脳腫瘍 ならびに 脳損傷時における腎の変化についての研究

金沢大学医学部第一外科教室(主任 卜部美代志教授)

向 永 光

(昭和40年9月7日受付)

近年,諸種の臨床検査の開発がめざましく,脳神経外科領域でも,脳腫瘍ならびに脳損傷の正確な診断と治療とは著しい進歩をとげている.一方,産業および交通の発達に伴ない,頭部外傷が増加の傾向をたどり,臨床的にもその重要性が認識せられ,各分野からその病態生理が追求されている.

わが教室においては、さきに泉りが中枢性肺水腫、 菊地のが脳損傷時における肝の変化について報告した。著者は、それら系統的研究の一環として、中枢と 腎との関係について検索を試みた。

麻酔および手術侵襲時の腎機能について,Merrill ³⁾,Papper ⁴⁾らは腎血管,ことに輸出血管の収縮がみられ,血圧下降がある時にはこれによって代償的に他 臓器により多くの血流を保たんとする一種の homeostasis の現象が起り,さらに腎血管抵抗の増強,腎血流量の減少,糸球体濾過値の低下,滤過率の上昇が起ると述べている.しかし,一般外科におけると異なり,頭部損傷時には shock 症状を呈する例は比較的少なく,渋沢りは頭部外傷時には血圧下降に拮抗する機序があるのではないかと考えている.中村のも頭部外傷時の shock 症状は一般外傷性 shock の場合とは異なる機序から発現すると考え,頭部外傷時にはshock は発生し難いと述べている.

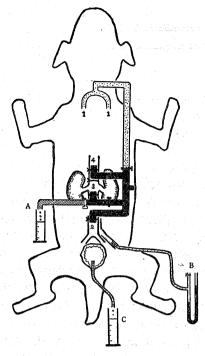
一方、Scheibert 7)は臨床的に脳腫瘍、脳外傷および脳出血などを有する108名の患者中、21名に重篤な腎障碍をみとめ、そのために15名が死亡したと報告して、脳腫瘍と腎との相関を示唆した。また、Brobeck 8)らは実験的にシロネズミを用いて視床下部に破壊巣をつくり、蛋白尿と血尿とを伴なう慢性糸球体腎炎を起している。以上のことから、脳損傷時における腎障碍の発現が、脳損傷部位の局在と如何なる関係を有するかが問題となる。

腎循環の神経調節については、すでに多くの研究が報告されている^{9)~13)}. 武内 ¹⁴⁾¹⁵⁾ らは犬の内臓神経、大腿神経、迷走神経の中枢端を電気刺激し、その反射

経路を介して血圧および腎血流量の変動を観察した. さらに、武内160ら、八木170は犬を用いて視床および視床下部の種々なる部位を電気刺激して、血圧ならびに腎血流量の変動を観察し、腎血流量の変動は腎血管の挛縮によつて起るものであると述べている。また、細井180は家鬼の視床下部を電気刺激して、ことに、その内側核群の鋸歯状高頻度刺激による腎機能の低下を観察して、武内らと同一の結果をみている。従つて、視床下部は腎循環の変動に対して影響を及ぼしているようである。

著者は脳の種々なる部位における破壊が腎循環調節に如何なる影響を及ぼすか、ことに視床下部が腎に対して如何なる役割を演じているかを究明する目的で、犬を用いて脳の種々なる部位を電気凝固によつて破壊し、その前後における腎血流量、腎 clearance および腎動静脈血の電解質較差を観察した。また、家兎の脳織組内に Brown-Pearce 癌を移植して、実験的脳腫瘍を作成し、腫瘍の局在とその際の腎障碍の病態とを病理組織学的に追求し、131I-hippuran を用いてのrenogram によつて腎の機能をうかがつて、脳病巣と腎所見との相関を検討した。 さらに、臨床例について、生化学的腎機能検査を通して脳損傷患者の腎の病態をうかがつて実験例と対照せしめ、中枢神経と腎との関係を究明せんと試みた。

実 験 方 法


I 犬における実験法

実験には、体重 7~15kg の雑種成犬58頭を性別無 選択に用いた、麻酔には、isomytal (Sodium 5 ethy¹ -5 isoamyl barbiturate) を腹腔内に注射した、麻酔 深度として、角膜反射の残つている程度に維持した。 気管内挿管を行なつて呼吸を維持した、 股動脈に canula を挿入して水銀血圧計に連結し、これを股動 脈圧の測定および動脈血の採血に供した。

直接腎血流量測定および腎動静脈血電解質較差の測

Studies of the Renal Responses Caused by the Damage of the Central Nervous System. Nagamitsu Mukai, Department of Surgery (Director: Prof. M. Urabe), School of Medicine, Kanazawa University.

図1 RBF 直接測定法模式図

- 最終灌流回路
- A RBF 測定装置
- B 血圧測定装置
- C 尿量測定装置

定を行なうために、腎静脈 bypass 法を考案した、犬を 仰臥位に固定した状態で,上腹部正中切開で開腹を行 なう. tube ①を図1の如く両側浅頸静脈に挿入する. tube には凝血を防ぐために 2 mg/kg の heparin を 含む 5% glucose で満たしておく. 下大静脈の腎静 脈流入部から末梢側の 4~5 cm の部位に末梢側に向 けて tube ②を挿入する.次いで tube ②の挿入部か ら中枢側約 1 cm の部位から tube ③を中枢側へ向け て挿入する. tube ③の尖端は下大静脈の腎静脈流入 部からやや末梢側に位置するように固定する. そして 下大静脈を 腎静脈流入部より 中枢側で 結紮を 行なう と、 結紮部位より 末梢側の静脈血流は bypass を 通 つて両側浅頸静脈を介して上空静脈に入り、心臓に戻 ることになる. さらに下大静脈結紮部から 中枢 側に tube ④を挿入して bypass に連結し、浅頸静脈への 静脈血の流入を遮断すると, 再び下大静脈に血流が戾 ることになり bypass の経路が完成される. 本法に よれば catheter 挿入による 腎門部の神経叢損傷をさ け, 腎静脈血流遮断に伴なう腎の鬱血を避けることが できる. bypass に使用した tube は silicon rubber (アメリカ製) で、下大静脈側へ挿入する tube の内 径は8mm であり、浅頸静脈に挿入するものは内径5mm である。 bypass 完成後灌流状態が良好なることをかしかめて閉腹した.

脳損傷作成法: 頭蓋固定を行なつた犬の頭頂部皮膚に長さ約 5 cm の正中矢状切開を加えた. 目的とする破壊部位を定位脳坐標19)により測定して骨部に直径1.5cm の burr hole を穿つて硬脳膜を露出した. これより電極を刺入した. 電極には直径2 mm の球状尖端を有する nichrome 線を用い, 目的とする脳組織内に電極が刺入されたとき, 高周波 lesion maker (ト部・坪川20)を用いて凝固巣を作成した. 通電時間は15~30秒である. 実験終了後, 脳を剔出し, 組織学的に脳組織の破壊部位を確認した.

諸量の測定には次の如き方法を用いた.

- (1) 血圧 (blood pressure B. P. と略す) 大腿静脈に挿入した水銀血圧計により測定した.
- (2) 循環血液量(circulative blood volume・CBV と略す)

DINAABBOTT RI 研究所製の放射性沃化人血清 albumin (RISA) 2 μc/kg を静脈血流内に注入し, 股動脈より採血し, scintillation counterで計測し, 次式によって算出した.

$$CBV = \frac{P_2}{P_1}$$
 $CPV = \frac{CBV \ 100-Ht}{100}$
 $CBV: 循環血液量 (m1)$

P₁ : 採血血液の count 数

P₂ : 注入 count 数 CPV: 循環血漿量 (ml)

2回目測定時からは、 P_1 を RISA 注入前後の count 数の差とした。

(3) hematocrit 値 (Ht と略す)

Wintrobe 氏管を用いて3000回転30分遠沈測定を行なった.

(4) 血漿電解質測定法

sample は股動脈血(A)および腎静脈血(V)より同時に採取したものとした.血漿中 Na, K の測定には日立製の RPF 2型焰光光度計を用い,斎藤²¹⁾の標準液を用いてそれぞれの濃度を求めた. 血漿の稀釈は50倍稀釈とした. C1 の測定には Schales and Schales 氏水銀塩法²²⁾を用いて測定した.

(5) 腎機能および腎循環

犬を絶食せしめ、代りに水を充分に与え、尿量の増加を図るためにさらに胃管より $50\,\mathrm{cc/kg}$ の水を与えた。 次いで尖端に $3\sim5$ 個の 側孔を有する Nelaton

尿道 catheter $3\sim5$ 号を尿道を通じて膀胱内に挿入し、これを固定して尿採取を行なつた。

a) 腎血流量 (renal blood flow・RBF と略す)

by pass 法によつて 灌流回路から 直接測定を 行なった. その方法としては, 腎静脈より流出する血流回路を分岐部の近端で一時遮断し, 10~15秒間 3 回測定を行なってその平均値を 1 分間流量に換算して記載した

b) 糸球体濾過値 (glomerular filtration rate・ GFR と略す)

Smith et al の法23)に準じ mannitol (第一化学薬品製)を使用して測定した。150 mg/dl の mannitol を含有する 5% glucose を浅頸静脈より点滴注入を行なう。その速度は最初 5 分間は 6 ml/min,以後検査終了まで 3 ml/min とする 24)。 点滴注入開始後20分に血中濃度が一定するのをまつて,尿道 catheter から完全に排尿する。この完全排尿時から10~15分間の尿を採り,その中間時間に股動脈から採血して Ht 値および mannitol 測定にあてた。 mannitol 濃度は Corcoran 25) & Page 法により定量した。

$$GFR = \frac{Uman \cdot V}{Pman}$$

$$(ml/min)$$

Uman: 尿中 mannitol 含有量

V : 1 分間尿量

Pman : 血漿中 mannitol 含有量

c) 腎血漿流量 renal plasma flow・RPF と略す) 腎血流量の直接測定量から次式で算出した.

RPF (ml/min) = RBF (100 - Ht)

d) 濾過率 (filtration fraction・FF と略す)

$$FF = \frac{RPF}{GFR}$$

e) 腎血管抵抗 (renal vessel resistence・RVR と略す)

$$RVR(mmHg/cc/min) = \frac{M.A.B.P.}{RBF}$$

M.A.B.P.: 平均股動脈圧

(6) 呼吸数

1分間3回、いずれも測定時にそれぞれ数えたものの中間値である.

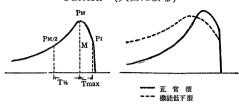
(7) 脈搏数

30秒間3回測定したものの平均である.

(8) 尿量 (urine volume·UV)

術前値は bypass 完成後, 一般状態の変動のないことを確かめて30分間の尿を蓄尿したものを1分間値に換算した. 術後値は脳破壊から1時間値, およびそれ

より 2 時間までそれぞれ 1 時間の尿量を 1 分間値に換算したものである.


Ⅱ 家兎における実験法

家兎の実験には体重 2.5 kg 前後の成熟雄家兎32羽 を用いた. ether 麻酔の下に頭蓋を固定し頭皮正中線 に長さ約 2 cm の小切開を加え,目的部位に一致して 直径約 0.5 cm の burr hole を穿ち, 硬膜を切開し, 径約 0.5 mm の Brown-Pearce 家兎癌 26)27)28) を脳 の目的部位に挿入する. なお, Brown-Pearce 家兎 癌は成熟家兎睾丸内に継代移植されたもので、腫瘍を 睾丸内に移植後、約20日経過して睾丸および腹腔内に 腫瘤を触知し得るようにもつたものを使用した. この 腫瘍が大脳半球内に移植された場合, 脳実質内で発育 し、約2週間で対側の片麻痺あるいは痉挛を起こし、 約3週間で死亡する、死亡前2~3日、食欲不振、体 重減少, 貧血などが現われるので, この時期以後すな わち脳内移植後約2週目に屠殺し, 臓器を検査の上さ らに組織学的検索に供した. 腫瘍死をした動物は, 死 戦期および死後の変化を伴なうので、この検索から除 外された. 屠殺は心剔出の方法をとり, 直ちに腎およ び脳を剔出し 10% formalin 溶液に固定した. paraffin 包埋法で 切片を作製の上, hematoxylin-eosin 29)染色を施行し必要に応じ sudan-III 脂肪染色, PAS 染色などを追加施行して観察した. 脳については多数 の前額断を施して移植腫瘍の着床発育部位およびその 浸潤の状態を肉眼的に観察するとともに、さらに、腫 瘍移植部およびその周辺の脳組織を含む 切片 につい て、Penfield の glia 染色30)を施し、腫瘍の増殖態 度とこれに対する脳組織の反応を観察した.

Brown-Pearce 家兎癌を脳内に移植した場合 その経過とともに 如何なる 腎機能の変化が みられる かを観察するために DINAABBOTT RI 研究所製 I¹³¹-hippuran を用いて機能を追求した. 腫瘍移植前に対照として,無麻酔下で家兎を固定し,Spectrometer recoder に連結した $1^{94} \times 1$ inch Na I crystalprobeを心臓部および両腎部にあて,I¹³¹-hippuran $2\mu c/kg$ を耳介静脈より急速に注入して,その動態を体外よりtrace した.renography に用いた装置は,神戸工業製 r-ray spectrometer (RSP-101),および 東芝製 collimeter である.isotope 注入後約30分 recordingを行なつた. Brown-Pearce 癌を家兎脳組織内へ移植して後10日目に一般状態を観察し,移植前と同じ条件で再び記録を行なつて比較検討に供した.

renogram の定量的評価(図2)は未だ確定した方式を持たないが、著者は久田⁸¹⁾⁸²⁾の方法に準じて行なった。

図 2 Renogram の定性的解析法とその Pattern (久田による)

$$Kac = \frac{M-1}{Tmax}$$

$$\text{Kex} = \frac{M - M/2}{T \frac{1}{2}} \times \frac{1}{M} = \frac{1}{2 T \frac{1}{2}}$$

M : 最高点の値

Pi : 急速上昇部より緩徐上昇部の移行点

PM : 最高点の位置

Tmax : P₁ より P_M までの時間

T½ : PMの値Mの半分に減少するまでの時間 Kac : activity の蓄積を示す indicator Kex : activity の排泄を示す indicator

著者の実験においては renogram から 正確な定量 的の値を追求するのを目的とすることなく,実験的脳 腫瘍作成前後における腎機能の比較に主眼を置いている. 久田らの報告によれば, P_1 から P_M , P_M から P_M /2 までの時間によつて腎機能の判定が行なわれている. そこで,著者は T_M の値を取りあげて renogram の成績とした.

