Computed Radiography: Evaluation of Its Role in the Mass Survey for Lung Cancer: Phantom Study

メタデータ	言語: jpn
	出版者:
	公開日: 2017-10-04
	キーワード (Ja):
	キーワード (En):
	作成者:
	メールアドレス:
	所属:
URL	http://hdl.handle.net/2297/7994

Computed radiography による肺癌集団検診に 関する研究 (Phantom study)

-小結節影検出能と低線量撮影について-

金沢大学医学部放射線医学講座(主任:高島 力教授) 伊 藤 広 (昭和62年11月20日受付)

デジタル画像の一種である FCR(Fuji computed radiography)を肺癌集団検診に導入することが 可能かどうか、ファントーム実験を行って検討した。検討項目は、直接撮影、間接撮影、FCR 左画像(通 常のフィルム-増感紙系と類似した画像)および FCR 右画像(縦隔,横隔膜下などの低濃度領域が見易く なるように画像処理を加えた画像)の4者に関する結節影検出能の比較検討と、FCRの低線量撮影の限界 に関する検討の2項目に大別される.いずれの検討においても,人体胸部ファントームを使用し,直径1cm の結節影の検出実験を行って、その結節影検出能を ROC 解析により比較検討した.まず、直接、間接両撮 影法と FCR 左右両画像の結節影検出能を比較した. 結節影検出能 Az (area under ROC curve) は,直 接撮影 0.774, 間接撮影 0.789, FCR 左画像 0.963, FCR 右画像 0.952 で FCR の左右両画像で高い結節影 検出能を示した.しかし、実験の撮影条件、特に、その撮影電圧(120 kVp)が、必ずしも直接、間接両撮 影法にとり適切ではなかったため、この結果より直ちに、直接、間接両撮影法が FCR より劣るとすること はできない. むしろこの結果より, FCR の重要な特徴, すなわち, FCR では, 撮影条件に多少の不備があっ ても,そのワイドラチチュードにより画質の低下を免れ得るということが明らかとなった.FCR 左右各画 像の特徴の差異に関しては,肺野,左心後部,横隔膜下の3部位について,結節影検出率の比較を行って 検討した.その結果,肺野については FCR 左画像が,左心後部および横隔膜下については FCR 右画像が, 各々その結節影検出率において他より優れていた.したがって、FCR 左右両画像を同時に見比べながら読 影を行えば、見落しの少ない、精密な診断が可能となるものと考えられた。また、肺野の結節影を対象に、 肋骨,血管影などの障害陰影が,結節影の見落し率に及ぼす影響を検討した結果,FCR においては,直接, 間接両撮影法に比較して、その影響は比較的小さいことが明らかとなった.FCRの低線量撮影に関しては、 通常線量と、その各々1/3、1/6、1/10線量との4者について結節影検出能の比較を行った。各線量の結節 影検出能 Az は,順に 0.978, 0.965, 0.921, 0.851, で線量の減少にともなって漸次低下を示した.統計 的有意差検定の結果,診断上支障のない低線量撮影の限界は,1/3線量までとするのが妥当と考えられた. 以上の諸検討結果より、FCR の肺癌集団検診への導入は、結節影の診断能向上と X 線被曝量の低減にとっ て,極めて有用性が高いと考えられた.

Key words computed radiography, FCR, lung cancer, mass survey, ROC analysis

最近の肺癌による死亡者数の増加は著しく,昭和59
また,昭和25年度との比較では、男で9倍、女で7.6年度の訂正死亡率によると、男10万対17.1、女10万
対6.1で、男女ともに胃癌に次ぐ高率となっている。
また、昭和25年度との比較では、男で9倍、女で7.6倍にも達している¹⁰.
このような状況下,早急な肺癌対策が要請されるが、

Abbreviations: Az, area under ROC curve; CR, computed radiography; CRT, cathode ray tube; CT, computed tomography; DR, digital radiography; DSA, digital sub-traction angiography; FCR, Fuji computed radiography; IP, imaging plate; MRI,

肺癌対策といっても、他の癌と同様、早期発見、早期 治療が基本となる.

1950年, Overholt²⁰が, 自覚症状発現前の肺癌を胸部 X 線撮影により発見できることを示唆して以来, 各地 で胸部 X 線撮影による肺癌集団検診が試みられてき た.

わが国に於ては、鈴木ら³⁾が、昭和27年以来、結核 検診フィルムによる肺癌集検を行って、14年間に延べ 2,159,460人の受診者中、104人の肺癌患者を発見し た.その肺癌発見率は10万対7であり、彼らが調査し た各国各地の肺癌集検成績とほぼ同様の結果であっ た.これらの成績は、検診効率の低さを物語っており、 これがその後、この肺癌集検が一般に普及しなかった 理由ともなっている.

これに対し、より効率の高い肺癌集検体制の確立を 目指す試みが、1970年代になってアメリカで行われ た.すなわち、National Cancer Institute が呼びかけ、 Johns Hopkins Medical Institutions, Mayo Clinics, Memorial Sloan-Kettering Cancer Center の3施設 が参加して行われた、いわゆる高危険群(High Risk Group)検診である^{4)~6}. この検診は、45 才以上の男性の重喫煙者(1日1 パック以上の喫煙者)を高危険群と設定し、検診対象 をこれらの人々にしぼった上で、年1回(Mayoでは 年3回)の胸部 X 線撮影と、年3回の喀痰細胞診とを、 経年的に行っていくものである.

この検診の試行は、1971 年から1978 年にかけて行われ、その結果、3 施設合わせ21,127 人の検診参加者のうち、160 人の肺癌患者が発見された.その肺癌発見率は、10 万対 620 である.

すなわち、高危険群を設定し、しかもこれら同-グ ループに、経年的に検診を繰返すことにより、検診効 率は飛躍的に向上することが明らかとなった.

また,この検診では,喀痰細胞診も新たに採用され たが,上記発見肺癌 160 人の発見方法別内訳によると, 胸部 X 線撮影のみによるもの 93 人 (58%),喀痰細胞 診のみによるもの 37 人 (23%),胸部 X 線撮影と喀痰 細胞診の両者によるもの 30 人 (19%) となっており, 喀痰細胞診も肺癌発見にかなり有効であるとはいえ, 胸部 X 線撮影の肺癌発見に果たす役割には遠く及ば ない.

ゆえに、今後の肺癌集団検診のより一層の充実と普

Fig. 1. FCR left and right images of the chest (44-year-old healthy volunteer). A. FCR left image. B. FCR right image.

magnetic resonance imaging; ROC, receiver operating characteristic; US, ultrasonography.

1156

及のためには、なお一層、胸部 X 線撮影の診断精度の 向上と、X 線被曝量の低減に努めなければならない.

さて、近年のコンピューター技術の発達は著しく、 医療の分野に於ても、様々なデジタル画像装置が開発 されている. ざっと思いつくものをあげても、US (ultrasonography), CT (computed tomography), DSA (digital subtraction angiography), MRI (magnetic resonance imaging) 等々があり、今日の 医療にとって、もはや欠くべからざる診断機器となり つつある.

