, 232-237 (1984).

40) Armenti, F., Bitto, T., Macoviak, J. A., Kelly, A. M., Hoffman, B., Rubinstein, N. A., Sutton, M. J., Edmunds, L. H. & Stephenson, L. W.: Transformation of canine diaphragm to fatigue resistant muscle by phrenic nerve stimulation. Surg. Forum, 135, 258-260 (1984).

41) Spotnitz, H. M., Merker, C. & Malm, J. R.: Applied physiology of the canine rectus abdonomis: Force-length curves correlated with functional characteristics of a rectus powered "ventricle". Trans. Am. Soc. Artif. Org., 20, 747-756 (1974).

42) Macoviak, J. A., Stephenson, L. W. Alvi, A., Kelly, A. M. & Edmons, L. H.: Effect of electrical stimulation on diaphragmatic muscle used to enlarge right ventricle. J. Thorac. Cardiovasc. Surg., 90, 271-277 (1981).

43) Glenn, W. W., Hogan, J. F., Loke, J. O., Ciesielski, T. E., Phelps, M. L. & Rowedder, R.: Ventiratory support by pacing of the conditioned diaphragm in quadriplegia. New. Eng. J. Med., 310, 1150-1155 (1984).

44) Salmons, S. & Henriksson, J.: The adaptive response of skeletal muscle to increased use. Muscle & Nerve, 4, 94-105 (1981).

45) Salmons, S., Sreter, F. A.: Significance of impulsed activity in the transformation of skeletal muscle type. Nature, **263**, 30-34 (1976).

46) Pette, D. & Schnez, U.: Coexistence of fast and slow type myosin light chains in single muscle fibers during transformation as induced by long term stimulation. F. E. B. S. lett., 83, 128-130 (1977).

47) Mannion, J. D., Bitto, T., Hommond, R. L., Rubinstein, N. A. & Stephenson, L. W.: Histochemical and fatigue characteristics of conditioned canine lattisimus dorsi muscle. Circ. Res., 58, 298-304 (1986).

48) Matoba, H. & Gollnick, P. D.: Influence of ionic composition, buffering agent, and pH on the histochemical demonstration of myofibrillar actomyosin ATPase. Histchemistry, 80, 609-614 (1984).

49) Carpentier, A. & Chachques, J. C.: Myocardial substitution with a stimulated skeletal muscle: First successful clinical case. Lancet, 8440, 1267 (1985).

50) Magovern, G. J., Park, S. B., Magovern, G. J. Jr., Benkart, D. H., Tullis, G., Rozar, E., Kao, R. L. & Christieb, I.: Latissimus dorsi as a functioning synchronously paced muscle component in the repair of a left ventricular aneurysm. Ann. Thorac. Surg., **41**, 116 (1986).

51) Magovern, G. J., Heckler, F. R., Park, S.
B., Christieb, I., Magovern, G. J. Jr., Kao, R.
L., Benkart, D. H., Tullis, G., Rozar, E.,

Liebler, G. A., Burkholder, J. A. & Maher, T. D.: Paced latissimus dorsi used for dymanic cardiomyoplasty of left ventricular aneurysms. Ann. Thorac. Surg., 44, 379-388 (1987).

52) Chuchques. J. C., Grandjean, P., Schwartz, K., Mihaileanu, S., Bourgeois, I. & Carpentier, A.: The effect of latissimus dorsi dynamic cardimyoplasty on ventricular function. Circulation, 76 (Suppl. II), 164 (1987).

53) Carpentier, A.: Personal communication. 3rd International Symposium on Transformed Skeletal Muscle for Cardiac Assist and Repair, Canada, 1988.

54) Jamielson, S. W., Oyer, P. & Shamway, N. E.: Heart transplantation for end stage ischemic heart disease: The Stanford experience. Heart Tr ansplantation, 3, 224-226 (1984).

55) Uverferth, D. V., Magorien, R. D., Moeschberger, M. L., Baker, P. B., Fetters, J. K. & Leier, C. V.: Factors influencing the one year mortality of dilated cardiomyopathy. Am. J. Cardiol., 54, 147-152 (1983).

56) Riviere, A. B., Hasler, G., Malm, J. R. & Bregman, D.: Mechanical assistance of the pulmo-nary circulation after right ventricular exclusion. J. Thorac. Cardiovasc. Surg., 85, 809-814 (1983).

57) Parr, G. V., Piece, W. S., Rosenberg, G. & Waldhausen, J. A.: Right ventricular falure after repair of left ventricular aneurysm. J. Thorac. Cardiovasc. Surg., 80, 79-84 (1980).

ļ

Skeletal Muscle Ventricles in Pulmonary Circulation and Myoventriculoplasty of the Right Ventricle Go Watanabe, Department of Surgery (1), School of Medicine Kanazawa University, Kanazawa 920-J. Juzen Med. Soc., 98, 101-121 (1989)

Key words skeletal muscle, electrical conditioning, biomechanical cardiac assist, cardiomyoplasty, fight ventricular bypass

Abstract

We studied the feasibility of assisting the right ventricular function with long-term electrically stimulated skeletal muscle graft in forty dogs. In six dogs, latissimus dorsi myograft was wrapped around a latex pouch equiped with inflow and outflow valved conduits (skeletal muscle ventricles; SMVs) and electrically stimulated, varying the pulse number and frequency. A train of four pulses was found to be more effective than 2 or 3 pulses and was able to generate maximum flows in mock circulation. In twenty five dogs, the latissimus dorsi muscles were electrically stimulated. Six or 10 months later, right thoracotomy was performed and then the SMVs were connected to the pulmonary circulation. These SMVs were stimulated at a frequency of 20Hz for 200msec at a fixed rate of 90/min, and the hemodynamic changes with or without skletal muscle ventricle All animals showed circulation failure after right assistance (SMVA) were measured. ventricular bypass without SMVA. However, the SMVA significantly (p < 0.01) increased aortic blood flow, left atrial pressure, pulmonary artery pressure and aortic pressure. There was a linear correlation between pouch enddiastolic pressure and the rate of assist flow of SMVs. Each of these animals exhibited stable hemodynamic function. In nine dogs, the right ventricular free wall was resected and reconstructed with a full-thickness myograft during cardiopulmonary bypass. Synchronous stimulation produced vigorous contraction of the right ventricular myoventriculoplasty during cardiac systole. Myorafts that were stimulated electrically for several months showed an increase in tissue blood flow (mean=63%). Histological studies showed that the conditioned muscles had a higher percentage of slow-twitch fibers. These results suggested that long-term electrical conditioning of the skeletal muscle ventricle results in fatigue resistant characteristics and could substitute for the workload of the right ventricle. Also it might be possible to use skeletal muscle in humans to provide support in heart disease.