Ⅲ 臨床例における観察法

臨床例の検索は、1960年より1964年に至る間に、金沢大学第一外科教室に入院し、手術をうけた脳腫瘍患者46名、および慢性型脳外傷患者6名、計51名を対象とした。急性期脳損傷患者、食餌を摂取し得ぬほどの重症患者および腎疾患の既往歴のある症例は除外された。また、著しい高年齢者および検査不可能の若年者も同様に除外された。検査項目は次の如きものである。

(1) 糸球体濾過値 (GFR), 腎血漿流量 (RPF) および濾過率 (FF)

clearance 法により GFR および RPF を測定したが、1回静注法による簡便法を用いた. sodium paraminohippurate clearance (PAH) により RPF を, Sodium thiosulfate clearance (STS) により糸球体濾過値 (GFR) を同時に測定した. すなわち、10% sodium paraminohippurate (PAH) 液 10cc, および 10% sodiumthiosulfate (STS) 80cc を10分間に静注した. 注射終了後20分で完全に膀胱を空にする. それから10分後、20分後に、それぞれ 5 cc 宛反

対側静脈より採血し、Ht 値、血漿 PAH および STS 測定にあてた。30分後に採尿して、1分間尿量を測定するとともに、尿 PAH および STS 測定に供した。 ・注入薬剤は約20分後に体液中で平衡に達し、以後、血中濃度の対数が時間に対して、直線 関係 を示すので、片対数方眼紙に血漿中濃度の下降曲線を画き、この世線とり、clearance 時間の中間時間における血漿

血中濃度の対数が時間に対して、直線関係を示すので、片対数方眼紙に血漿中濃度の下降曲線を画き、この曲線より clearance 時間の中間時間における血漿中濃度を求めることができる。本方法は Smith の持続点滴法に比べて誤差が多いとされているが、採取時間を正確にし、完全排尿に注意すれば誤差を最小限にすることができる。

PAH の濃度は Somogi 法により除蛋白し、酸性 alchohol-aldehyde 試薬によつて測定された.

STS 濃度は Claus Brun 法により, 沃度殿粉反応 を以つて測定された.

a) 糸球体濾過値(GFR)

GFR
$$(ml/min) = \frac{Usts(mg/dl) \cdot V(ml/min)}{Psts(mg/dl)}$$

Usrs: 尿中 STS 含量 Psrs: 血漿中 STS 含量

V : 1 分間尿量b) 腎血漿流量 (RPF)

RPF (ml/min) =
$$\frac{U_{PAH}(mg/dl) \cdot V(ml/min)}{P_{PAH}(mg/dl)}$$

 UPAH:
 尿中 PAH 含量

 PPAH:
 血漿中 PAH 含量

V : 1 分間尿量c) 腎血流量 (RBF)

RBF (ml/min) =
$$\frac{RPF \times 100}{100 - Ht}$$

d) 濾過率 (FF)

$$FF = \frac{GFR}{RPF}$$

e) 腎血管抵抗 (RVR)

RVR
$$(mmHg/ml/min) = \frac{M.A.B.P.}{RBF}$$

M.A.B.P.: 平均血圧

(2) 血漿電解質

Na, Kの測定は、日立製の RPF 2型焰光光度計により、斎藤の標準液を用いて、C1 の測定は Schales & Schales 氏水銀塩法によつた.

(3) 血圧測定

PAS, STS 混合液注入前に測定し、検査終了後に 再び測定を行なつて平均値を求めた.

(4) 尿量測定

検査当日,午前7時より翌日午前7時までの24時間の尿を蓄尿して計測した。

(5) 尿比重

検査当日の1日尿を尿比重計で測定し、次式により 温度補正を行なつた。

$$d_{15}^{15} = d + \frac{\dot{t}-15}{3000}$$

d ; 比重計の読み

t ; 温度計の読み

(6) Ht 值

Wintrobe 氏管にて、1分間3000回転、30分間遠沈 により測定した。

実 験 成 績

脳障碍犬における実験成績

実験に用いた犬は58頭で、対照犬を含めて脳損傷部位別に次の如く分類した. (写真1・2)

1)対照犬群(5頭), 2)皮質・皮質下白質群(4頭), 3)基底核群(8頭), 4)視床外側核群(5頭), 5)視床内側核群(5頭), 6)脳幹群(4頭), 7)視床下部前部および視束前野群(9頭), 8)視床下部外側核群(7頭), 9)視床下部内側核群(7頭)の9群に分類した。表1~9,図3~11は各群の実験成績を示したものである。なお、脳の電気凝固後,異常な血圧上昇と徐脈のため急死したものが6例あり、逆に凝固後、急激な血圧下降のために死亡したものが2例あり、いずれもその凝固部位は表に含まれていない。

大実験においては、麻酔、手術侵襲および bypass の影響を考慮する必要がある. しかし、本実験においては、いずれも同一条件下で、同一方法を用いており、また、結果を時間的な増減率で表現しているので、それによる大きな誤差はないものと考えられる.

1) 対照犬群

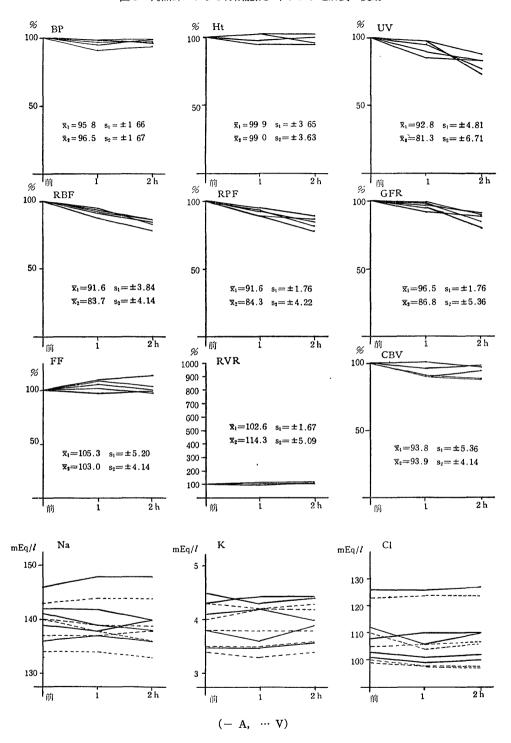
この群に属する5頭の検査成績は、表1,図3の如くである.固定して bypass 作成,1時間後,2時間後の各測定値の平均について増減率をみると、RBFは8.4%(±3.84)、16.3%(±4.14)、RPF は8.4%(±1.67)、15.7%(±4.21)、GFR は3.5%(±1.76)、13.2%(±5.36)のように、それぞれ軽度の減少を示す。その減少の型は3者とも類似を示し、減少の程度もよく類似している。血圧の低下も4.2%(±1.65)、3.5%(±1.67)であつて軽度であり、全例に僅かに下降をみる。No.2においては血圧下降がこの群中で最も著しく、8.3%、6.7%を示し、RBF 12.5%、21.7%、RPF 10.8%、21.6%、GFR 1.1%、10.3%と減少が著しい。FF は5.3%(±5.20)、3.0%(±6.89)と軽度の上昇を示す。RVRは2.6%(±1.67)、

血漿電解質の変動をみると、腎動脈血漿の Na につ いては増加を示すものが No. 2, 5 の 2 例で, その増 加は 1~2 mEq/l の軽度の ものであり、減少を 示す ものは No. 3, 4 の 2 例で、 その減少は 2~3mEq/1 である. No. 1 においては変動がみられない. 腎静脈 血漿の Na は 1~4 mEq/1 の低値をとつて 動脈血漿 のそれと概ね並行している. 動脈血漿のKは No. 1, 3,5 において 0.1 mEq/1 の増加をみとめ, No. 2, 4 において 0.1 mEq/l の減少をみとめるが、その程 度はごく僅かである. Na とKとの間には密な相関は みられない. 腎静脈血漿のKにも変動は少なく, 動 脈血漿のそれと概ね平行した形をとり、両者の較差は 0.1~0.3mEq/1 である. 動脈血漿の C1 は No. 2, 3, 4 の 3 例において 1~2mEq/1 の増加を示し, No. 1,5 の2例において $1\sim 2mEq/1$ の減少をみとめる. 腎動静脈血漿 C1 間には 2~4mEq/1 の較差を保つて 概ね並行した形を示している. 以上の如く, 血漿電解 質の変動は著しくなく, また, 一定の傾向は示してい ない. また, その増加の程度がやや大きいものでは腎 動静脈血較差は大きくなり、 生体が homeostasis を 営んでいることがうかがわれる.

2) 皮質·皮質下白質障碍群

この群に属する 4 頭の検査成績は、表 2 , 図 4 の如くである。 脳損傷 1 時間後、 2 時間後の 各測定値について その 増減率 を みると、 RBF は 13.9% (± 3.26), 25.6% (±5.16), RPF は 12.6% (±3.42), 24,1% (±3.41), GFR は 11.0% (±4.42), 19.0% (±9.64) の程度に減少し、GFR の減少度は RPFのそれに比べ軽い、FF は2.0% (±4.41), 6.8% (±5.16) の程度に低下し、その低下度は RBFのそれに比べで軽く、従つて、 RVR は 10.1% (±11.4), 27.5% (±10.4) の程度に増強を示す。 CBV は 2.8% (±3.46), 6,5%(±3.41)の程度に減少がみられるが、対照犬の成績に比べ著しい差異はみられない。 尿量は 4.9% (±3.87), 26.9% (±16.3) の程度にやや強い減少度を示している。 血漿電解質については、Na、K、C1ともに著しい変動を示さず、腎動静脈血較差も

電解質の変動
FIN
類
靊
Ñ
Č
料
怨
る腎機能並びに
圖
16
Þ
₩.
\aleph
艇
対照群におけ
4%


	Cl mEq/1	Λ	110 104 106	123 124 124	66 86 86	105 106 107	100 98 98	107 106 107
	Cl m	A	112 106 110	126 126 127	101 99 100	108 110 110	103 101 102	110 109 110
	mEq/1	Λ	33.5	8,8,8	2.8.8. 4.8.4.	4.4.4 2.2 3.3	4.2	8.88
	K m	А	3.8 3.6 3.9	4.1 4.2 4.0	33.57	4.4	4.4 4.4	4.0
	mEq/1	Λ	134 134 133	143 144 144	140 138 136	140 139 139	137 137 138	139 138 138
	Na m	A	136 137 136	146 148 148	141 139 138	142 142 140	139 138 140	141 141 140
	CPV	ml/min	647.7 573.0 564.9	579.8 598.9 567.3	754.8 670.8 692.5	825.2 819.2 838.4	691.0 613.8 647.9	699.7 605.5 670.1
ħ	CBV	=	1091 988 974	1115 1130 1091	1258 1137 1117	1331 1280 1310	1234 1116 1178	1206 1130 1134
解質の変重	RVR	mmHg/ ml/min	0.55 0.56 0.61	0.50 0.52 0.60	0.34 0.35 0.39	0.23 0.24 0.25	0.23 0.23 0.27	0.36 0.38 0.42
対照群における腎機能並びに電解質の変動	FF		0.33 0.35 0.33	0.28 0.31 0.32	$0.31 \\ 0.34 \\ 0.32$	0.44 0.43 0.44	0.42 0.43 0.41	0.36 0.37 0.36
	GFR ml/min		42.0 41.4 35.6	34.9 34.5 31.3	62.9 61.6 57.0	120.8 111.3 107.6	114.3 108.7 91.4	74.9 71.5 64.6
群におけ	RPF ml/min		127.4 117.2 107.9	124.8 1111.3 109.1	202.8 181.1 177.9	274.7 259.8 244.5	272.2 253.0 222.8	200.4 184.5 172.4
表1 対照	RBF ml/min		216 202 186	240 210 188	338 307 286	443 406 382	486 460 405	345 317 289
#	UV ml/min		$\begin{vmatrix} 2.00 \\ 1.96 \\ 1.76 \end{vmatrix}$	3.50 3.42 2.58	3.20 2.86 2.77	2.46 2.10 2.00	3.60 3.40 2.78	2.95 2.75 2.38
	Ht	%	41 42 42	48 47 48	40 41 38	38 36 36	44 45 45	42 42 42
	BP	=	118 114 114	120 110 112	114 108 112	100 98 96	110 108 108	124 108 108
	脈搏	/min	136 124 123	142 138 140	106 100 103	110 106 112	8888	116 109 113
	平吸	/min	788 28 29 29	28 24 24	18 16 15	12 10 11	8 10 13	19 17 18
	1	祖田	212	12	12	部 1 2	怎-2	福-2
	1	<u>#</u>	₩	O+		O +	↔	重
	#	世	9kg	9kg	8kg	12kg	13kg	型
	2	O.	H	2	3	4	ന	片

対照犬のそれとほぼ類似の形を示 し、電解質排泄の異常はみとめられ ない. この群においては, 各測定値 は皮質障碍と皮質下白質障碍との間 に差を示さないが, 部位別にみて, 前頭葉破壊例において僅かに強い変 動を示していた.