一方、過去 100 年もの長き歴史を有する「X 線写真 システム」は、その優れた画質と高い記録性のゆえに、 デジタル化とは無縁の道を歩むものと思われていた. しかし、デジタル化の波は、この分野にも確実に押し よせてきており、既存の X 線写真からデジタル画像を 作る装置^かや、フィルムー増感紙系を全く介すること なく直接にデジタル画像を作る装置、すなわち、 digital radiography (DR)^{8)~10)}、あるいは computed radiography (CR)¹¹¹と呼ばれる装置も登場してきて いる.

今回著者が使用したのは、わが国の富士写真フィルム(株)が独自に開発した CR 装置¹²⁾¹³⁾であるが、本装置は一般に、FCR(Fuji computed radiography)と略称されるので、以後はこれに従い、FCRと記す.

図1に, FCR によって得られた正常者胸部の左右両 画像を示す. デジタル画像であるにもかかわらず,通 常X線写真と比較して,コントラスト,鮮鋭度ともに 遜色はない.

FCR では、X 線検出器として、輝尽性螢光体に属す る BaFX: Eu (europium-activated bariumfluorohalide compound, X=Cl, Br, I) の結晶を塗布 した、イメージングプレート (imaging plate, IP) を 使用しているが¹¹⁾, これは非常に高感度,高精度で、入 射 X 線量と螢光発光量との間には、広い範囲にわたっ て直線関係が成立している.そのため、FCR では、入 射 X 線量に対してラチチュード (latitude,寛容度)が 極めて広く、同時に、低線量撮影にも応じられるよう になっている.

それゆえ FCR は、ワイドラチチュードを必要とす る胸部 X 線撮影にとって、特に有用性が高いとの評価 がある¹⁴⁾¹⁵⁾.

そこで本研究では、肺癌集団検診の胸部 X 線撮影に FCR の導入が可能か否か、また、もし可能とすれば、 如何なる有用性を有するかについて検討を行った.

肺癌集団検診に於ける胸部 X 線撮影の主目的は, 肺 野型肺癌の早期発見にある.これまでの著者の経験で は, 胸部 X 線写真上, 径 1 cm の結節影であれば, 十分 検出可能なサイズと考えられる.そこで本研究に於て は、直径1cmの結節影の検出能を指標とし、一連の ファントーム実験を行った.

まず、従来法である直接撮影、間接撮影と FCR との 画質の相違を明らかにするために、人体胸部ファン トームと偽結節とを使用して、各画像間の結節影検出 能を比較した.なお、結節影検出能の評価は、ROC (receiver operating characteristic¹⁶⁾¹⁷) 解析によっ た.

また,肺野,左心後部,横隔膜下の各部位別結節影 検出率の比較を行い,各画像の特徴,特に,FCR左右 各画像間の差異について検討した.

次いで,肋骨,血管影などの障害陰影 (structured noise¹⁸⁾)が,結節影検出率に及ぼす影響を評価するため,肺野結節影を対象に,障害陰影の有無と結節影見落し率の関連について検討した.

最後に, FCR の通常線量, 1/3 線量, 1/6 線量, 1/10 線量の4 者画像間で,結節影検出能の比較を行って, FCR 低線量撮影の限界について検討した.

材料および方法

I. 人体胸部ファントームの改良

Fig. 2. Humanoid chest phantom with simulated pulmonary vascular vessels on its anterior surface.

藤

人体胸部ファントーム(三和化成品,図2)は、人 体胸部を型取ったアクリル製で、肋骨、鎖骨、肩甲骨 および胸椎にヒトの乾燥骨が使用されている. 心臓, 縦隔の材質は不明であるが,撮影された X 線写真から 推察する限り、人体のそれとほぼ同等のX線吸収率を 有すると思われる。肺に相当する部分については、内 部にコルクチップが充填されている。このファントー ムの短所は、肺血管に相当する構造を有さない点であ り、それゆえ、結節影検出実験には適当でない、そこ で、肺血管陰影を作製し、ファントームに付加するこ ととした. この作製に当っては、材料として歯科用印 象剤の Coltoflax[®] (Coltêne, スイス)を使用した. まず, Coltoflax ®を1~2mmの薄い板状に凝固さ せ、次いで血管模様をメスを用いて切り抜いた. こう して作った肺血管模様は、図2の如くファントームの 胸部前面に貼付した.改良を加えたファントームのX 線写真を図3に示す.

II. 偽結節の作製

偽結節も上記 Coltoflax ®を用いて作製した. ROC 解析を行うためには、結節影の検出が容易すぎても、 逆に難しすぎても不都合である¹⁹⁾.そこで,事前に数種 の結節を作製して予備テストを行い,この結果に基づ いて結節のサイズを決定した.すなわち,直径を1 cm,

Fig. 3.Conventional radiograph of the chest phantom with a simulated nodule (arrow).

厚さを1mmとし、結節影の境界が鮮明となりすぎな いよう、結節中央より周辺へ向けて、メスを用いて面 取りを加えることとした.この結果、最終的な偽結節 の形状は、図4に示すような低い丘陵状となった.

III.実験フィルムの作製

実験フィルムの作製に当っては、まず、ファントーム背部の結節貼付予定部位に、マーキングを施した. マーキング部位は、肺野 51 ケ所、左心後部 6 ケ所、横 隔膜下 6 ケ所(左右各 3 ケ所)の合計 63 ケ所である.

撮影に際しては、上記の各部位に、順次結節を移動 させながら、逐一X線撮影を繰返した.これにより得 られたフィルムは、各々にただ1個の結節影を含んで おり、「結節陽性フィルム」と称す.一方,結節影を含 まない「結節陰性フィルム」も、逐一X線撮影を繰返 すことで得られたが、FCR についてだけは、ただ1回 の撮影データさえあれば、全く同一の画像が何枚でも 出力できるので、この方法を活用した.

以上のようにして作製したフィルムは、「結節陽性 フィルム」63 枚、「結節陰性フィルム」63 枚の合計 126 枚を以って1シリーズとした.

作製されたフィルムシリーズは、直接撮影、間接撮 影、FCR で、FCR については、通常線量、1/3線量、 1/6線量、1/10線量の4種を準備したため、全体では 6シリーズとなる。なお、FCR の通常線量シリーズに 関しては、左右各画像の特徴を比較するため、各々を 別々に切り離しておいた。

これら各シリーズのフィルムには、それぞれで、順 番を無作為に並びかえた後、No.1~No.126の番号を

Fig. 4. Schematic illustration of the simulated nodule.

つけておいた.

IV. 撮影および現像処理条件

直接撮影,間接撮影,FCRの撮影および現像処理条 件を表1に示した.各シリーズの撮影電圧は120 kVp とし、フィルム,増感紙および撮影距離などは、実際 の臨床と同一のものを使用した.ただし、直接,間接 両撮影法に於てはフォトタイマーを使用したので、あ らかじめこれらの臨床フィルムの肺野濃度を実測し (濃度計:Fuji, Model 301)、この濃度に近くなるよう フォトタイマーの感度を調節して撮影した.この結果、 実験フィルムの同一部位(右上肺野肋間部)の平均濃 度は、直接撮影1.50、間接撮影1.25、FCR 左画像 1.30、FCR 右面像1.40 となった.