3)基底核障碍群

この群に属する8頭の検査成績 は、表3、図5の如くである、脳障 碍 1 時間後、 2 時間後の 測定値 に ついて 増減率で示すと、RBF は $35.8\% (\pm 9.54), 58.6\% (\pm 7.07),$ RPF 1 33.2% (±10.66), 53.7% (±9.53), GFR は 28.0% (±13. 91), 44.5% (±16.27) の程度で減 少する、この群においても GFR の 減少度は RPF のそれよりも少なく、 従つて、FF は 2.0% (±23.74), 1.0%(±24.98)の程度に僅かながら 上昇を示す。 また, RBF, RPF, GFR は概ね同一の傾向に減少を示 しているが、1時間値の減少度は、 2時間値のそれに比べて著しい. し かし, No. 11 の1例のみにおいて は、逆に2時間後の値の減少が著し い. 血圧は 3.6% (±11.26), 5.9 % (±9.16) の程度に軽く低下し, No.10, 12 の 2 例においては 4~11 % に及ぶ上昇がみとめられた. RVR \$\dagger 50.8\% (\pm 22.95), 30.6\% (±40.00) の程度に増強を示した. CBV は 0.7%(±4.89) 程度の減少, 0.2%(±7.76) 程度の増加を示し, 変動は少ない. 尿量は 40.1% (± 3.74), 68.7% (±16.30) の程度に 著しく減少した. 血漿電解質の変動 として, Na は No. 11, 12, 13, 15,16の5例において,かなり高度 の増加を示し, 腎動静脈血較差の変 動は軽度の減少を示している. Kは 一般 に 増加の 傾向 を示し, 中等度 の 増加が 4例に みられる. その動 静脈血較差には変動はみられない. CI の変動は 殆んどみられず、腎動

図3 対照群における腎機能減少率および電解質の変動

の変動
11解質
がで
機能並
2回
t
が
時群におり
質障碍群におり
質下白質障碍群におり
・皮質下白質障碍群における腎機能並びに電解質の変動
皮質・皮質下白質障碍群におり

Eq/1	Λ	$\frac{109}{110}$	121 120 117	97 98 97	94 95 96	105 106 105
Cl m	A	115	124 122 121	101 106 106	99 98 101	110 111 110
3q/1	Λ	33.8	4.3	3.9 4.0 4.1	3.3	8.6.6
K m]	A	4.1 4.2 4.4	4.5 4.8 4.6	4.6 5.0 4.7	3.6	2.4.4 2.4.8 2.3
Eq/1	Λ	146 146 145	130 129 130	135 138 136	140 141 141	138 139 138
Na m	A	148 149 149	132 133 135	136 140 138	143 145 146	140 142 142
		621.3 574.6 557.8	502.3 523.8 519.2	679.9 657.9 644.8	658.4 664.9 612.4	615.5 605.3 583.6
CBV CBV ml/min m		1090 1008 996	966 970 944	1046 1028 992	1116 1090 1004	1057 1024 984
RVR	mmHg/ ml/min	0.36 0.44 0.51	0.40 0.47 0.51	0.36 0.34 0.42	0.33 0.35 0.41	0.36 0.40 0.46
FF		0.46 0.50 0.52	0.40 0.43 0.45	0.40 0.39 0.44	0.36 0.34 0.33	0.41 0.42 0.44
GFR ml/min		71.5 62.8 54.8	51.2 48.4 48.5	71.5 62.4 57.2	73.9 63.5 53.6	67.1 59.3 53.5
RPF ml/min		156.2 125.4 105.3	127.9 113.4 107.8	178.8 160.0 130.0	205.3 186.7 162.3	167.1 146.4 126.4
RBF ml/min		274 220 188	246 210 196	275 250 200	348 306 266	286 247 213
UV		2.20 2.15 1.70	1.95 1.76 1.04	2.58 1.46 0.99	3.04 2.76 2.22	2.44 2.03 1.49
Ht		44 43	48 46 45	33833	41 39 39	244
	Hww	98 98 100	98 100	98 84 84	114 108 110	102 101 99
影梅	/min	92 94 96	92 94 96	97 88 92	88 88 92	93 94 94
	/min	12 13 12	18 16 16	20 116 118	14 10 13	16 14 15
1	型 近	三 1 2	海-2	2	海-2	海-2
		O+	€0	€0	O l-	迴
H	本	10kg	8kg	9kg	11kg	型
;	No.	9	2	8	6	
	Line Line	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	体重 性 時間 L UV RBF RPF GFR FF mmHg/min III III	中 中 中 中 中 中 中 中 中 中	中国 中国 中国 中国 中国 中国 中国 中国	$\frac{4 \pm 1}{10} = \frac{1}{10} = \frac{1}{$

静脈血較差にも変化はみとめられない. 基底 核障碍群においては、腎 clearance 値およ び尿量が皮質・皮質下白質障碍群におけるそ れらに比べて著明な減少を示している。 部位 別にみて、Nucl. amygdalae および Nucl. caudatus に障碍の及ぶ症例に比較的著明な 変化がみられている.

4) 視床外側核障碍群

この群に属する5頭の検査成績は、表4, 図6に示す如くである.

脳障碍1時間後, 2時間後の測定値につ いて その増減率を みると、 RBF は 39.0% (±9.68), 56.2% (±9.08), RPF は 40.5 % (±4.47), 52.3% (±7.91), GFR は 32.4% (±8.36), 52.3% (±8.36) の程度 に減少し、FF は 2.1%(±5.70)程度の上昇 と 3.0% (±15.16) 程度の低下を示し, No. 18 においては、2時間値の31.6%程度 の低下がみられた. 血圧は10.5% (±13.50) 11.4% (±13.50) の程度に低下した. No. 22 において 4.2% の上昇を示した. RVR は 46.9%(±12.44), 109,6%(±65.19) の程度 に著しい増強がみられた. Ht は 4.9% (土 4.42), 3.6% (±6.93) の程度に低下を示す が、No. 20 のみにおいては 2 時間値の 7.9 % 程度の上昇がみられた. CBV は 1.8% (±5.83), 0.5% (±7.90) 程度の減少を示 す. RVR の増強の結果, 尿量は 45.2% (± 18.37), 70.9% (±6.51) の程度に著しく減 少している. 血漿電解質の変動として, Na は一般に増加の傾向を示し, No. 18, 21, 22 の3例においてかなり高度の増加がみられる が, 腎動静脈血較差はほぼ一定の値を示し, 著しい変化はみとめられない. 従つて, 著し い Na の貯溜傾向はないものと考えられる. 血漿Kおよび Cl の変動は著しくない. 視床 外側核障碍群においては中等度の腎 clearance の低下がみられ、また、血圧上昇が 1例 にみられた.

5) 視床内側核障碍群

この群に属する5頭の検査成績は、表5, 図7に示す如くである. 脳損傷1時間後, 2 時間後の測定値について, その増減率をみる と, RBF は 48.2% (±10.8), 56.2% (± 4.15), RPF $\ddagger 44.8\%(\pm 16.95)$, $68.2\%(\pm$ 10.00), GFR は 49.2% (±11.4), 71.4%

図4 皮質・皮質下白質障碍群における腎機能減少率および電解質の変動

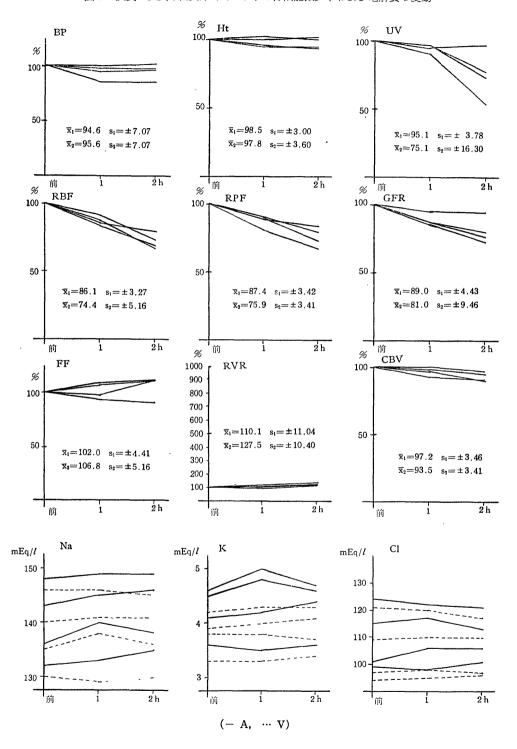
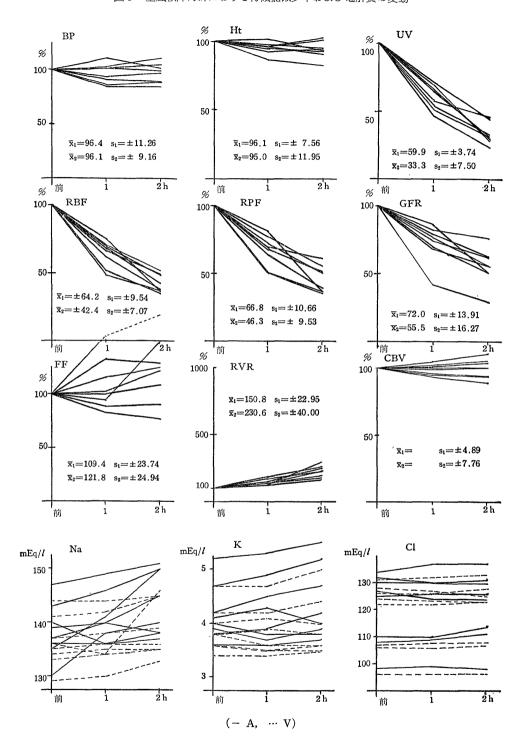



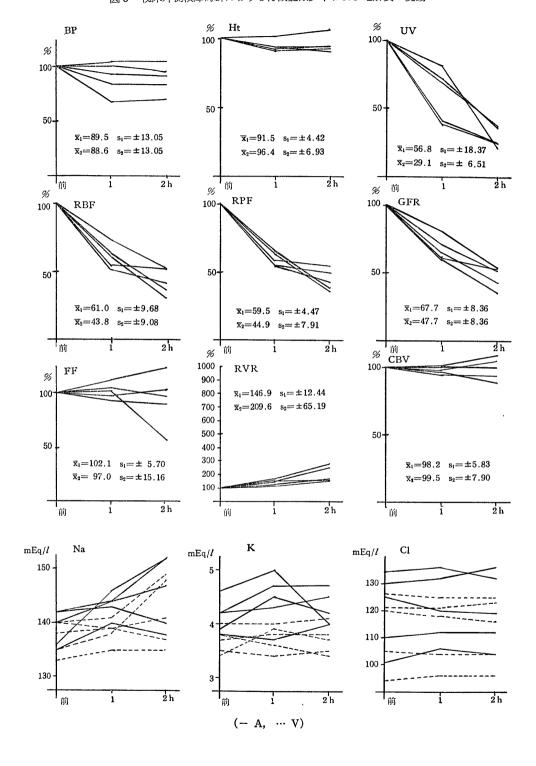
表3 基底核障碍群における腎機能並びに電解質の変動

	[]	H27.5	01010	82.5	L~~~	1 10 10 00		10:05	101010	0000
mEq/1	>	——————————————————————————————————————	122 123	128 127 125	107 108 108	126 126 128	122	106 106 107	96 96	120 118 118
Cl n	A	134 137 137	125 126 126	130 130 131	110	132 130 130	127 124 144	108 109 111	8668	12121
£q/1	Λ	4.7	3.50	4.0 4.1 4.0	33.5	3.8	80.8	4.2	3.5	0.00 0.00
K mEq/1	А	20.00 20.0	8.6.4	2.44	0.8.8	3.9	4.1	4.7 4.9 5.2	3.6 3.6 3.7	2.4.4
3q/1	>	134 135 135	144 144 145	137 138 139	129 130 133	136 134 135	133 134 146	141 142 145	135 136 136	136 137 139
Na mEq/1		136 136 137	147 149 151	139 140 145	130 138 140	140 136 138	135 141 150	143 146 150	137 140 138	139 141 144
CPV	ml/min	654.7 618.6 565.8	729.6 708.8 672.0	682.9 684.0 670.2	540.1 556.1 604.2	653.9 636.2 676.7	580.3 600.0 612.6	745.4 812.8 873.2	505.9 585.2 613.8	636.6 650.2 661.1
CBV	ij.	1056 982 943	1216 1162 1140	1198 1140 1136	983 993 1024	1006 994 1010	1018 1017 1021	1222 1311 1386	973 1009 1023	1084 1076 1085
RVR	mmHg/ ml/min	0.38	0.30 0.40 0.90	0.29 0.50 0.66	0.51 0.75 1.17	0.50 0.88 1.26	0.39 0.69 1.03	0.28 0.39 0.54	0.54 0.66 0.98	0.40 0.60 0.91
	i i	0.36 0.37 0.44	0.32 0.32 0.51	0.39 0.32 0.30	0.32 0.38 0.40	0.42 0.65 0.72	0.38 0.51 0.49	0.32 0.32 0.35	0.43 0.38 0.39	0.37 0.41 0.45
GFR		59.0 43.8 36.4	63.0 48.0 35.5	74.3 31.1 21.6	37.7 31.0 28.8	60.1 47.4 37.6	55.9 48.1 28.5	72.2 49.2 40.6	46.9 32.2 23.9	58.6 41.4 19.1
RPF	Ħ	164.3 118.4 82.8	185.3 150.0 69.6	190.4 97.2 72.0	117.7 81.7 71.9	143.0 72.9 52.3	147.0 94.4 58.2	225.7 153.8 115.9	109.2 84.7 61.2	160.3 106.6 73.0
RBF	=	265 188 138	325 246 118	334 162 122	214 146 92	220 114 78	258 160 97	370 248 184	210 146 102	275 176 116
ΔΩ	8	2.84 1.46 0.88	3.15 2.20 0.89	1.56 0.89 0.70	1.93 0.90 0.45	1.86 1.00 0.60	2.22 1.43 0.71	2.66 1.87 1.00	1.30 0.66 0.30	2.19 1.30 0.69
Ht	%	38 37 40	40 39 41	43 40 41	24 44	338	43 40	39 38 37	48 42 40	41 39
BP	=	100	96 98 106	96 80 80	110 110 108	110 100 98	100 110 100	104 96 100	114 96 100	104 99 100
影場	a /min	104 104 104	116 114 114	98 102 108	114 122 130	110 114 119	96 78 78	126 118 104	120 82 96	111 104 107
平吸	min/min	2222	20 20 18	16 14 16	11 9 14	20 118 118	22 20 18	22 21 20	22 19 16	19 18 18
11	臣	海-2	温12	三 1 2	福12	福12	海12	温12	122	怎12
1	軐	↔	€0	0+	€0	O+	o ⊢	€0	↔	톝
#	₹	10kg	10kg	10.5kg	8kg	8kg	10kg	12kg	11kg	型
2	No.	10	Ħ	12	13	14	15	16	17	

図5 基底核障碍群における腎機能減少率および電解質の変動

視床外側核障碍群における腎機能並びに電解質の変動

_		98 98	ဥ္တ ဖ	ស៊ីស៊ីស៊	™ 44	###	നുനുന
Cl mEq/1	<u>></u>		120 118 116	126 125 125	105 104 104	121 121 123	113
CL	A	101 106 104	125 120 119	134 136 132	110 112 112	130 132 136	120 121 121
mEq/1	Δ	8.6.6.	4.0 4.0 4.1	3.8	3.5	3.9	3.7
K m	A	4.6 5.0 4.0	4.3	4.2	3.8	3.9 4.5	244
Eq/1	>	135 138 148	140 139 137	133 135 135	138 139 141	140 141 149	137 138 142
Na mEq/1	Ą	136 146 152	142 143 140	135 140 138	140 144 147	142 144 152	139 141 146
CPV	m1/min	612.5 618.8 676.9	608.2 618.0 600.6	691.3 663.8 585.3	563.2 595.8 581.7	645.1 670.8 728.0	624.1 633.4 634.5
CBV	ml/min	928 910 981	1086 1030 1018	1115 1080 992	988 993 986	1024 1032 1120	1019 1009 1019
RVR	mmHg/ ml/min	0.56 0.85 1.46	0.53 0.81 0.85	0.38 0.51 0.68	0.48 0.63 0.79	0.42 0.69 1.19	0.56 0.70 0.99
ņ	r.	0.38 0.39 0.26	0.41 0.43 0.40	0.48 0.47 0.50	$0.33 \\ 0.37 \\ 0.41$	0.43 0.40 0.39	0.41 0.41 0.39
GFR	ml/min	50.2 32.6 21.7	51.9 32.0 27.8	71.4 50.5 37.1	42.9 34.6 23.3	61.2 37.4 21.8	55.5 37.4 26.3
RPF	.5.	132.0 83.6 48.3	126.6 74.4 69.6	148.8 107.4 74.3	129.9 70.8 56.6	142.4 93.6 54.6	135.9 86.0 60.7
RBF	ml/min	200 123 70	226 124 118	240 176 126	228 118 96	226 144 84	224 137 99
ΛΩ	ml/min	2.84 1.10 0.70	3.00 2.16 1.10	2.30 1.60 0.87	2.26 0.91 0.56	2.20 1.80 0.47	2.52 1.15 0.74
Ht	%	34 32 31	44 44 44	38 39 41	43 40 41	37 35 35	33,33
BP	mmHg	112 104 102	120 100 100	06 08	110 74 76	96 100 100	106 94 93
海	/min	130 132 136	130 126 123	90 108 116	124 111 98	114 120 124	118
呼吸 [/min	24 18 14	2220	41 201	18 20 16	10 12 13	17 17 15
1	P P	12	温12	2 3	温12	1 2	怎12
4		↔	€0	€0	0+	↔	垣
#	外围	7kg	10kg	8kg	9kg	11kg	型
		18	19	20	21	- 22	片