FCR 低線量撮影の撮影条件は表2の如くで,表1の FCR の撮影条件を基準とし,mAs値で1/4,1/16,1/ 56の3種類の低線量撮影を行った.ファントーム表面 に於ける空中線量を線量計(Victreen, 6000A, NERO,アメリカ)で実測した結果,通常線量撮影25.3 mRに比べ,これら3種の撮影線量は各々ほぼ1/3,1/ 6, 1/10 となっていた.

V. FCR の画像処理条件

FCR では、階調処理、空間周波数処理を任意に行う ことができる.著者の施設では,放射線科医の協議に 基づき、胸部画像については以下の如き画像処理条件 を採用している. すなわち, 左画像に関しては, 通常 X線写真と同様なS字型の特性曲線を有する階調処 理(G:1.0E#1.6-0.2.G:階調処理条件を示す略 号,1.0: 階調の勾配で y 値を示す, E: 基本階調の種 類, #1.6: 階調の回転中心濃度, -0.2: 階調の濃度シ フト量12))と,低周波数領域を軽度に強調する空間周波 数処理(R:0R0.5.R:空間周波数処理を示す略号, 0:空間周波数のランクで、数字が大きいほど高周波 数領域を示す, R: 強調の方法, 0.5: 強調の強さで, 0.0~16までの段階を有する12)とを施してある。一 方,右画像に間しては,階調の勾配γを0.9とやや緩 やかにし、かつ特性曲線が直線状を呈する A 階調を使 用しており,空間周波数処理は左画像と同じランクを, 左画像よりは多少強めに強調している(G:0.9A#

Table 1. Technical factors of conventional radiography, photofluorography, and FCR.

	Conventional radiography	Photofluorography	FCR
Exposure :			
System & x-ray tube	Hitachi, DWS-1515GS, UHG-6G-01T	Shimadzu, SM150L, CIRCLEX 1PG10D	Shimadzu, HD150B-30, R-20
X-ray voltage	120 kVp	120 kVp	120 kVp
X-ray current	100 mA	(1.0 µ F condenser)	100 mA
Exposure time	phototimer	phototimer	0.05 sec
FFD, FID	2 m	l m	2 m
Grid	10:1	10:1	8:1
Screen	Toshiba, EM	(Fluorescent screen)	(Imaging plate)
Film	Kodak, XS-1	Fuji, MI-FX	Fuji, CR film type 633
Processing :			,
System	Fuji, RU-I	Fuji, FPM-1000	Fuji, FPM-4000
Temperature	33.5℃	30.0 °C	34.2°C
Time	90 sec	210 sec	90 sec
Image Processing :			Left Image
			G:1.0E#1.6-0.2 R:0R0.5
			Right Image
			G:0.9A#1.6-0.2 R:0R3.0

Note : FFD, focus-film distance ; FID, focus-imaging plate distance.

Table 2. Parameters for FCR lower exposure images, and mesured radiation exposure doses

Series number	Tube voltage (kVp)	Tube current (mA)	Exposure time (sec)	Exposure dose at 2m(mR)
1	120	100	0.05	25.30 (1/1)
2	120	100	0.013	9.35(1/3)
3	120	100	0.003	4.31 (1/6)
4	120	30	0.003	2.39 (1/10)

Note : Relative ratios in parentheses.

1.6-0.2, R: 0 R 3.0).

以上の処理条件のシェーマを図5に示した.

VI. 読影試験

直接撮影,間接撮影および FCR 左右各画像につい ての結節影読影試験は,当教室の3人の放射線科医が 担当した.

読影は結節影の有無だけに限定し、その判定には以 下の5つのカテゴリーを使用した.すなわち、1)結 節は絶対存在しない、2)結節はたぶん存在しない、 3)どちらともいえない、4)結節はたぶん存在する、 5)結節は絶対存在する、の5つである.

読影場所は当院中央放射線部の読影室とし、日常の 診療に使用しているシャウカステンを使用した.間接 フィルムも一枚ずつ切り離されているため、ロール フィルム専用の観察台は使用しなかった.

読影時間には制限を加えず、フィルムに目を近づけ ることも許したが、スポットライトの使用と、他フィ ルムとの比較読影は、これらを禁止した.また、疲労 を防ぐため、一日当りの読影は多くとも2シリーズま でとした.

各読影者は4シリーズの各々を2回ずつ読影した が、初回読影と第2回めの読影との間隔は1~2ケ月 とした。

FCR 低線量撮影フィルムの読影は,著者一人が行った. 読影回数も1回のみで, FCR 左右両画像を同時に

見比べながら行った。

VII. ROC 解析

読影試験の結果は ROC 解析を用いて評価した. 結 節影検出能を代表するパラメータには ROC area (area under ROC curve^{20)~23)}, Az と略)を用いたが, その計算には Dorfman & Alf の開発した最尤推定法 (maximum-likelihood estimation)に基づくコン ピュータープログラム²⁴⁾ (FORTRAN から BASIC に変換して使用)を利用した.

直接撮影,間接撮影,FCR 左画像および右画像の4 者間の結節影検出能に対する統計的有意差検定は, Swetz らの方法²³⁾に従って行った.すなわち,各シリー ズに対する3人の読影者のAzの平均値を算出し,こ れらの平均値間の差について標準正規差検定(z-検 定)を行う.なお,ここで使用する標準誤差の算出法 は煩雑であるため,詳細は文献^{21)~23)}に譲り,以下には 使用した計算式のみを記す.

 $Z = \frac{Az_1 - Az_2}{S.E._{(diff)}}$ S.E._{(diff)} = 2[‡] [S²_{c+wr}(1-r_{c-wr}) + $\frac{S^2_{br+wr}}{(1-r_{br-wr}) - S^2_{wr}}]^{\ddagger}$

一方, FCR 低線量撮影の結節影検出能に対する統計 的有意差検定は,一回のみの読影結果を使用するため,

Fig. 5. Image processing of FCR left and right images.

A.Characteristic curves of FCR left and right images. The left image has a sigmoid shaped curve similar to the conventional film-screen radiographs, while the right image has that of an almost linear fashion. Therefore, the right image has more wide latitude than the left at the expense of some contrast.

B. Response curves of FCR left and right images. In both images, the low spatial frequency ranges are slightly enhanced (stronger in the right image).

Hanley らの方法²¹⁾に従って行った.その計算式を以下に示す.

 $Z = \frac{Az_1 - Az_2}{\sqrt{SE_1^2 + SE_2^2 - 2rSE_1SE_2}}$

上記 z-検定はいずれも両側検定とし、前者では p< 0.01,後者では p<0.05 を以って有意と判定した.

成 績

I. 直接撮影,間接撮影,FCR 左画像および FCR 右画像の結節影検出能の比較

3人の放射線科医による結節影検出成績は表3(初 回読影の成績を以って評価し,再読影成績は統計的有 意差検定にのみ使用)の如くである。各シリーズごと の3人の読影成績のAz値の平均を,各画像の結節影 検出能と考えると,直接撮影0.774,間接撮影0.789, FCR 左画像0.963, FCR 右画像0.952となり, FCR 左 画像の結節影検出能が最も優れ,次いでFCR 右画像, 間接撮影,直接撮影の順となった。

4 シリーズ各々の平均 ROC 曲線は図 6 の如くである.

統計的有意差検定によると, FCR の左画像および右 画像の各々は,直接撮影または間接撮影のいずれとの 間にも有意差(p<0.01)を有していた.

 II. 肺野, 左心後部および横隔膜下の部位別結節影 検出率の比較

結節影をその存在部位に応じて,肺野,左心後部, 横隔膜下の3部位に分類した.

各画像にとって結節影の検出が容易な部位,または 逆に困難な部位があるか否かを検討するため,上記3 部位各々の結節影検出率を算出し,表4に示した.な お,検出率の算出に当っては,「結節陽性フィルム」の うち,カテゴリー4)または5)と判定されたものを 検出陽性と見做した.成績は3人の読影結果の累積値 である.

肺野の結節影に関しては, FCR 左画像で検出率が最 も高く 85.6%, 次いで FCR 右画像の 84.3%, 直接撮 影の 67.3%, 間接撮影の 66.0%の順であった.

左心後部の結節影に関しては, FCR 右画像で検出率 が最も高く 88.9%, 次いで FCR 左画像の 72.2%, 直 接撮影,間接撮影のともに 61.1%の順であった.

Modality	Reader	Reading Occasions 1 st 2 nd				Mean Az
		Az	S ² _{c+wr}	Az	S ² _{c+wr}	
Conventional Radiography	1 2 3	0.786 0.722 0.813	0.0018 0.0023 0.0019	0.881 0.762 0.911	0.0010 0.0020 0.0008	0.834 0.742 0.862
	Mean	0.774	0.0020	0.851	0.0013	0.813
Photo- fluorography	1 2 3	0.779 0.820 0.769	0.0023 0.0018 0.0024	0.762 0.814 0.838	0.0035 0.0026 0.0022	0.771 0.817 0.804
	Mean	0.789	0.0022	0.805	0.0028	0.797
FCR Left Image	1 2 3	0.966 0.977 0.959*	0.0003 0.0002 0.0006	0.953 0.976 0.985	0.0011 0.0003 0.0001	0.960 0.977 0.972
	Mean	0.963	0.0003	0.971	0.0005	0.968
FCR Right Image	1 2 3	0.950* 0.972 0.935*	0.0007 0.0003 0.0009	0.970 0.975 0.964*	0.0004 0.0003 0.0007	0.960 0.974 0.950
	Mean	0.952	0.0006	0.970	0.0005	0.961

Table 3. Values of Az and S_{c+wr}^{z} derived from the nodule detection test (Three readers read twice each of the case samples from the four modalities).

The values of Az and S^2_{e+wr} were estimated by Dorfman & Alf's computer program. * Values obtained from corrected original data. In these reading occasions the reader did not use any categories 4) and 5) for the negative films[#], and therefore convergence could not be obtained by this computer program. To solve this problem, the author pooled these two categories into one (i. e. 5 categories were collapsed into 4 and recomputation was done.

Negative films are those with no nodules.

藤

横隔膜下の結節影に関しては,FCR 右画像で検出率 は100%に達し,次いでFCR 左画像の72.2%,直接撮 影の38.9%,間接撮影の0%の順であった.

すなわち,FCR 左画像は肺野の結節影の検出に優 れ、一方、FCR 右画像は左心後部および横隔膜下の結 節影の検出に優れていることが分る.

今,各結節影を,3人の読影者がともに検出できた ものと,逆に2人以上の読影者が見落したものとに分 けて,それぞれの結節影の分布を図示してみる(図7. A,B).

図 7A は、検出容易な結節影の分布となるが、FCR 右画像の横隔膜下は、結節影検出の極めて容易な場所 であることが再度確認できる。

一方,図7Bは,検出困難な結節影の分布を示すが, 各画像に共通して肺門周囲に分布が集中しているのが 分る.さらに,直接撮影,間接撮影の両者では,横隔 膜下も結節影検出の困難な場所となっている.

Ⅲ.結節影検出率に及ぼす障害陰影の影響

肋骨,血管など,正常構造の陰影が結節影と重なる と,結節影は見えにくくなり,時に,見落しの原因と なることがある.そこで,肺野の結節影を対象に,障 害陰影の有無と結節影見落し率との関連について検討 した.

肺野の 51 結節のうち, 肋骨, 血管, 縦隔などと, ー 部分でも重なりを有するものは 44 結節 (86.3%)であっ た.

「結節陽性フィルム」に対し,カテゴリー1)~3) のいずれかが与えられている場合を見落し例と考える と,障害陰影の有無と見落し率との関係は表5の如く であった.

障害陰影の無い結節影では、平均見落し率がわずか 4.8%であるのに対し、障害陰影を有する結節影では、 27.3%にも達していた.したがって、障害陰影が結節 影の見落し率を増大させていることは確実である.

しかし、障害陰影の有る場合でも、その見落し率に 関しては、各画像間でかなりの差異を認める.すなわち、 直接撮影、間接撮影ではともに 37.1%の高い見落し率 を示したのに対し、FCR 左画像で 16.7%、FCR 右画像 で 18.2%と、FCR の両画像ではその見落し率が比較 的低く抑えられていた.

IV. FCR 低線量撮影の検討

FCR の通常線量撮影, 1/3 線量撮影, 1/6 線量撮影, 1/10 線量撮影の4 者について, 各々の結節影検出能を 比較した.

結節影検出能は表6に示す如くで,Az値は通常線 量(1/1)で0.978,1/3線量で0.965,1/6線量で 0.921,1/10線量で0.851と漸次低下の傾向を示した. ROC曲線を示すと図8の如くである.

統計的有意差検定の結果, 1/1線量対 1/10線量, 1/ 3線量対 1/10線量の両者に各々有意差(p<0.05)を 認めた.

Table 4. Nodule detection rates* in lung fields, retrocardiac, and subdiaphragmatic regions. (Pooled data of 3 readers)

(1 00104 1111					
	Conventional Radiography	Photofluorography	FCR Left Image	FCR Right Image	
Lung Fields Retrocardiac Region Subdiaphragmatic Region	67.3%(103/153) 61.1%(11/ 18) 38.9%(7/ 18)	66.0%(101/153) 61.1%(11/ 18) 0 %(0/ 18)	85.6%(131/153) 72.2%(13/ 18) 72.2%(13/ 18)	84.3%(129/153) 88.9%(16/ 18) 100 %(18/ 18)	
Mean	64.0%(121/189)	59.3%(112/189)	83.1%(157/189)	86.2%(163/189)	

*Positive films (each of them has only one nodule) rated into the category 4) or 5) were regarded as positive.

考 察

従来のフィルムー増感紙系 X 線撮影システムは, 確かに優れた X 線情報の記録システムである¹³⁾.