(±7.41) の程度に減少し、これは 視床外側核障碍群のそれらに比べて 著しい. 2時間値でみると GFR の 減少度は RPF のそれよりも強く, FF は 1.8% (±13.03), 2.6% (± 13.03) の低度に低下している. 血 圧は 0.6% (±14.14), 1.2% (± 13.42) の程度に低下するが、低下 度は軽く, No. 23, 25, 27 の3例 においては、却つて 3.6%~11.1% 程度の上昇を示しており、数の上で はむしろ血圧上昇を示すということ ができる. 従つて, RVR は 107.9% (±61.00), 226.8% (±60.20)の程 度に著しく 増強している. 尿量は $43.2\%(\pm 16.43), 88.7\%(\pm 11.40)$ の程度に比較的直線的減少を示して いる. CBV は1.2% (±2.98), 3.3 % (±4.18) の程度に軽度の減少を 示す. Ht 値は 0.9% (±4.18), 5.7% (±7.91) の程度に低下し, とくに2時間値が著しい. 血漿電解 質の変動として, Na は No. 23, 25. 27 の3例において 4~8mEq/1 の増加を示し, No.24, 26 の2例に おいて $1 \sim 2\,\mathrm{mEq/l}$ の 減少を呈す る. 腎動静脈血較差はとくに変化を 示さない. Kおよび C1 の変動は著 明でない. 視床内側核障碍群におい ては、 視床外側核障碍群におけるよ りも腎 clearance の低下が著しく, また, 血圧上昇が 3例に みられ, RVR の増強がみられるなどの特徴

6) 脳幹障碍群

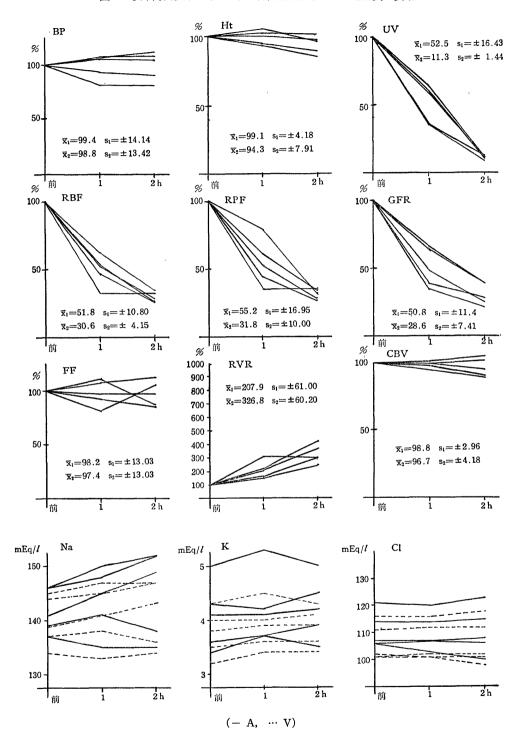
をみとめる.

この群に属する 4 頭の 検 査 成 績 は、表 6 , 図 8 に示す如くである。 脳損傷 1 時間後、2 時間後の測定値 について、その増減率をみると、 RBFは 45.5% (±19.95)、78.1% (±7.50)、RPF は44.7%(±15.95)、77.5%(±18.03)、GFR は 55.4%(±15.95)、77.3%(±8.03)の程 度に減少する。FF の平均値は 2.1%(±1.89)、1.0%(±2.02)の程 度に軽く上昇するが、個々の例につ

図 6 視床外側核障碍群における腎機能減少率および電解質の変動

り変動
重の
解
はこれ
3
朱
孫台
圝
N
Þ
おび
におけ
群におけ
得難におけ
障碍群におけ
核障碍群におけ
削核障碍群におけ
も側核障碍群におけ
K内側核障碍群におけ
県床内側核障碍群におけ
視床内側核障碍群における腎機能並びに電解質の変動

	mEq/1	>	116 116 118	101 102 102	101 101 101	102 101 98	111 112 112	106 106 106
	Cl m	А	121 120 123	107 107 108	106 107 106	106 103 100	114 114 115	111 110 110
	mEq/1	^	3.2	4.0 4.0 4.1	4.3 4.3	8.6.6	3.5 3.6 3.6	33.9
	Km	A	3.4	4.3	5.0 5.3 5.0	4.1	3.6 3.7 3.9	4.1
	mEq/1	>	144 145 147	134 133 134	145 147 147	137 138 136	139 141 143	140 141 141
肾の変動	Na m	A	146 148 152	137 135 135	146 150 125	139 141 138	141 145 149	142 144 145
	CPV m1/min		608.8 638.7 690.1	753.9 730.8 673.4	673.8 712.5 759.0	774.7 732.2 708.0	540.9 497.3 540.5	670.4 662.3 674.2
	CBV ml/min		982 998 1030	1216 1198 1104	1123 1131 1150	1313 1241 1180	1202 1184 1150	1167 1150 1123
バに電解質	RVR mmHg/ ml/min		$\begin{array}{c} 0.50 \\ 1.57 \\ 1.54 \end{array}$	0.36 0.53 0.89	0.39 0.79 .1.44	0.46 0.71 1.34	0.33 0.73 1.38	0.41 0.87 1.32
視床内側核障碍群における腎機能並びに電解質の変動	FF		0.43 0.48 0.37	0.39 0.42 0.44	0.38 0.31 0.40	0.41 0.38 0.35	0.24 0.39 0.39	0.37 0.48 0.39
ておける層	GFR ml/min		58.1 22.7 16.5	69.8 22.7 16.5	55.1 35.4 15.8	62.3 30.4 15.8	60.7 21.1 12.9	61.2 26.5 15.5
核障碍群	RPF ml/min		135.2 47.4 48.4	$179.3 \\ 110.4 \\ 63.0$	145.1 114.8 46.8	152.0 80.0 43.1	121.4 54.1 33.1	146.6 91.3 46.9
視床內側	RBF ml/min		218 74 74	294 184 105	246 128 72	262 138 73	276 132 72	259 131 79
录5	UV ml/min		2.87 1.03 0.36	3.40 2.06 0.37	$\frac{3.40}{1.20}$	1.76 1.04 0.20	$\frac{1.96}{1.24}$	2.68 1.31 2.96
	Ht	%	38 34 34	39 40 40	41 38 35	42 42 41	56 59 54	43 41
	BP		110 116 114	105 97 94	96 102 104	120 98 98	90 96 100	104 102 102
	脈搏	/min	114 114 122	108 118 130	98 98 102	126 128 126	96 90 86	108 109 113
	呼吸	/mim	18 17 14	16 14 18	14 14 14	26 24 17	112 8	17 16 14
	1 2		湿12	怎12	海-2	海12	22	湿12
		<u>‡</u>	↔	€0	OH-	O l-	↔	庫
	1	世 全 二	9kg	11kg	9kg	8kg	10kg	5 地
	;	o Z	23	24	22	26	27	計


いては、 No. 53 において 2 時間値 10.3%の程度に上昇し、他の3例に おいては低下している. 血圧は12.8 % (±9.57), 33.1% (±14.43) \emptyset 程度に著しく低下している. これは 他の障碍群にはみられない.

RVR は 70.1% (±47.24), 227.9 %(±81.50)の程度に増強している. この増強は RBF の減少度からみる と軽くみえるが, それは血圧低下の 著しい結果に基づくのである. 尿量 は 59.2% (±4.72), 90.5% (± 5.02) の程度に著しく減少してい る. CBV は 5.0% (±2.56), 11.1 % (±4.12) の程度に減少は比較的 著しく,血圧との相関を示している. Ht 値は 8.0% (±3.78), 11.8% (±8.53)の程度に低下するが、No. 54 においては、その2時間値、7.5 %の上昇を示している. 血漿電解質 の変動として Na は全例に増加し, とくに No. 51 においては 12mEq/1 の増加がみられる.しかし、この例 をも含めて, 腎動静脈血較差に著し い変化がみられない. K, Clは変動 を示さない. 腎動静脈血較差にも変 化がない. 脳幹障碍群においては, 腎 clearance の低下が高度である が、血圧下降度が著しいので RVR の増強はかなりにあるが, さほど高 度とはならない.

7) 視床下部前部および視束前野 障碍群

この群に属する9頭の検査成績 は、表7、図9に示す如くである. No. 28~31 は 視床下部前部 障碍群 に属し、No. 32~36 は視束前野障 碍群に属する. 脳損傷1時間後, 2 時間後の測定値について, 増減率を みると、RBFは49.7%(±12.74)、 65.5%(±12.18), RPF は 49.3% (±10.13), 66.5% (±8.82) の程 度に減少する. 3者の減少は類似の 傾向を示し、RPF の減少度と GFR の減少度とは殆んど等しい. FF は 1.5% (±8.93), 1.4%(±17.57) \emptyset

図7 視床内側核障碍群における腎機能減少率および電解質の変動

脳幹障碍群における腎機能がびに電解質の変動	
2	
5	
惻	
翻	
ШH	
Ñ	
~	
\sim	
*	
202	
좰	
逖	
豳	
No	
+	
~	
4	
Ų	
*#	
#	
區	
畑	
4	
世	
徭	
9	

1				l .		1	II.
	Cl mEq/I	>	104 105	107 108 109	66 88 88	96 86 66	102 102 103
	Cl m	A	105 105 107	110 112 112	103 102 102	98 101 103	104 105 106
	Eq/1	Δ	444	3.57	3.9	3.5	8.8.6
	K mEq/1	A	2.4 2.5 7.4	33.8	4.0 4.1 4.1	3.8	3.9 4.0 4.1
	mEq/1	>	137 141 149	139 139 142	140 140 142	134 137 135	138 139 142
	Na m	A	139 144 152	140 142 148	143 142 144	136 139 138	140 142 146
	CPV	ml/min	684.5 679.0 665.7	749.6 736.5 710.9	636.2 625.8 624.2	744.6 716.3 607.6	703.7 689.4 652.1
え割	CBV	ml/min	1104 1061 979	1209 1116 1061	1136 1079 1058	1241 1214 1066	1173 1118 1041
脳軒厚時井におりの百傚肥黒のに 电肝回の炎男	RVR	mmHg/ ml/min	0.53 0.96 2.40	0.35 0.61 0.95	$0.32 \\ 0.69 \\ 1.12$	0.32 0.35 0.76	0.38 0.73 1.31
	FF		0.43 0.41 0.41	0.32 0.33 0.31	0.29 0.30 0.32	0.39 0.40 0.38	0.36 0.36 0.36
いる国体	GFR ml/min		60.8 24.7 7.0	60.2 30.9 15.8	60.8 30.6 16.8	96.4 79.3 23.8	69.6 41.3 15.9
年中にも	RPF ml/min		141.4 60.2 17.0	188.2 93.7 50.9	208.3 100.9 52.5	247.2 198.2 62.7	196.3 113.3 45.8
H	RBF	ml/min	228 94 25	294 142 76	372 174 89	412 336 110	327 187 75
₩	, UV	8	1.96 0.67 0.09	1.87 0.66 0.14	$\begin{array}{c} 2.02 \\ 0.90 \\ 0.12 \end{array}$	$\begin{vmatrix} 3.26 \\ 1.60 \\ 0.65 \end{vmatrix}$	2.28 0.96 0.25
	Ht	%	8888	33 44	44 42 41	40 41 43	40 38 37
	BP	mmHg	120 90 60	104 86 72	118 120 100	132 118 84	119 104 79
	原海	/min	120 98 72	110 121 146	126 134 138	108 104 136	116 114 126
	呼吸	/min	16 8 5	18 7 6	15 18 14	10 8 8	15 10 8
	田士	<u> </u>	温-2	12	部 1 2	前 1 2	212
	7		↔	O+	O+	↔	麺
	7年	#	8kg	7kg	10kg	13kg	型
	2	; 2	51	25	53	54	

程度に軽く上昇する. 血圧は 12.0% (±12. 75), 17.5% (±12.73) の程度に低下し、脳 幹部障碍群のそれに次いで著しい. 上昇例と しては、 視床下部前部障碍群に属する No. 30 において3.7%の上昇がみられた。 視束前 野障碍の全例において低下がみられた. RVR は78.5% (±50.00), 183.0% (±147.04) の 程度に増強する. 尿量は 58.7% (±18.71), 86.8% (±10.51) の程度に、ほぼ直線的に 減少する. Ht 値は 1.2% (±5.00), 0.7% (±7.07) の程度に軽く減少する. 電解質の 変動としては, Na は No. 28, 30, 31, 34, 36 において増加し、ことに No. 30, 34, 36 における増加は著しい. K は No. 30, 33, 35 において軽度に増加し、C1 は著しい変動 を示さない. 腎動静脈血較差に著しい変化は みられないが、相対的に Na の上昇の傾向が みられる. 視床下部前部障碍群における 腎 clearance は、視束前野障碍群のそれより著 明な低下を示すが, 血漿電解質の変動は, 両 群の間に差異を示すことはない.