しかし、X 線フィルムは、それぞれに個有のS字型 の特性曲線を有しており、そのため、画像情報として 記録、利用できる X 線量の範囲は比較的狭く限定され ている. 一方、FCR の IP では、記録、利用できる X 線量の範囲は $10^{-2} \sim 10^3$ mR と極めて広い¹¹⁾¹².

また、フィルムー増感紙系では、一旦写真が出来上 ると、この X 線写真からしか X 線情報をひき出すこ とができないため、利用できる X線情報量は、この写 真の仕上りの良否により制約されることになる. これ に対し FCR では、一回の X線撮影により IP に記録 される X線情報量が豊富であるのみならず、診断目的 に応じて種々に画像処理を施した画像を、何度でも、 何枚でも、繰返し出力することが可能である.

このように, FCR は今や, フィルムー増感紙系 X 線 撮影の優れた X線情報記録システムとしての地位を脅 かしつつある.

臨床の場に於ける FCR の有用性に関する報告も既 に幾つか認められ,蜂屋ら²⁵⁾は,胸部領域での FCR の

Fig. 7. Distributions of nodules which are easy or difficult to detect.

A. Nodules easy to detect. These nodules were rated into the category 4) or 5) by all 3 readers.

B. Nodules difficult to detect. These nodules were rated into the category 1), 2), or 3) by more than 2 readers.

	Without structured noise	With structured noise
Conventional Radiography	4.8%(1/21)	37.1%(49/132)
Photofluorography	0%(0/21)	16.7%(22/132)
FCR Left Image	0%(0/21)	18.2%(24/132)
FCR Right Image	14.3%(3/21)	37.1%(49/132)
Mean	4.8%(4/84)	27.3%(144/528)

Table 5. Detection error rates of nodules with or without structured noise* (Pooled data of 3 readers).

*Structured noise : Normal lung structures such as ribs or pulmonary vascular vessels superimposed on the lung nodules.

使用経験をもとにして,正常例では全例で臨床診断学 的観点からの画質向上が認められ,病変例の単純撮影 および断層撮影では,40~50%に病変描出能の改善が 認められたと報告している.また,江口ら²⁶⁾は,肺癌集 検に FCR を用いた経験から,読影に不適切な画質の バラつきがなくなり,特に中央陰影の分析や肺野血管 影の読影に有利であったと報告している.

1164

本研究の目的も、肺癌集団検診への FCR の導入が 可能か否か、もし可能とすれば如何なる有用性があ るかについて検討することである.また、肺癌集検 に於ける胸部 X 線撮影の主目的は、肺野型肺癌の早期 発見にある.

さて、X線撮影で発見し得る最も小さな肺癌はどれ ぐらいの大きさであろうか.荒井ら²⁷⁾によれば,未分化 癌,類表皮癌および腺房・腺管型腺癌(肺胞内腔充実 型の発育を示すため,比較的境界鮮明な,濃い結節影 を呈する)では、0.6 cm で発見可能であるが,乳頭型 および肺胞上皮型腺癌(肺胞隔壁を被覆するように発 育し,肺胞内腔の含気は保たれるため,境界不鮮明な, 淡い浸潤影を呈する)では、1.0~1.5 cm になって始め て発見可能であるとされる.また,坪井²⁸⁾は,最近,肺 癌集検の普及にともなって、1 cm 以下の微小な陰影が 肺癌疑いとして検出され、鑑別診断の対象にされるこ とが非常に多くなってきたと述べている.

以上の報告から推測すれば X 線撮影で発見し得る 最小の肺癌は 0.5 cm 前後と考えられ, 径 1 cm の結節 影では,特別の場合を除き,当然検出されてよいサイ ズと考えられる.したがって,径 1 cm の結節影の検出 能を指標とした今回の実験は,各画像の画質の比較を 行う上で妥当であったと考える.ただし,実験の結 節影は,現実の肺癌の陰影に比べれば,種々の点で相 違がある.したがって,今回の実験結果から評価でき るのは,FCR を含む各画像の小結節性陰影に対する存 在診断能についてであって,鑑別診断能についてでは ない.

それでは、今回の実験結果につき、以下順を追って

Table 6. Values of Az and S²_{c+wr} derived from the nodule detection test using FCR lower exposure images

Series	Az	S ² _{c+w}
The standard dose	0.978*	0.0004
1/3 dose	0.965	0.0005
1/6 dose	0.921*	0.0013
1/10 dose	0.851*	0.0022

*Values obtained from corrected original data (See also the footnote of Table 3). 考察する.

まず始めに,直接撮影,間接撮影,FCR 左画像および FCR 右画像の4 者に於ける結節影検出能の比較結 果について考察する.

ROC 解析の結果, FCR 左画像の Az が 0.963 と最 良で,これに FCR 右画像の 0.952 が続いた.この両者 の差異に統計的有意差は認められなかったが,その内 容を詳細に分析してみると,以下の興味ある事実が明 らかとなる.

図 5A に示した如く, FCR 左画像では FCR 右画像 に比べ階調の匂配がやや大きいため, 肺野領域に於け る結節影のコントラストはより大となる.したがって, 肺野領域の結節影の検出率は FCR 左画像で当然良く なるものと期待される.実際,表4から明らかなよう に,FCR 左画像の肺野結節影検出率は 85.6%で,FCR 右画像の 84.3%に比べわずかながら勝っている.

一方, FCR 右画像では, 階調の句配 γ が FCR 左画 像に比べ小さいため, 画像のコントラストは全体に低 下する.しかし, その特性曲線が直線状を呈するため, 低濃度領域に於ける, いわゆる「足」の部分が存在し ない.したがって, 左心後部や横隔膜下などの低濃度 領域に存在する結節影であっても, そのコントラスト は保たれる.ゆえに, これらの部位の結節影は, FCR 右画像でより検出され易く, 表4によれば, 左心後部 で 88.9%,横隔膜下で 100%の結節影検出率を示して おり, FCR 左画像の各々72.2%に比べはるかに高率で ある.

以上の如く,FCR 左画像は肺野の結節影の検出に優

れ, FCR 右画像は左心後部および横隔膜下の結節影の 検出に優れている.

また,各部位の結節影検出率に関する両画像間の差 異は,肺野よりも左心後部および横隔膜下で,はるか に大きい.しかし,結節影の大部分は肺野に存在する ため,各画像の最終的な結節影検出能は,肺野結節影 の検出能に大きく依存することになる.

以上の理由により, FCR 左右両画像の結節影検出能 に大きな差異は認められないが,上記左右両画像間の 特徴の違いは,臨床的に重要な意義を持つ.すなわち, 左右両画像を同時に見比べながら読影を行えば,肺野, 左心後部,横隔膜下等全ての胸部領域に対し,盲点の ない,見落しの少ない診断を行える可能性がある.

次に,直接撮影,間接撮影両者の結節影検出能につ いてであるが,各々のAz値は,0.774,0.789で,い ずれも FCR 左右両画像に比べ,有意 (p<0.01) に低 い検出能を示した.

果たしてこの結果は,直接,間接両撮影法が,FCR に比べて劣ることを意味するのだろうか.

先にも述べたように,直接,間接両撮影法に於ては, 使用されるフィルムのラチチュードが IP に比べはる かに狭い.そのため,被写体に応じた最良の画質を得 るためには,厳密な撮影条件の設定が必要である.

今回使用した撮影条件は、臨床の現場で、人体を撮 影しているものと同一である。それゆえ、ファントー ムにとって最適な撮影条件かどうかについては疑問があ る。実際、この条件で撮影された直接、間接両 X 線写 真では、フィルム濃度が高くなりすぎる傾向を示した ため、フォトタイマーの感度を調節せざるを得なかっ た。すなわち、ファントームの X 線透過性は、人体に 比べ極めて高いことが示唆される。

ところで、今日の一般的な胸部 X 線撮影の撮影方法 としては、撮影の電圧、電流をあらかじめ決めておき、 フォトタイマーを使用して、自動的に撮影時間をコン トロールし、常に一定のフィルム濃度が得られるよう にしている場合が多い.さらに、撮影電圧に関しては、 120 kVp 以上の、いわゆる高圧撮影を採用することが 一般的となってきている.

本来,高圧撮影は,X線の被写体透過性を増大させ, 写真のコントラストを低下させるが,空気と軟部組織 の間より,骨と軟部組織の間に於て,より一層,コン トラストの差を小さくするといわれる²⁹⁾⁻³²⁾.そのた め,縦隔,心臓,横隔膜の背後に隠れる肺野部分が良 く透見されるとともに,読影の障害となり得る肋骨な どの骨陰影は減弱し,肺内病変の診断可能域が著しく 拡大される.

さらに高圧撮影は,X線被曝量も軽減できるため,

胸部 X 線撮影にとっては理想的な方法と考えられて いる.

今回の実験では、人体に比べて X 線透過性が極めて 高いと考えられるファントームに対し、高圧撮影がな されているため、X 線写真のコントラストは、より一 層低下していることが予想される。そのため、直接、 間接両撮影法に関しては、実験の撮影条件が適切さを 欠いている可能性が極めて大きい。

ゆえに,直接,間接両撮影法に於ける結節影検出能 の不良は,必ずしもこれらの撮影法自体が FCR に比べ て劣ることを意味しない.むしろ,撮影条件に適切さ を欠いたため,FCR の持つもうひとつの重要な特徴が 明らかにされる結果となった.すなわち,撮影条件に 不備があると,直接,間接両撮影法では直ちに画質の 低下を来たすのに対し,FCR ではそのワイドラチ チュードのゆえに,画質の低下を免れ得るということ である.

FCR の有するこの特徴は,短時間に多数の受診者の 撮影を行う必要がある肺癌集検にとって,極めて有効 な点となる可能性がある.

次に,結節影の検出に及ぼす障害陰影の影響につい て考察する.

Kundel ら¹⁸⁾は,結節性肺病変の見落しの問題に関し て検討し、結節影の検出に影響する因子として、サ イズ,形状および陰影濃度など物理的因子のみならず、 結節影周囲の構造(肋骨,血管,縦隔,横隔膜,心臓 などの陰影)も考慮に入れるべきであると述べている。 彼らは, conspicuity(目立ち易さを示す指数, conspicuity=lesion contrast/surround complexity) > いう新しい概念を導入し、この指数と結節影の検出の 容易さはよく対応するとしている.また,河野ら³³)は、 集検発見肺癌の前回フィルムの分析を行ったところ, 62%に所見の見落しがあったとし、その原因として、 肋骨との重なり(29%),末梢血管との重なり(22%), 肺門陰影との重なり(14%)等々をあげている. さら に、Breckenridgeら34)も肺野結節影の見落し例を分析 し、心臓、縦隔、肺門部血管、肋骨、横隔膜などとの 重なりが,見落しの原因となっていたと報告している.

以上のように、肺の正常構造が結節影と重なった場 合、結節影の検出が障害されることは明らかで、 Kundel ら¹⁸⁾が structured noise (障害陰影) と呼んだ のはまさに至言と言える.

著者も、肺野結節影に限った障害陰影の影響を検討 したところ、障害陰影の影響を受けない結節影の見落 し率は平均4.8%と低いのに対し、障害陰影の影響を 受ける結節影の見落し率は平均27.3%と高い値を示 していた。しかし、各画像別に比較すると、FCR 左画 像の見落し率は 16.7%, FCR 右画像のそれは 18.2% で, FCR の両画像に於ては, たとえ障害陰影に結節影 が重なっても, その影響は概して低く抑えられている と思われた.

障害陰影に対するこの FCR の優位は,先にも延べ たように,FCR の画質が直接,間接両撮影法に比較し て,良好であったことによるが,さらに別の要因とし ては,空間周波数処理による結節影境界線の強調効果 もあげることができる.しかし,その効果の関与は, FCR 左右両画像の見落し率で比較する限り,それほど 大きいものとは考えられない.

ちなみに、FCR の空間周波数処理のかけ方は、櫻井 ら¹⁰⁾および蜂屋ら²⁵⁾の施設と著者の施設とでは相違が ある.すなわち、前者では高周波数領域(0.35 cycle/ mm 中心)を強調しているのに対し、著者の施設では 低周波数領域(0.07 cycle/mm 中心)を強調してい る.結節影の検出にどちらが有利か、一概に決められ ないが、高周波数領域を強く強調した画像では、線状 影が目立ちすぎ、かえって障害陰影の影響を強める結 果となる恐れがある.

最後に,FCRの低線量撮影の限界について考察する.

FCR では、IP が極めて高感度であるため、低線量撮 影を行っても、かなり良質の画像を作り出すことがで きる (図9.A, B, C, D). しかし、撮影線量を減らせば 減らすほど、粒状性 (radiographic mottle)は悪化し、 いわゆるざらついた画像となる.

今回の実験では、ファントームの胸部前面に於ける 空中線量の実測に基づいて、通常線量に対して、各々 1/3,1/6,1/10の3種のFCR低線量撮影像を作製し た。

これら3種の低線量撮影像と通常線量撮影像の4者 について、結節影検出能を比較してみると、通常線量 (1/1)0.978、1/3線量0.965、1/6線量0.921、1/10線 量0.851であり、撮影線量の減少にともなって、結節 影検出能も漸次低下を示した.

なお,統計的有意差検定によれば, 1/1 線量対 1/10線量に有意差 (p < 0.05)を認めたが, 1/1 線量対 1/3線量 (p = 0.64), 1/1 線量対 1/6 線量 (<math>p = 0.15)の両 者には,有意差を認めなかった.

以上の結果によれば、通常線量と比較して結節影検 出能を有意に低下させることのない低線量撮影の限界 は、一応、1/6線量までと考えられる。しかし、1/1線 量対 1/6線量では、p=0.15であり、統計的には有意で ないとしても、その結節影検出能の差はかなり大きい、

また,現実の肺癌の中には,1cmより小さいもの, 淡い浸潤影しか呈さないものなど,より検出の困難な 症例が存在する,

したがって、FCR低線量撮影の限界線量に関して は、1/6線量よりは1/3線量をとる方がより安全と考 える.なお、1/3線量とは、実測値で9.35mRである.