8) 視床下部外側核障碍群

この群に属する7頭の検査成績は、表8、 図10に示す如くである、脳障碍1時間後、2 時間後の 測定値の 増減率を 平均で みると、 RBF $\sharp 49.9\%(\pm 20.62), 69.2\%(\pm 11.78)$ RPF 346.9% (±23.04), 66.5% (±11. 18), GFR は 43.7% (±22.30), 62.5% (±15.13) の程度に著しく減少する. 3者の 減少度は、ほぼ類似の傾向を示すが、RPFの 減少度は GFR のそれよりもやや高い. FF は 12.8% (±18.11). 16.7% (±24.31) の 程度に上昇を示し、7例中5例までが著しい 上昇を示した. 血圧は 6.6% (±12.14), 7.2%(±16.30)の程度に上昇を示し、No. 37 では、2時間値に36.5%の上昇がみられた。 RVR は 163.8%(±156.52), 310.3 (±203. 47) の程度に 著明に増強し、 尿量は 52.7% (±15.23), 89.1% (±5.94) の程度に著し く減少した. Ht 値は, 3.2% (±6.98), 5.3 % (±6.44) の程度に低下し、No. 24 にお ける 2.6%の上昇をのぞいて、6例において 低下がみられた. CBV は 3.8% (±6.91). 6.5% (±6.41) の程度の減少を示し、著し くはない. 血漿電解質の変動として, Na は 全例に増加がみられ, No. 42, 43 の 2 例に

図8 脳幹障碍群における腎機能減少率および電解質の変動

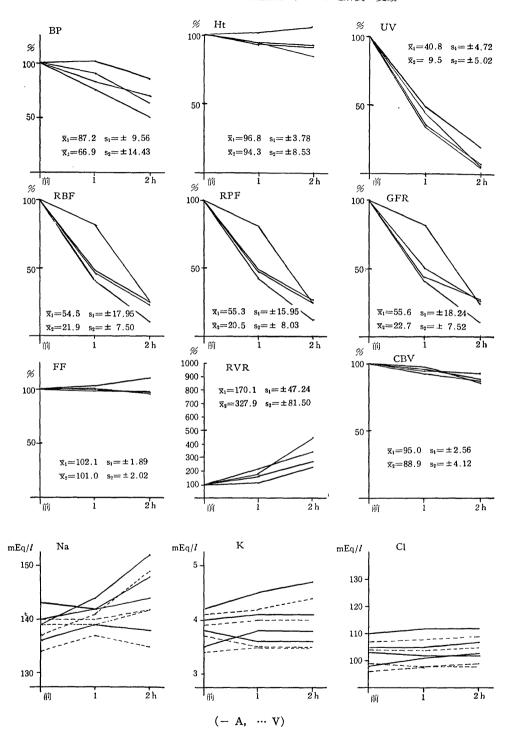


表7 視床下部前部および視束前野障碍群における腎機能並びに電解質の変動

mEq/1	>	112	130 131 131	99 96 96	121 120 117	8666	801 100 100	98 99 102	132 133 135	107 106 107	===
[]	A	113 116 113	134 136 132	101 106 98	125 122 119	101 104 106	104 107 105	100 103 106	134 136 137	111 108 109	114 115 114
mEq/1	>	5.2	5.1 4.8 4.9	3.1	3.7	3.5	4.4.2 2.4.4 4.4	4.0 3.6 3.7	4.5 5.4 5.2	4.4	2.22
K mE	A	5.2	5.2	3.2	4.1 3.9 3.7	3.5	4.4 5.0 5.0	4.8.4	4.9 5.8 5.3	4.6	444 446
mEq/1	 	145 145 146	133 133 136	137 139 142	140 146 144	136 134 134	145 143 145	137 138 140	146 145 144	138 140 145	140 140 142
Na m]	A	147 148 150	136 136 139	139 141 148	142 148 146	138 135 135	148 147 147	138 142 147	150 150 148	141 145 151	142 144 146
CPV	ml/min	526.5 476.3 478.4	873.2 837.5 856.2	625.0 689.0 629.8	648.3 600.0 553.3	574.0 514.1 537.1	743.0 664.3 672.1	847.6 816.6 800.6	685.6 662.4 605.0	759.0 695.1 698.6	698.2 661.7 647.9
CBV	ij.	1053 972 920	1386 1269 1278	992 1060 940	1092 1000 954	1007 918 926	1281 1126 1140	1304 1276 1251	1182 1104 1100	1265 1140 1184	2167 1096 1077
UV RBF RPF GFR RVR CBV CPV	mmHg/ ml/min	0.31 0.73 1.87	$0.22 \\ 0.31 \\ 0.59$	0.45 1.15 1.81	0.38 0.41 0.61	0.44 1.06 1.15	0.40 0.69 1.12	0.31 0.41 0.48	0.41 0.69 0.71	0.34 0.64 0.83	0.36 0.68 1.02
	H. H.	0.41 0.39 0.38	0.26 0.29 0.33	0.38 0.44 0.43	0.33 0.37 0.43	0.40 0.42 0.39	0.35 0.33 0.34	0.32 0.30 0.29	0.37 0.34 0.29	0.36 0.34 0.31	0.35 0.36 0.35
GFR	m1/min	57.6 22.5 9.0	100.6 56.6 35.7	56.5 27.3 17.6	54.4 40.4 28.4	57.4 24.0 17.6	65.4 32.5 17.8	83.6 52.8 36.7	75.9 38.4 27.1	89.0 36.2 26.1	71.2 36.7 24.0
RPF	ml/min	140.6 57.6 23.5	386.9 195.0 108.2	148.8 62.1 40.9	164.9 108.0 66.1	143.6 57.1 45.2	186.8 98.5 52.5	261.3 176.0 126.7	205.3 112.8 93.5	247.2 106.4 84.3	207.3 82.9 71.2
RBF	=	287 120 46	624 300 164	240 97 62	226 180 114	252 102 78	322 167 89	402 275 198	354 130 120	412 174 143	351 172 113
ΔŊ	₽	2.46 0.92 0.10	3.73 1.67 0.58	2.41 0.90 0.30	1.76 0.74 0.09	2.15 1.00 0.36	1.96 0.89 0.30	2.87 1.28 0.48	$\frac{2.70}{1.30}$	2.71 0.70 0.30	2.53 1.04 0.34
H	%	51 52 49	38 35 34	38 36 34	38 40 42	43 42	42 41 41	3683	42 40 45	41 41	1494
BP	=	0888	134 94 96	108 112 112	100 74 70	112 108 90	130 116 100	124 114 96	146 130 120	140 112 118	120 106 99
	n / min	96 78 74	122 124 126	130 122 120	125 90 90	100 94 88	146 100 102	130 120 114	120 90 94	120 148 180	122 107 110
平吸	min/	10 8 11	18 24 24	14 14 14	16 15 16	13 11 7	18 9 7	08 10 10	13 14 7	128	16 113 111
1		21章	212	213	温12	温12	212	怎12	怎-2	怎-2	21部
	Ħ 	0+	€0	€	€0	0+	€0	O+	€0	€0	種
1	(本)	8kg	12kg	10kg	10kg	10kg	11kg	10kg	10kg	9kg	型
7	No.	88	29	30	31	32	83	34	35	36	片

図9 視床下部前部, 視床前野障碍群における腎機能減少率および電解質の変動

表8 視床下部外側核障碍群における腎機能並びに電解質の変動

mEq/1	>	96 98 97	102 103 103	108 107 105	97 96 97	116 116 124	101 102 108	120 119 119	106 106 108
C	А	98 100 99	103 106 106	112 110 108	100 98 99	120 120 128	104 107 111	122 120 123	108 109 111
mEq/1	>	3.3.5 4.6.8	6.6.6 6.4.6.	2.4.4	5.0 5.1 5.4	3.50	3.6 3.7 3.6	4.0	3.9
K mJ	A	3.35	3.5	4.4.4 8.3.3 8.3.3	5.1 5.3 5.7	3.7	3.8	4.1 4.6 5.0	0.44 2.2 2.3
mEq/1	>	135 136 137	138 139 139	145 147 147	131 132 134	140 141 142	135 137 140	140 141 147	138 139 141
Na m	A	136 138 139	139 141 142	148 148 149	133 133 136	142 144 145	136 139 144	142 145 152	139 141 144
CPV	ml/min	699.9 654.2 653.1	534.7 602.3 582.4	710.4 804.7 748.8	688.6 597.7 603.9	568.4 544.8 531.0	834.2 755.2 710.5	759.8 749.0 766.9	685.1 672.6 656.7
CBV	<u>.</u> =	1228 1128 1107	938 956 910	1110 1238 1170	1093 968 974		1264 1180 1093	1310 1228 1237	1132 1087 1056
RVR	mmHg/ ml/min	0.28 1.71 2.03	0.33 0.60 0.83	0.44 1.54 2.90	0.36 0.40 0.68	0.39 0.87 1.67	0.33 0.63 0.94	0.29 0.52 0.97	0.35 0.90 1.43
Ē	r.	0.38	0.32 0.37 0.45	0.41 0.58 0.63	0.28 0.33 0.36	0.29 0.34 0.32	0.43 0.38 0.35	0.34 0.32 0.33	0.34 0.39 0.39
GFR	ml/min	68.0 17.7 14.6	50.2 34.7 30.6	63.0 28.9 15.8	57.2 54.3 35.6	42.4 25.7 13.6	62.7 35.2 22.4	77.5 42.2 23.7	60.1 34.1 22.3
RPF	.E.	206.1 46.7 40.6	156.8 93.0 68.0	153.7 49.9 25.2	204.6 174.5 98.8	146.2 75.6 42.5	148.2 92.6 64.0	228.0 132.0 71.9	177.7 87.7 58.7
RBF	ml/min	368 82 70	280 150 108	244 78 40	330 286 162	252 126 72	288 147 100	400 220 118	309 156 96
UV	표	1.36 0.37 0.18	1.42 1.04 0.25	2.60 0.98 0.26	2.06 1.10 0.16	2.90 1.36 0.23	1.80 1.02 0.26	3.80 1.41 0.34	2.28 1.04 0.24
Ht	%	44 43 43	44 38 37	37 36 37	8888	42 40 39	35 37 34	43 39	39 38 38
BP	=	104 140 142	80 80 80 80	108 120 116	118 114 110	100 110 120	96 93 94	116 115 114	105 112 112
準	/min	106 130 130	100 96 78	132 120 134	116 104 122	000 100 84	104 108 121	118 126 120	109 112 113
極極	d /min	23 14 14	12 12 12	14 10 11	12 16 15	2188	20 118 14	13	15 13 12
1	至	2-2-2-2-2-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3	怎-2	福-2	212	温12	湿12	怎-2	海-7
	Ħ ——	0+	€0	€0	€0	OH	O -	€0	麺
#	体重	10kg	8kg	8kg	12kg	11.5kg	10.5kg	8.5kg	垭
7	No.	37	88	33	40	41	42	43	計

図10 視床下部外側核障碍群における腎機能減少率および電解質の変動

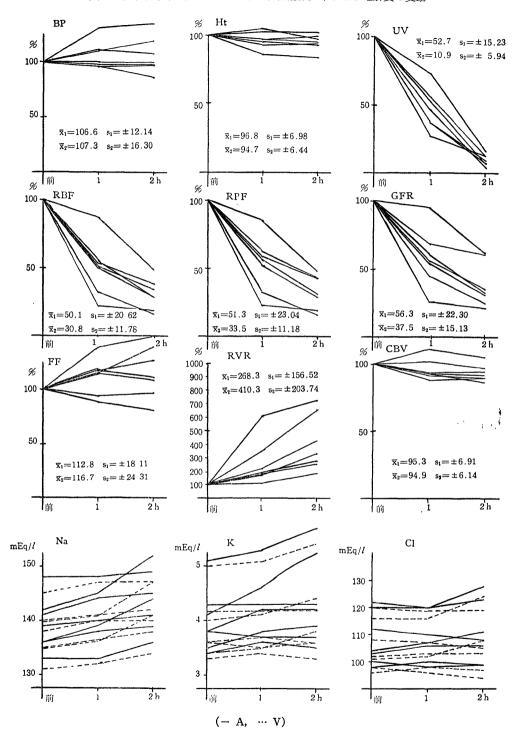
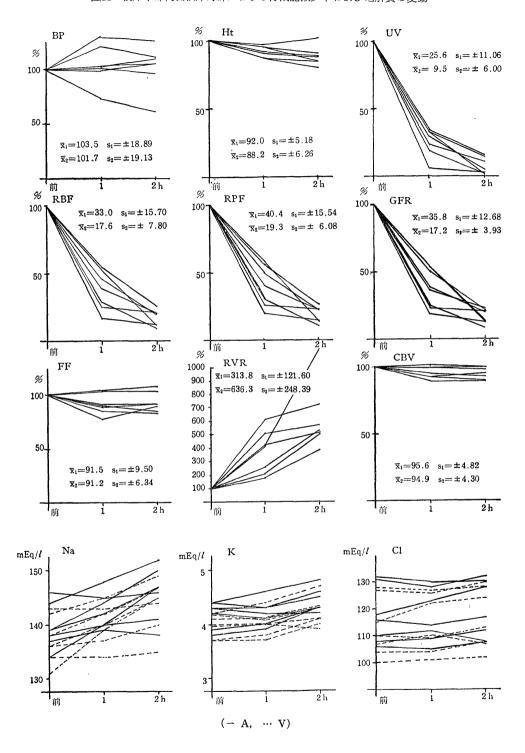