胸部 X 線撮影の1回当りの平均線量に関しては, Butler ら³⁵⁾の20 mR, 遠藤ら³⁶⁾の25.8 mrem (皮膚線 量)などの報告があり、これらと比べても、上記の1/ 3線量は、 $1/2\sim1/3$ の線量に相当することになる.肺 癌集検に FCR を導入し、その撮影線量を $1/2\sim1/3$ に 軽減できるとすれば、受診者1人当りの被曝線量低減 としてはわずかでも、集団検診全体としては大変な量 となる.ゆえに、FCR を肺癌集検に導入することは、 被曝線量低減の面からも有用と考えられる.

以上の種々の考察から明らかなように、FCR という デジタル画像システムは、色々と優れた性能を有して いる.

まず第一に、その画質が極めて優れていること.第 ニにワイドラチチュードのため、撮影の失敗が少ない こと.第三に、画像処理の異なる2画像が並んで提示 されるため、両画像を見比べながら読影を行えば、胸 部の各領域に対して、盲点のない、見落しの少ない診 断が可能となること.第四に、集団検診に使用する場 合、低線量撮影を行えば、X線被曝量の大幅な低減も 可能となること、等々である.

ただし、現在の FCR には、幾つかの短所も存在す る. すなわち、第一に、装置自体が大型で、かつ高価 でもあるため、集検などに広く使用するには限界があ る. 第二に、IP は傷つけたりしない限り、半永久的に 繰返し使用できるとされているが、実際には傷つき易 い. 第三に、画像の観察が CRT 上で行えず、症例に 応じた最適な画像処理を即座には行えない。第四に、 画像一枚当りの、読み取りから出力までは3分と短い が、1日当りの処理件数は、間接撮影の最大400~600 には遠く及ばず、肺癌集検への応用には限界がある。 第五に、画像情報の保存に磁気テープを使用している ため、過去の画像の検索と再出力に時間がかかる、等々 である。

今後、以上のような技術的側面が改善されるなら、 FCRの肺癌集団検診への導入は、極めて有用性が高い と考えられる。

論

結

デジタル画像の一種である FCR に関し, 肺癌集団 検診への導入が可能か否かについて検討を行った. こ の検討に当っては, ファントーム実験を行って, 直径 1 cm の結節性陰影の検出能を指標とした.この結果, 以下のような結論を得た.

(A)

(B)

Fig. 9. FCR lower exposure images. All images are the same phantom with only one nodule in its left upper lung filed (arrows).

A. The standard dose B. 1/3 dose C. 1/6 dose D. 1/10 dose Note that the more decreases the exposure dose, the more increases the quantum noise, therefore, the nodule detection becomes more and more difficult.

1. FCR は小結節性陰影の検出能に優れ,撮影条件 が多少不適切であったとしても,そのワイドラチ チュードのゆえに画質の低下を免れ得る.

1168

2. FCR の左画像(通常のフィルムー増感紙系と 類似した画像)は、肺野の結節影の描出に優れ、右画 像(縦隔,横隔膜下などの低濃度領域が見易くなるよ うに画像処理を加えた画像)は、左心後部および横隔 膜下の結節影の描出に優れているため、左右両画像を 同時に見比べながら読影することにより、見落しの少 ない、精密な診断が可能である.

3. 肋骨, 血管影など, 障害陰影が結節影に重なった場合, 結節影の検出は一般に困難となるが, FCR に 於ては, 障害陰影の影響は比較的小さい.

4. FCR では低線量撮影も可能だが、その限界は通 常線量のほぼ 1/3 までと考えられた.

以上より, FCR の肺癌集団検診への導入は,結節性 陰影の診断能向上とX線被曝量低減にとって,極めて 有用性が高いと結論された.

謝 辞

稿を終えるに臨み,御指導,御校閲を賜りました恩師高島 力教授に深甚の謝意を表します.また,多数の実験フィルム の読影に御協力賜りました教室の上村良一,長東秀一,永田 一三の各先生に深謝致します.さらに,終始本実験に御協力 賜りました本院中央放射線部技官,飛坂実,飯田泰治,魚山 義則の各氏,並びに石川県対がん協会および結核予防会石 川県支部の方々にも合わせて深謝致します.

文 献

1) 厚生統計協会:昭和61年「国民衛生の動向」.厚 生の指標.33,53-56 (1986).

Overholt, R. H.: Cancer detected in surveys.
Am. Rev. Tuberc., 62, 491-500 (1950).

3) 鈴木千賀志,金渕一郎,橋本邦久,押部光正,針 生建吉,伴場次郎:結核検診フィルムを利用した肺癌 の集団検診.内科,19,828-837 (1967).

4) Frost, J. K., Ball, W. C. Jr., Levin, M. L., Tockman, M. S., Baker, R. R., Carter, D., Eggleston, J. C., Erozan, Y. S., Gupta, P. K., Khouri, N. F., Marsh, B. R. & Stitik, F. P. : Early lung cancer detection : Results of the initial (prevalence) radiologic and cytologic screening in the Johns Hopkins study. Am. Rev. Respir. Dis., 130, 549-554 (1984).

5) Flehinger, B. J., Melamed, M. R., Zaman, M. B., Heelan, R. T., Perchick, W. B. & Martini, N. : Early lung cancer detection : Results of the initial (prevalence) radiologic and cytologic screening in

the Memorial Sloan-Kettering study. Am. Rev. Respir. Dis., **130**, 555-560 (1984).

6) Fontana, R. S., Sanderson, D. R., Taylor, W. F., Woolner, L. B., Miller, W. E., Muhm, J. R. & Uhlenhopp, M. A.: Early lung cancer detection: Results of the initial (prevalence) radiologic and cytologic screening in the Mayo Clininic study. Am. Rev. Respir. Dis., 130, 561-565 (1984).

7) Sommer, F. G., Smathers, R. L., Wheat, R. L., Alvarez, R. E., Brody, W. R. & Cassel, D. M.: Digital processing of film radiographs. Am. J. Roentgenol., 144, 191-196 (1985).

 Sashin, D., Sternglass, E. J., Slasky, B. S., Bron, K. M., Herron, J. M., Kennedy, W. H., Shabason, L., Boyer, J., Pollitt, A. E., Latchaw, R. E., Girdany, B. R. & Simpson, R. W.: Diode array digital radiography: Initial clinical experience. Am. J. Roentgenol., 139, 1045-1050 (1982).

9) Tesic, M. M., Mattson, R. A., Barnes, G. T., Sones, R. A. & Stickney, J. B.: Digital radiography of the chest: Design features and considerations for a prototype unit. Radiology, 148, 259-264 (1983).

10) Kalender, W. A., Hubener, K. H. & Jass, W.: Digital scanned projection radiography: Optimization of image characteristics. Radiology, 149, 299-303 (1983).

11) Sonoda, M., Takano, M., Miyahara, J. & Kato, H.: Computed radiography utilizing scanning laser stimulated luminescence. Radiology, 148, 833-838 (1983).

高野正雄: FCR システムの基礎原理. 画像診断,
4, Suppl. 1, 131-135 (1984).

13) 高野正雄: FCR の目的と背景. 日放技学誌, 41, 43-48 (1985).

 14) 櫻井賢二. 蜂屋順一, 是永健雄, 似鳥俊明, 宮坂 康夫, 古屋儀郎: ディジタル化胸部撮影について-正 常胸部および低線量撮影での比較-. 日本医放会誌,
44, 11-22 (1984).

15) 山田達哉, 江口研二: FCR の臨床 胸部. 画像診 断, 4, Suppl. 1, 7-15 (1984).

16) Metz, C. E. : Basic principles of ROC analysis. Semin. Nucl. Med., 8, 283-298 (1978).

17) Swets, J. A.: ROC analysis applied to the evaluation of medical imaging techniques. Invest. Radiol., 14, 109-121 (1979).

18) Kundel, H. L. & Revesz, G.: Lesion con-

spicuity, structured noise, and film reader error. Am. J. Roentgenol., **126**, 1233-1238 (1976).

19) Swets, J. A. & Pickett, R. M.: Evaluation of Diagnostic Systems, lst ed., p144-151, Academic Press, New York, 1982.

20) Hanley, J. A. & McNeil, B. J.: The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 143, 29-36 (1982).

21) Hanley, J. A. McNeil, B. J.: A method of comparing the areas under receiver operating characteristic curves derived from the same cases. Radiology, 148, 839-843 (1983).

22) McNeil, B. J., Hanley, J. A., Funkenstein H. H. & Wallman, J.: Paired receiver operating characteristic curves and the effect of history on radiographic interpretation. Radiology, **149**, 75-77 (1983).

23) Swets, J. A. & Pickett, R. M.: Evaluation of Diagnostic Systems, 1st ed., Academic Press, New York, 1982.

24) Dorfman, D. D.: RSCORE II. *In* Swets, J. A. & Pickett, R. M., Evaluation of Diagnostic Systems, lst ed. p212-232, Academic Press, New York, 1982.

25) 蜂屋順一, 櫻井賢二, 是永建雄, 宮坂康夫, 似鳥 俊明, 若狭勝秀, 古屋儀郎: 胸部疾患の診断とデジタ ルラジオグラフィー. 医学のあゆみ, 127, 1292-1298 (1983).

26) 江口研二,阿南充洋,山田達哉: 肺癌集検に応用 した FCR について.画像診断, 4, Suppl.1, 16-22 (1984).

27) 荒井他嘉司,塩原順四郎,塩沢正俊,岩井和郎:増 大速度,発見時の大きさからみた肺野型肺癌の早期発 見に関する問題点.肺癌,16,7-13 (1976). 28) 坪井栄孝: 肺癌集検の問題点. 日胸, 45, 555-564 (1986).

29) Revesz, G., Shea, F. J. & Kundel, H. L. : The effects of kilovoltage on diagnostic accuracy in chest radiography. Radiology, 142, 615-618 (1982).

30) Herman, P. G., Goldstein, J., Balikian, J., Sandor, T., Hessel, S. J. & Drummey, J.: Visibility and sharpness of lung structure at 90, 140, and 350 kV. Radiology, **134**, 591-597 (1980).

31) Kelsey, C. A., Moseley, R. D., Mettler, F. A., Garcia, J. F., Parker, T. W., & Briscoe, D. E.: Comparison of nodule detection with 70 kVp and 120 kVp chest radiographs. Radiology, 143, 609-611 (1982).

32) Herman, P. G., Drummey, J., Swensson, R. G., Hessel, S. J. & Balikian, J. P.: 350 kV chest radiography has no diagnostic advantage : A comparison with 140 kV technique. Am. J. Roentgenol., 138, 485-489 (1982).

33) 河野通雄,原 眞咲,鈴木啓史,奥村恵利子,伴 野辰雄,松尾導昌,育木正和,荒井他嘉司,守谷欣明, 坂井英一,山本二三子,池田茂人:集検により発見さ れた肺癌症例の前回 X 線写真の検討,臨床放射線,30, 945-949 (1985).

34) Breckenridge, J. W. & Bird, G. C.: Errors of omission in pulmonary nodule detection. Applied Radiology,6, 51-54 (1977).

35) Butler, P. F., Conway, B. J., Suleiman, O. H., Koustenis, G. H. & Showalter, C. K.: Chest radiography: A survey of techniques and exposure levels currently used. Radiology, 156, 533-536 (1985). 36) 遠藤幸一,石坂正綱: 医療被曝の最適化に関する 研究: 胸部 X 線直接撮影条件による皮膚線量. 日放技 学誌, 42, 635-642 (1986). 1170

Computed Radiography: Evaluation of Its Role in the Mass Survey for Lung Cancer: Phantom Study Hiroshi Itoh, Department of Radiology, School of Medicine, Kanazawa University, Kanazawa 920-J. Juzen Med. Soc., 96, 1155-1170 (1987)

Key words: computed radiography, FCR, lung cancer, mass survey, ROC analysis

Abstract

The role of computed radiography in the mass survey for lung cancer was evaluated by the nodule detection test using a humanoid chest phantom. First, the nodule detectabilities of conventional (film-screen) radiography, photofluorography, and computed radiography (FCR, Fuji Medical Systems, Kanagawa, Japan) were compared by means of receiver operating characteristic (ROC) analysis. FCR left and right images were assumed to be different modalities and were evaluated separately. The values of Az (area under ROC curve) for these 4 modalities were as follows ; 0.774, 0.789, 0.963, 0.952, respectively. This strongly suggests that FCR left and right images are superior to the other two modalities in the nodule detection. However, this tentative conclusion is probably incorrect because the exposure technique at 120 kVp has not always been optimal for our chest phantom, and because FCR has a wider latitude than the other two modalities. Therefore, it is more accurate to say that the degradation of image quality can be avoided only in FCR in spite of an improper exposure technique employed. Second, each of the nodule detection rates in three anatomical regions (i. e. lung fields, retrocardiac region, and subdiaphragmatic region) among the 4 modalities were compared. The higher detection rates were obtained in lung fields on FCR left image, and in both retrocardiac and subdiaphragmatic regions on FCR right image. Hence, one may be able to screen lung nodules more and more precisely, if one reads FCR left and right images at the same time. Third, the nodule detection rates with or without structured noise (normal structures such as ribs or pulmonary vessels superimposed on the nodules) were compared. In FCR the detection rates of nodules even with structured noise did not decrease as much as in the other two modalities. Finally, to estimate the lower limit of exposure reduction by FCR, the nodule detectabilities were compared in the 4 images prepared by the standard, 1/3, 1/6, and 1/10 radiation exposures. The values of Az were as follows : 0.978, 0.965, 0.921, and 0.851, respectively. The statistical significance test showed that the difference of Az between the images obtained by the standard and 1/3 radiation doses was never significant. Therefore, it seems that the radiation dose can be reduced to the 1/3 level of the standard dose without affecting the nodule detectability. These results indicate that the application of FCR to the mass survey for lung cancer is extremely useful both in the screening of nodular lung lesions and in the reduction of radiation doses.