表 9 視床下部内側核障碍群における腎機能並びに電解質の変動

No										
中國 中國 中國 中國 中國 中國 中國 中國	Eq/1	>	107 110 107	104 104 108	110 109 113	127 126 130	115 122 124	128 127 128	100 101 102	113 114 116
	C	Ą	110 112 108	108 109 112	116 114 117	131 128 131	118 123 128	132 130 130	106 105 108	117 117 119
	3q/1	>	4.2 4.1 4.3	3.7	4.0 4.0 4.1	4.4	3.7	4.1	4.0 4.0 3.9	4.0 4.0 4.2
株職 株職 株職 株職 大阪 大阪 大阪 大阪 大阪 大阪 大阪 大	K mł	А	4.3 4.6	8.4 9.8 9.8	4.3	4.4	8.6.4 8.0.6.	46.6	4.3	2.44
中華 中華 中華 中華 中華 中華 中華 中華	Eq/1	>	142 145 149	136 137 140	143 143 144	136 140 145	138 142 147	134 134 135	131 137 145	137 140 144
中華 中華 中華 中華 中華 中華 中華 中華	Na m	A	144 148 152	138 140 141	146 145 146	139 142 147	139 144 150	137 139 138	134 140 147	140 143 146
中華 中華 中華 中華 中華 中華 中華 中華	CPV	ml/min	552.2 557.5 584.9	726.3 787.5 784.6	724.1 731.5 762.5	785.0 803.9 860.3	689.2 663.9 657.9	606.6 582.5 556.9	635.0 713.5 748.4	674.1 691.5 707.9
本華 本華 本華 本華 本華 和 和 和 和 和 和 和 和 和	CBV		1026 910 914	1231 1250 1226	1341 1330 1314	1287 1276 1284	1094 1006 982	1011 955 944	1176 1081 1117	1167 1115 1112
本華 本 本 本 本 和 和 和 和 和 和	RVR	mmHg/ ml/min	0.26 0.53 2.24	0.32 0.67 1.61	$0.29 \\ 1.48 \\ 1.67$	0.31 0.81 1.65	0.30 1.25 3.43	0.39 0.71 1.51	0.41 1.75 2.05	0.33 1.03 2.02
体重	Ę	11	0.36	0.37 0.29 0.33	$0.35 \ 0.31 \ 0.32$	0.33 0.34 0.34	0.39 0.33 0.32	0.41 0.37 0.35	0.36 0.37 0.38	0.37 0.33 0.39
体重 性 時間 年級 下時 一下 一下 一下 一下 上 上 上 上 上 上 上 上 上	GFR	ml/min	54.8 29.7 7.1	64.4 25.2 12.9	64.9 15.0 13.6	68.1 28.9 16.6	79.8 20.6 6.7	63.4 32.4 14.2	65.3 13.7 10.0	65.8 26.5 11.6
体重 性 時間 呼吸 脈搏 BP Ht UV Min	RPF	ml/min	152.3 90.0 21.4	174.0 86.8 39.1	185.5 48.4 42.8	206.4 83.7 48.8	204.6 62.4 21.1	154.6 87.6 40.6	181.4 36.4 26.4	179.8 70.8 34.3
体重 性 時間 呼吸 下轉 BP Ht	RBF		282 150 34	300 140 62	350 88 75	344 135 74	330 96 32	262 146 70	336 56 40	316 116 55
体重 性 時間 呼吸 脈搏 BP Ht Ht Ht Ht Ht Ht Ht H	ΔΩ		1.86 0.62 0.14	3.34 1.00 0.18	2.97 0.18 0.09	3.36 0.65 0.28	2.55 0.86 0.42	1.86 0.62 0.28	3.45 0.82 0.37	2.77 0.67 0.25
体重 性 時間 一	Ht	%	46 40 37	42 38 37	47 45 43	40 34 34	38 34	41 40 42	40 35 34	42 39 37
本華 中 中 中 中 一 一 一 一 一 一	-		. 088	96 94 100	100 130 125	108 110 122	100 120 110	102 104 106	135 98 82	103 105 103
本華 中 中 中 中 一 一 一 一 一 一	影響	/min	122 116 116	120 126 100	106 124 120	124 120 106	125 86 74	135 138 116	144 141 126	125 122 108
本 本 本 本 本 日 日 日 日 日	呼吸	/min	14 12 12	32 36 29	20 16 12	12 18 16	16 16 15	18 20 16	28 20 20	21 20 17
本庫 本画 本画 日0kg 今 10kg 今 11kg 今 15kg 今 9kg 今 5kg 今 5kg 今 5kg 今 5kg 今 5kg 今 6kg 6kg 今 6kg 6	1	E E	12	212	21章	垣12	2 □ □ 2	212	12	213
本画			€0	O+	0+	€0	€0	€0	€0	
No. No. 44 45 45 45 46 46 47 44 44 44 44 44 44 44 44 44 44 44 44	土	世	10kg	8kg	10kg	11kg	10kg	9kg	15kg	型
	2	NO.	44	45	46	47	48	49	20	

図11 視床下部内側核障碍群における腎機能減少率および電解質の変動

おいてはとくに著しい増加がみられた。Na の貯溜傾向がうかがえる。腎動静脈血較差の変化は 軽度 である。Kは No. 39, 43 の 2 例において増加したが,著しい変動を示さない。C1 は殆んど変動を示さない。視床下部外側核障碍群においては,著しい血圧上昇を示す例と,軽度の血圧低下を示す例とがみとめられるが,腎 clearance の低下は強く,RVR の増強が著明である。血漿電解質 Na, K の増加がみられ,Ht 値の低下があるのが特徴的である。

9) 視床下部内側核障碍群

この群に属する7頭の検査成績は、表9、図11に 示す如くである、脳損傷1時間後、2時間後の測定値 の増減率を平均でみると、RBF は 67.0% (±15.70)、 84.4% (±7.80), RPF 1 59.6% (±15.54), 80.7 % (±6.08), GFR は 64.2% (±12.68), 82.8% (± 3.93) の程度に減少し、これは全障碍中最も著しい。 3者の減少率は、ほぼ類似の傾向を示すが、 GFR の 減少率は2時間値において、RPF のそれよりも大き い、従つて、FF の値も 8.5% (±9.50)、8.8% (± 6.27) の程度に低下していて、この群においては上昇 例はみられない. 血圧は平均して 3.5% (±18.89), 1.7% (±19.13) の程度に上昇するが、No. 50 にお ける2時間値は49.3% に及ぶ著しい低下を示し, No. 44 におけるように 5% の軽度の低下を示すもの もある. しかし, その他の5例においては4~25%に 及ぶ血圧上昇がみられる. 従つて, RVR は 213.8% (±121.61), 536.3% (±248.39) の程度に増強し, これは全障碍群の中最大の増強である. 尿量は74.4% (±11.06), 90.5% (±6.00) の程度に減少し, 本群 における1時間値の急激な減少は、視床下部外側核障 碍群にはみられない特徴的な所見である. 2時間値は No. 44, 45, 46, 47 の 4 例において 90%以上の減少 を示した. Ht 値は, 8.0%(±5.18),11.8%(±6.26)の 程度に低下し, これも全障碍群中最大の低下である. No. 49 における 2.4% の上昇を除いて、6 例におい て低下している. CBV は 4.7% (±4.82), 5.1% (± 4.30) の程度に全例軽度の減少を示す. 血漿電解質の 変動としては, Na は No. 44, 47, 48, 50 の4例に おいて高度の増加を示し、これらの例では、腎動静脈 血較差が低下している. No. 45, 49 の2例において は Na の軽度の増加がみられ、腎動静脈血較差の軽度 の変化がみられる. Kは No. 45, 47, 48 において増 加がみられ, 腎動静脈血較差は, No. 47, 48, 49 に おいて軽度の低下がみられる. 本群におけるKの増加 は、視床下部外側核障碍群のそれに比べて軽い。 CI の変動はみとめられない. 視床下部内側核障碍群にお

いては、血圧の上昇、腎 clearance の低下、尿量の減少および RVR の増強が、他の障碍群のそれらに比べて最大の値を示し、血漿 Na の高度の増加とKの軽度の増加がみられ、腎動静脈血較差の減少がみられる. Ht 値の低下と Na 貯溜の傾向とがうかがわれた.

以上各群についての実験成績を述べたが、血圧とRBF との間には相関はみられない。またRBF と CBV との間にもshock時にみられるような正の相関はみ当らない(図12, 13)。しかし、RPF と GFR との間には一定の相関(正の相関)がみられるようである(図14)。

図12 BP 増減率と RBF 減少率の相関関係 (2時間値)

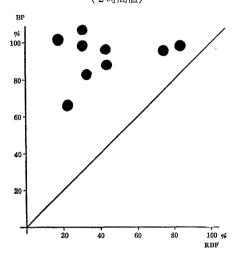


図13 CBV 減少率と RBF 減少率の相関関係 (2時間値)

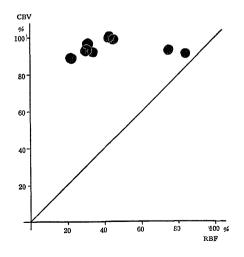
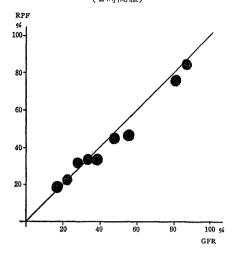



図14 RPF 減少率と GFR 減少率の相関関係 (2時間値)

家兎の脳内に Brown-Pearce 腫瘍移植の実験成績

Brown-Pearce 家兎癌の脳内移植の状況 および 部 位は写真3に示す如くである. 腫瘍組織を家兎の脳内 に移植するにあたつて, その移植部位の決定は, 犬実 験の場合と概ね同様に行なつた. しかし, その操作が 損傷の作成でなく, 腫瘍移植であるため, 着床し増殖 するに従つて当初の移植部位からさらに周辺に向つて かなり広範囲に浸潤発育する. 従つて, その作成病巣 は、当初の目標より多少偏位して形成された場合もあ つた、従つて、著者は、屠殺後に脳割面を観察の上、 移植腫瘍の占居部位を吟味し, そのひろがりを決定し た. 犬実験の場合の脳損傷部位との対比に便ならしめ るために腫瘍の占居位置を次の如き 4部位に大別し て、種々の実験成績の検討を行なつた. すなわち, 1) 皮質·皮質下白質群 (8羽), 2) 基底核群(5, 羽) 3) 小脳脳幹群(5羽), 4) 視床・視床下部群 (7羽), および 5) 対照群 (2羽) である. なお, 腫瘍移植を行なつた家兎32羽のうち、不成功の1羽お よび腫瘍死の4羽は除外し、27羽についての成績を述 べる.

脳移植腫瘍の位置と腎の病理組織学的所見 (表10)

1)皮質・皮質下白質腫瘍群

8頭の家兎中腫瘍が前頭葉に限局したもの3例,頭 頂葉3例,後頭葉2例である.前頭葉移植群を除いて は組織学的に著しい病変を示すものはない. すなわ ち,表10に示す如く,腎小体に関しては,糸球体の軽 度の鬱血,また,尿細管では遠位尿細管において軽度 の上皮細胞の空胞状変性,核不染の像を示す. 尿細管 上皮内の貯溜物は Sudan Ⅲ 染色では染まらないも

のが多い. この病像は対照群に比してさほど著しいも のではないが, 髄質血管の鬱血の像と相まつていわゆ る lower nephron nephrosis の所見に類似するとこ ろがあるとみとめられる. 本群のうちでも前頭に腫瘍 の移植された家兎では、その状況が趣を異にする. す なわち3例中2例において尿細管の変性像がかなり高 度にみとめられるとともに,一方,糸球体の変化とし ては、鬱血、Bowman 囊内滲出液の貯溜をみるとこ ろがある. すなわち、腎の実質細胞および間質の双方 にわたる病変がみられる、病変の程度としては、尿細 管上皮の変性の方が優勢で、Henle 係蹄の太い部分よ り介在部,集合管にかけて,上皮細胞の核不染,崩壊 のみならず, 胞体自体の変性, 崩壊剝離, 内膜におけ る弱酸性塊状物 (尿円柱) の停溜をみとめる. これら 尿細管変性壊死部においては、Sudan Ⅲ 染色陽性の 脂肪層が生理的状態より遙かに増加しているのをみと めることができる.

2) 基底核腫瘍群

本群において腫瘍の増殖が一部視床部に浸潤するものがある. 従つて, 腎所見においても, 後述の視床・視床下部群でないが, それに類似する腎病変が含まれると考えられる. すなわち 5 例中 3 例において, 遠位尿細管を主とする上皮細胞の変性像がみとめられた. すなわち, 介在部以下の尿細管上皮の変性壊死像が顕著にみとめられる. そしてそれらは巣状にとくに強くみとめられるところがある.

一方,腎小体の変化は、糸球体の腫大,核増加,Bowman 囊内滲出物をみとめられるものが散見され,一部では変性した硝子様物質の沈着(基礎膜の硝子様肥厚)をみとめるところがある。病像としては,前頭葉移植群に似て,尿細管病変の方が優勢で,尿細管主部よりも遠位尿細管群において著しいことが特徴的で,さきにも述べた如く,いわゆる,lower nephron nephrosis の型に近い nephrosis の pattern であることがうかがわれる。しかし,勿論腎小体における急性腎炎類似の合併症の随伴もみられることは否定できない。

3) 小脳・脳幹腫瘍群

本群においては、5例中1例において nephrosis の 病像を主とする腎病変をみとめた. 髄質および皮質の 鬱血と糸球体の軽度の蠶血を除いては、遠位尿細管の 空胞変性、壊死、胞体の崩壊像が巣状に顕著にみられ た. その発現率は比較的低いのであるが、小脳移植群 において、このような変化をみとめたことは 興味深 い.

4) 視床·視床下部腫瘍群

		尿細管の変性像				腎	小 体	血管の変化 (主として鬱血) の程度			
		集合(細)	Henle 係		\. ±17	Bowma- n	糸 玏	は体の変	变 化	一の程度	
		管	蹄 太い部分	蹄 細い部分	主部	囊内滲出 物	鬱血	貧 血	変性壊死	皮質	髄質
1	1	_	_	_	_	_	+	_	-	+	+
皮質	2	+	+	_		-		+	-	_	+
	3		±		_		+		-	+	_
皮質下白質群	4	+	+		土	_		+	+		+
一丁	5	_		_	土	+	+	_	_	+	_
質	6	##	++		±	±	+	_	+	+	++
群	7	_	_	_	_	-	#		_	+	_
	8	++	###	+		土	+			+	+
基	9	+	+		-	-	_	+	+	-	+
底	10	++	++	++	+	-		_	+	+	+
核	11	++	H	_	-		-	+	+	_	++
i	12	+	+	+	土	土	_	+	+		+
郡	13	++	++	_	土	土	土	_	+	+	+
小	14	+	+	士	-	+	+	_	-	+	+
脳	15	++	++	_	+	+	+	_	+	+	++
脳	16	-	+	_	_	_	_	_	-		+
幹	17	+	+	_	_	+	+	+	+	+	+
群	18		<u> </u>	_	_	-	土	_	-	_	_
20	19	++	++		+	+	土	_	土		++
視床	20	++	##	+	_	++	_	+	+	+	+
	21	++	++	±	-	+	土	_	-	_	+
視床下部群	22	+	++	±	_	+	+	_	+	–	++
丁	23	++	++	±	_	-		+	+	_	+
群	24	##	111	+	土	+	_	+	+	+	++
	25	+	+	±		+	+	±	±		+
対	26	_	_	_	_	±	土	-		土	_
対照群	27		-		+		_	_	_	土	土

表10 家兎の実験的脳腫瘍の局在と腎の病理組織学的変化

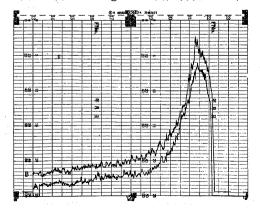
註 一, 土, 十, 卅の各記号は, それぞれの病変の有無と程度 (4 段階) を表わしたものである. 卅以上の変化をもつて有意の差とした.

本群では7例中5例に、腎病変の顕著なことが観察され、その発現率が最も高いことが注目される。この病像は、すでに述べたところと大差はなく、尿細管、ことに Henle 係蹄の太い部分、介在部、集合管部を主とする上皮細胞の空胞変性、さらには壊死崩壊像で、この部の尿細管空内には、これら剝離物質および弱好酸性の尿円柱がみられる。さらに尿細管上皮の変性像を示す病巣は巣状をなして散在性にみとめられる(写真4)、腎小体における糸球体の変化は、それに比べ遙かに軽度で、Bowman 孁内に多少の滲出液をみるものがある(写真5)、腎血管の鬱血は皮質におい

てみられず、むしろ髄質においてあらわれるものが多い傾向を示す。すなわち遠位尿細管群を主とする腎実 質細胞の変性像の著明なことが、各群におけると同様、本群でも共通してみとめられる。

著者が家兎について行なった脳移植腫瘍の作成部位と腎障碍の関連性について、腎の病理組織学的所見より検索したところでは、視床・視床下部腫瘍群において最も高率(71.4%)に腎病変の発現がみとめられ、その病像は遠位尿細管群の巣状変性壊死を主とするnephrosis 様変化と腎小体における軽度の急性腎炎類似像であった。このような病変の発生病因について、

その全貌を形態学的にうかがい知ることは 容易でない.しかし, 視床下部損傷実験(犬)で明らかにされたように, この部位の中枢神経性障碍が, 腎血流量の減少をもたらすことによって腎の乏血状態を生じ, これが重要な因子をなすものではないかとの推定が成り立つ.


遠位尿細管に 特異的にあらわれる nephrosis 性病変は、いわゆる lower nephron nephrosis としてとくに外傷性 shock に続発する場合の多いことは 周知の通りであり、hemoglobin あるいは myoglobin の腎に対する 障碍作用との 関連も 説かれている. しかし、本実験群の場合、そのような 全身的の crash syndrome はみとめ難く、腎に比較的特異的にもたらされる血流減少により、かつその状態が比較的長時間続くとみられる状態の下で発生するものではないかと推定される.

なお、本実験においては、さきに述べた如く、移植腫瘍の増殖は比較的急速であり、広範囲の損傷作成の場合が多く、極めて限局した損傷をつくる犬実験の成績と対比するのは、やや困難を感ずる、実際に皮質・皮質下白質腫瘍群で、前頭葉に限局した腫瘍例で3例中2例に腎障碍の病像がみられ、その影響が前頭葉下面より視床下部におよびやすいことが考えられ、基底核の5例中3例にも同様なことがあてはまり、脳幹腫瘍群にも全く同様なことが考えられる。しかし、その反面、この部位にも腎病変を生ぜしめるような因子が存在しているかもしれない。

renogram による脳腫瘍作成前後における腎機能の 比較 (図15, 図16)

腫瘍移植前後の測定時の家兎の条件を一定ならしめるため、検査当日は朝から絶食をさせた. また、測定

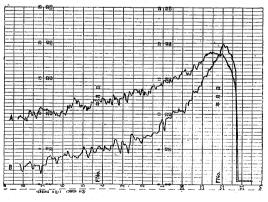
図15 家兎の Renogram 正常像 (家兎 No. 1)

B 移植前 A 移植後

時には麻酔は施さず、これによる影響を除外した。家 兎を固定し、その背面より collimeter を腎にあて神 戸工業製 r-ray spectrometer を用いて recording を行なつた。

久田の式から Tmax および T % が腎機能をよく あらわしていることを知りうるので、移植前後における両者についての値を求め、比較を行ない、あわせて 腎の病理組織学的所見と対比せしめた(表11, 図17).

1) 皮質·皮質下白質腫瘍群


この群に属する 8 羽の脳に 腫瘍を移植した 前後 の T ½ の 値についての 増減率を移植後値の 前値に対する比の平均で示すと、2.34 (± 1.31) となり、T max のそれは 1.16(± 0.11) となる、いずれも移植後の増加をきたすことを知るのである。すなわち腎機能の排泄面でも、また蓄積面でも遅延をきたしていることになる。そしてその率は排泄面において高い値を示し、腎排泄が障碍されていることになる。

No. 1~5 においては頭頂葉ならびに後頭葉に腫瘍がみとめられ、No. 6~8 においては前頭葉に腫瘍が占居した。 病理組織学的所見と 概ね 一致した状態が renogram にもうかがえる。 しかし、3 例においては、病理組織学的所見と、一致していないことが注目される。

2) 基底核腫瘍群

この群では、T½ の移植後値の 前値に対する 比の 平均は 1.87 (± 0.71) であり、Tmax のそれは 1.09 (± 0.22) である。 これは皮質・皮質下白質腫瘍群の 値と比べて低い、renogram 所見と病理学的所見との 一致する例が多く、No. 10, 11 の 2 例に おいては renogram で腎機能障碍が強くうかがわれるが、病理 組織学的変化も高度である。この 2 例と類似の組織像

図16 家兎の Renogram の異常像 (家兎 No. 24)

B 移植前 A 移植後

を呈する No. 13 においては 組織像の変化に 比して renogram の変化が軽く、 著るしい T½, Tmax の 遅延はみとめられなかつた.

3) 小脳·脳幹腫瘍群

対

照

27

3.9

4.0

1.03

2.0

2.2

1.10

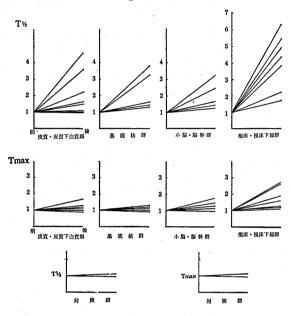
この群においては、T% の移植後値の前値に対する 比の 平均は 2.01 (±1.16) を、Tmax は 1.29 (±0.29) を示す。病理組織学的にみられる腎の病変と並 行した renogram の変動がみられた。No. 15,17 の 2 例においては、著しい T% の延長がみられた。こ とに No. 17 においては T% の著しい延長がみられ るが、Tmax の延長がみられないのが特徴的であった。組織像では No. 15 が No. 17 に比べて強く、 renogram における T% の延長は No. 17 の方によ り著しい.

4) 視床·視床下部群

この群においては、 T% の 移植後値の 前値に対する比の平均は 4.13 (± 1.57)、 T max のそれは 1.94 (± 0.64) を示し、いずれも 移植全群中最大の 延長をみる。 そして、その変化も概ね病理組織学像の著しい 所見と一致した。 しかし、病理組織学的所見の腎障碍と T renogram 変化とは、 細部に亘つては、必ずしも全く並行しているとはいえないところもある。

以上、移植脳腫瘍の局在と renogram によつて 測定された腎機能との間の相関は、視床、視床下部を中心とした部位および前頭葉に占居する腫瘍においてみとめられた、しかし、小脳・脳幹部腫瘍群の1例にも

			T½ (min	ı) ·	1	Γ max (min)			
	鬼 番号	前(B)	後(A)	<u>A</u> B	前(B)	後(A)	A B		
	1	3.8	4.1	1.08	1.3	1.2	0.92		
	2	4.1	4.0	0.98	1.9	1.9	1.00		
	3	1.8	4.0	2.22	1.5	2.0	1.33		
皮質・皮質下白	4	3.6	3.6	1.00	2.0	2.0	1.00		
質群	5	2.4	4.0	1.67	1.3	1.5	1.15		
	6	2.3	8.2	3.57	1.2	1.4	1.16		
	7	3.9	5.8	1.49	1.8	1.9	1.06		
	8	4.3	18.8	4.37	1.6	2.7	1.69		
	9	2.6	3.8	1.46	1.3	1.2	0.92		
	10	3.1	8.6	2.77	1.4	1.8	1.28		
基底核群	11	3.5	7.9	2.26	1.2	1.3	1.08		
	12	3.8	5.0	1.32	2.2	2.2	1.00		
	13	4.0	6.1	1.53	1.7	2.0	1.17		
	14	3.6	6.0	1.67	1.8	2.3	1.27		
	15	4.1	10.1	2.46	1.8	2.6	1.44		
小 脳・脳 幹 群	16	3.3	4.8	1.45	1.4	1.5	1.07		
-	17	6.1	19.3	3.16	4.6	4.4	0.95		
	18	3.6	4.7	1.31	2.2	2.4	1.09		
	19	3.2	7.1	2.22	2.1	2.6	1.24		
	20	2.8	10.8	3.86	1.2	1.9	1.58		
視床・視床下部	21	2.9	14.4	4.96	1.8	2.2	1.22		
	22	3.1	17.0	5.48	1.6	3.6	2.61		
群	23	2.0	8.7	4.35	1.3	3.4	2.61		
	24	3.0	19.0	6.33	1.3	2.4	1.84		
	25	3.8	6.6	1.74	2.5	2.7	1.08		
.t. 1171 31M	26	4.2	4.0	0.95	1.4	1.3	0.92		


表11 家兎の実験的脳腫瘍の局在と renogram の変化

相関がみとめられた。 病理組織学的所見と renogram によって評価された腎機能との間には, 大略の一致は みとめられたが、細部に亘つては、必ずしも平行しな いところもあつた.

脳腫瘍および脳外傷の臨床例における観察成績

脳腫瘍および脳損傷の部位を手術によって確かめ,

図17 家兎における実験的脳腫瘍作成後の renogram の変動

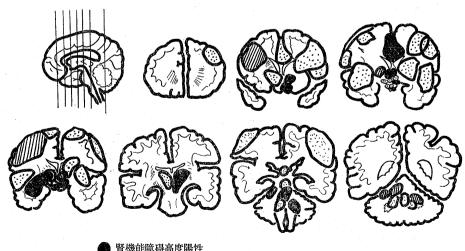
剖検が行なわれた例ではそれによつてさらに再確認さ れた. 臨床例の局在部位を総括して図18に示す.

病巣の局在部位によつて、 視床下部群 (13名), 下 垂体群 (6名), 視床群 (5名), 基底核群 (4名), 天幕下群(11名)、および皮質・皮質下白質群(12名) の6群に分類して観察を行なつた.

視床下部病巣群には、視床下部に局在する腫瘍、お よびこの部に接して大なる影響を与えるよう な部位を含め、トルコ鞍上部とその近傍部か ら発生した髄膜腫を含めた.

> 下垂体病巣群は下垂体より発生する下垂体 腫瘍を主体とし、漏斗部病巣を含んでいる.

> 視床病巣群は視床に限局する腫瘍を含み, 病巣の一部が基底核や視床下部にも達する場 合もあるが、主たる病巣が視床を占める場合 である.


> 基底核病巣群は間脳と大脳皮質との間の大 部分の病巣を含み,淡蒼球,被殼および尾状 核の3つの主なる核と、被殼の外側にある前 障, 扁桃核に亘る病巣を含んでいる.

> 天幕下病巣群は,小脳,橋および延髄に腫 瘍の存在した群である.

> 皮質・皮質下病巣群は、前頭葉、側頭葉、 頭頂葉および後頭葉に腫瘍, 損傷の存在する 群である. 基底核に著しく及んでいる症例は 基底核群に入れた.

1) 視床下部病巣群 (表12, 図19, 写真6

図18 臨床例における脳腫瘍ならびに脳損傷部位

- 腎機能障碍高度陽性
- 軽度陽性
- 陰性

表12 視床下部腫瘍患者の腎機能

ĺ	型用	ı	+	I	i	‡	I	‡	J	‡	‡	ı	‡	‡
CI	mEq/1	108	109	112	112	100	100	66	102	66	88	105	113	103
K	mEq/1 mEq/1 mEq/1	3.4	4.85	4.45	3.7	4.2	4.4	4.3	3.8	4.5	3.8	4.3	3.9	4.4
Na	mEq/1	148	139	140	139	144	140	140	140	140	129	144	140	143
RVR	mmHg/ ml/min	0.113	0.138	0.088	0.130	0.211	0.139	0.251	0.116	0.179	0.238	0.124	0.294	0.532
Ē	11	0.278	0.138	0.174	0.20	0.09	0.31	0.22	0.26	0.32	0.27	0.30	0.38	0.23
GFR	ml/ min	143.5	6/	111	32	28	138	46	150	8	29	130	84	42.8
RPF	ml/ min	516	571	637	475	318	447	212	530	250	216	446	210	181
RBF	ml/ min	905	830	1250	802	468	785	370	1000	490	407	780	320	310
1	关 归 二	1012	1014	1004	1012	1020	1016	1022	1016	1017	1020	1017	1012	1023
展画	ml/dag	1000	1100	800	009	800	2300	1000	950	1400	800	1400	1000	009
Ht	%	43	31	49	41	32	43	33	46	49	47	42	31	40
mmHg	最低	92	96	80	75	99	90	20	80	98	8	89	74	120
血圧1	最高	128	152	140	135	122	128	116	128	118	130	126	114	210
髄液圧	0°Hmm	250	130	180	196	130	330	260	480	220	270	340	140	470
11 2	ッ 型 A	脳 腫 瘍	脳 腫 瘍							脳 腫 瘍			脳腫瘍	脳腫瘍
3	病' 凶别间	3 年	8 加月	3ヵ月	12ヵ月			2 年	R			R		2ヵ月
Tri.	荊	O+	↔	0+	O+	0+	0+	↔	0+	€0	↔	O+	O+	O+
14 14	并	14	75	15	26	28	18	12	11	22	22	14	22	20
1	4位	0	0	0	0	0	0	0	0	0	0	0	0	0
	<u>K</u>	卍	표	凞	幺	ボ	糕	畔	囮	1ºEE	₩	桕	松	凇
;	, S	1	2	က	4	rc	9	7	∞	6	10	11	12	13

表13 下垂体腫瘍患者の腎機能

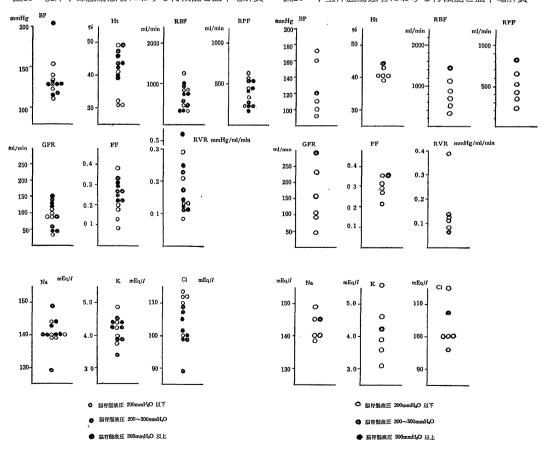
	判定	1	i	#	I	1	+
C	mEq/1	115	100	100	100	107	96
Ħ	mEq/1mEq	3.1	4.6	3.6	3.8	4.2	5.6
Na	mEq/	138	148	145	140	145	140
RVR	mmHg/ ml/min	0.111	0.147	0.386	0.077	0.064	0.135
Ę	FF	0.29	0.32	0.22	0.36	0.36	0.27
GFR	ml/ min	119	160	49	237	292	36
RPF	ml/ min	408	202	228	099	810	347
RBF	ml/ min	669	890	386	1120	1445	570
尿比重		1019	1018	1018	1031	1016	1008
展画	ml/dag	1200	1800	1200	1800	1100	3000
Ht	%	41	43	41	41	44	33
mmHg	最低	62	62	126	62	65	54
血圧	最高	65	160	172	110	120	100
 髓液压	mmH_2O	200	150	170	145	220	120
7. 7.	で	脳腫瘍	脳 腫 瘍	脳 腫 瘍	脳 腫 瘍	脳 腫 瘍	脳 腫 瘍
病悩期間		4 年	3 年	4 年	7 年	7 年	3 年
12	Ħ	0+	0+	€	0+	€	€
年齢		24	36	54	26	33	6
1	4	0	0	茶	0	0	0
Ł	K	飯	校	144		赘	囯
;	o Z	23	24	25	56	27	88

7)

本群に属する症例は13例でその年齢は11歳から75歳に亘り、全例腫瘍である。その組織像は、craniopharyngioma 8例、meningioma 5例である。

このうち, 7例 (53.8%) に RPF および GFR の減少をみとめる. この群に属する症例の RPF の平均は 385.0ml/minであつて低値を示し,強度の減少を示すもの 5 例 (38.5%), 軽度の減少を示すもの 1 例 (7.7%) があつた. GFR の減少を示した 7 例 (53.8%) 中 4 例 (30.8%) は著しい減少を示している. FF は 3 例 (23.1%) において低下がみられ, 6 例 (46.2%) において上昇がみられた. 血漿電解質の変動は軽く, Na は No. 10 において 129mEq/l, No. 1 において 148mEq/l を示した. K は全例において正常値を示した. Cl は No. 3, 4, 12 において軽度の増加を示した. 腫瘍組織の種類別による腎機能の差異はみとめ難い. 尿量, 尿比重は特別の変化を示さなかつた. RVR は全病巣群中最も高い値を示し, 平均 0.196である. 5 例 (38.5%) において とくに高値をみと

図19 視床下部腫瘍患者における腎機能と血中電解質


め, No. 13 においては例外的に異常高値 (0.532) を みとめた.

2) 下垂体病巣群 (表13, 図20)

本群に属する症例は6例で、その年齢は9歳から56歳に亘る.6例のうち下垂体腫瘍は4例、下垂体萎縮は1例、craniopharyngiomaは1例である.組織学的には、chromophobe adenoma 3例、eosinophile adenoma 1例、craniopharyngiomaが下垂体に限局し、尿崩症を伴なつたもの1例およびatrophy1例である。本群に属する症例はhormone 異常の臨床症状を伴ない、平均4年6カ月という長期の病悩期間を持つことが特徴的である。

腎障碍は 2 例 (33.3%) にみられた. RPF, GFR の減少があり, ことに No. 25 においてはその減少が高度である. この症例は軽度の末端巨大症と高血圧症群を伴なつている. 従つて, FF は正常値を示すが, RVR は 0.386 の高い値を示す. 軽度の腎障碍を伴なつた No. 28 は尿崩症のため, 低比重の多尿がみられた症例である. No. 24 は血漿 Na の軽度の増加を.

図20 下垂体腫瘍患者における腎機能と血中電解質

m

腎機能
0
腫瘍患者
視床
K
贸
4
彩

	. 1					
₽		i	+	#	1	i
C	mEq/1	103	110	102	105	108
K	lmEq/1	5.1	4.5	4.2	3.8	4.0
Na	mEq/1	135	142	136	140	144
RVR	mmHg/ ml/min	0.114	0.169	0.179	0.077	0.100
r T	T.	0.33	0.21	0.32	0.30	0.41
GFR	ml/ min	198	2	. 79	180	228
RPF	ml/ min	009	336	245	009	553
RBF	ml/ min	1052	280	480	983	878
# 亡 出	7	1016	1014	1016	1018	1012
展画	ml/dag	1200	650	1200	1800	1000
Ht	%	43	43	49	33	37
mmHg	最低	84	78	62	54	74
血压工	最高	154	118	110	86	102
髓液圧	mmH ₂ O	300	200	330	420	400
~	<u>et</u>	脳 腫 鴻	脳腫瘍			
AV. #10	病悩期間			6 カ月	3ヵ月	3ヵ月
4		€	0+	↔	0+	€
	五名 年齢		12	23	13	56
			太	○ #	佐〇野	福
Z		14 中	15	16		18

表15 基底核腫瘍患者の腎機能

	쉬	#	ı	ı	i
——	F ——	_			
C	lmEq/	66	109	94	92
K	mEq/1	4.6	4.3	4.5	5.0
Na	mEq/1	142	147	134	138
RVR	mmHg/ ml/min	0.222	0.080	0.116	0.104
ņ	ΓĽ	0.28	0.22	0.27	0.27
GFR	ml/ min	61	198	124	143
RPF	ml/ min	217	820	460	530
RBF	ml/ min	522	1370	098	984
开		1020	1022	1014	1016
と 書	ml/dag	1500	200	1200	1500
Ht	%	51	38	42	40
mmHg	最低	86	84	84	80
血圧口	最高	134	126	116	124
髄液圧	mmH2O	130	170	320	320
ង្គ	多 至 分	脳腫瘍			脳腫瘍
H W	7两1四月11日	3年6ヵ月	1ヵ月	2ヵ月	3 年
1	<u>H</u>	↔	O+	0+	0+
	F F	30	45	45	32
	<u>'</u>	0	0	1tar	0
E	K	¥	硘	胚	咂
	No.	61	20	21	72

No. 23 は血漿 K の減少と C1 の増加とを示したが、これらの 2 例には Cushing 症候群様の体軀がみられた. 尿崩症の No. 28 においては K の増加と C1 の低下がみられた.

下垂体病巣群に属する症例においては概して尿量が多い. No. 25 においては尿比重が高く (1031), 糖尿病がみとめられた. RPF は概して低値を示し, GFR は高値であるため、FF は高い.

3) 視床病巣群 (表14, 図21)

本群に属する症例は5例でその年齢は12歳から26歳に亘る.5例の全例が腫瘍である. 腫瘍の組織学的分類では pinealoma 1例, spongioblastoma 2例, glioma 2例である. 腎障碍をみとめたものは No. 15, 16の2例(40%)であり, 腫瘍は左視床に局在していた. FF は No. 15 の 症例において 正常, 他の4例においては高くなつている. RVR は変動を示さなかつた.

視床病巣群においては RPF は比較的低い値を示し (466.8 ml/min), GFR は高い値 (151.0 ml/min) を示す. 従って, FF は高い (0.314). 血漿電解質は変動を示さなかった. 髄液圧は高い (413 mm H_2O).

4) 基底核病巣群 (表15, 図22)

本群に属する症例は4例でその年齢は30歳から45歳までに亘る. 4症例の腫瘍種類からみて glioblastoma multifolme 2例, oligodendroblastoma 1例, cholesteatoma 1例である.

No. 19 のみに RPF, GFR の減少と RVR の上昇とがみられた. FF の変動は軽度である. 血漿電解質の変動として No. 20, 21 において C1 が軽度に減少しているほかに著しい変化がみとめられない. 尿量は No. 20 において乏尿を示した. 尿比重の変化はみられない.

5) 天幕下病巣群 (表16, 図23)

本群に属する 症例は 11例で その年齢は 12歳から 48歳に亘る. 腫瘍の種類は, 聴神経 neurinoma 3例, schwannoma 1例, 小脳 hemangioma 2例, neurogenic sarcoma 1例, 小脳橋角部 meningioma (sarcoma型) 1例, 第 4 脳室 ependymoma 1例 および 延髄部 Recklinghausen 氏病 1例, 小脳虫部 astrocytoma 1例である. 腎障碍を

示す症例は7例 (72.7%) ある. RPF の減少を示す例は、No. 41, 42, 47, 48, 49 の 5 例 (45.5%) であり、その減少度は比較的高い. このうち、No. 42, 47 の 2 例 (18.2%) においては減少がとくに著しい. GFR の減少は、No. 41, 42, 47, 49 の 4 例 (36.4%) にみられ、いずれも RPF 減少例に含まれる. FFの低下は No. 42, 43, 45 の 3 例 (27.3%) にみられ、No. 43、No. 45 においては RPF は比較的よく保たれていて FFの低下している例である. RVR の増強は No. 41, 48, 49 の 3 例 (27.3%) にみられ、これらの全例が RPF、GFR の減少例に含まれている.

血漿電解質の変化として Na は No. 50 の 1 例 (9.1%) において軽度の減少を示し、Kは No. 51 の 1 例 (9.1%) において軽度の増加を示す。 C1 は No. 41, 44, 47, 48, 50, 51 の 6 例 (54.5%) において 低下がみられ、No. 42, 49 の 2 例 (18.1%) において 増加がみられる。従つて。C1 の変動は 8 例 (72.7%) に みられた。

尿量, 尿比重には変化がみられない.

図21 視床腫瘍患者における腎機能と血中電解質

天幕下病巣群においては腎障碍が多くみられ、Clの変化がみられた。RPF は平均 $488.7\,ml/min$ を示して比較的少なく、GFR も $111.8\,ml/min$ を示して視床下部病巣群のそれに次いで低い。脳圧は $309.1\,mm$ H_2O を示して比較的高い。

6) 皮質·皮質下病巣群 (表17, 図24)

本群に属する症例は12例でその年齢は14歳から60歳に亘る. 腫瘍は8例でその種類はmeningioma7例, 脳膿瘍1例である. その他 subduralhematoma 2例, gliosis 1例および arteriovenousfistula 1例である. 腎障碍を示すものは3例 (25%)である. RPF の減少は No. 36, 40 の2例 (16.7%)においてみられ,その程度は低い. GFR の減少を示す例はない. FF の低下は No. 33 の1例 (3.8%) においてみられた. RVR の増強の例はない. 血漿電解質の変化は C1 のみにみられ, No. 35 における高度の上昇と, No. 40 における軽度の減少の2例 (16.7%)である.

尿量, 尿比重の変動はみられない. この群における

図22 基底核腫瘍患者における腎機能と血中電解質

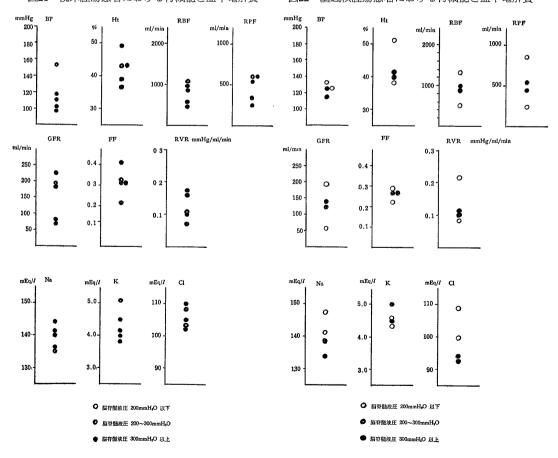


表16 天幕下腫瘍患者の腎機能

. ——												
<u> </u>	.	‡	‡	+	i	#	‡	+	+	+	ı	I
	=			_								
5	lmEq/	96	111	110	96		102	94	92	112	83	97
X	mEq/	4.1	3.1	4.5	4.6	4.6	4.7	3.8	4.0	4.3	3.5	5.5
Na	mEq/	140	140	143	138	139	144	142	135	142	130	140
RVR	mmHg/ ml/min	0.249	0.164	0.128	0.086	0.057	0.142	0.175	0.217	0.285	0.093	090.0
Ď Ď		0.27	0.12	0.18	0.28	0.15	0.28	0.20	0.32	0.23	0.27	0.25
GFR	m1/ n min	61	45	68	202	123	106	29	105	22	140	220
	m1/ n	210	384	512	724	828	379	280	314	341	527	698
RBF	nl/ mim	410	712	702	1380	1272	621	604	515	501	222	1550
正 元 明	KAL I	1014	1016	1012	1017	1012	1012	1016	1016	1020	1020	1012
尿量	nl/dag	1000	1300	1300	009	1200	200		800	1000	1100	1200
Ht	%	45	46	37	47	35	39	38	33	32	46	44
mmHg	最低	98	96	99	100	54	72	6	96	116	25	09
加圧加	一	110	138	120	136	92	104	120	134	170	130	120
髓液圧	mmH ₂ O	370	360	380	270	200	260	180	400	300	430	250
4 基 %		脳腫瘍	脳 腫 瘍	脳 腫 瘍	脳 腫 瘍	脳 腫 瘍	脳 腫 瘍	脳 腫 瘍	脳腫瘍	脳腫瘍	脳 腫 鴻	脳 腫 鶏
11 11 11 11 11 11 11 11 11 11 11 11 11	12000000000000000000000000000000000000	2 年	2 年	8 年	7ヵ月	10 年	3 年	2ヵ月	4 カ月	2 年	5 年	1年7ヵ月
支	Ħ	0+	0+	Oŀ-	€	0+	0+	€	↔	Oŀ-	↔	↔
4		25	48	12	39	27	15	33	42	46	19	32
	4	0	0	0	0	0	0	0	0	<u> </u>	0	0
H	₹	ग्रिमा	ź	田	樂	女	改	_) 六	鈴 (火	恒
2	j S	41	42	43	#	45	46	47	48	49	20	21

表17 皮質・皮質下白質腫瘍並びに損傷患者の腎機能

,													
	E 所	i	ı	ı	ı	+	j	I	+	ı	ı	ı	+
	<u> </u>												
ü	mEq/I	86	102	88	101	6	103	1111	104	100	101	26	94
K	mEq/1	4.0	4.5	4.4	3.9	4.8	4.2	4.4	3.8	4.1	3.8	4.3	4.3
Na	mEq/1 mEq/;	138	145	142	136	139	140	135	140	135	141	144	136
RVR	mmHg/ ml/min	0.144	0.114	0.118	0.122	0.061	0.099	0.114	0.116	0.055	0.064	0.099	0.197
	1	0.23	0.29	0.30	0.24	0.157	0.21	0.22	0.28	0.202	0.21	0.25	0.24
GFR	m1/ min	110	150	130	103	182	129	122	110	176	163	142	91
ſ÷.	m1/ min	476	516	450	424	1160	613	226	393	870	774	572	380
RBF	m1/ mi	780	086	804	720	1870	066	920	715	1487	1520	953	629
H 11	水石庫	1018	1010	1030	1020	1020	1016	1018	1012	1014	1020	1016	1020
尿量	ml/dag	1400	800	1300	006	1900	1400	1600	1300	800	1400	006	006
Ht	%	33	43	41	41	38	88	41	45	42	49	40	44
mmHg	最低	85	98	48	89	100	75	100	64	100	8	8	108
血压	最高	142	138	94	108	130	120	135	102	164	120	110	160
髄液圧	mmH ₂ O	320	140	400	150	220	200	195	400	230	145	120	310
11	万 至 仏	脳 腫 鴻	脳 腫 瘍	脳腫瘍	脳腫瘍	脳 腫 瘍	硬膜下血腫	硬膜下血腫	脳 腫 瘍	脳 腫 瘍	脳動静脈瘤	脳 腫 瘍	脳 腫 鴻
明明/小学	7内7区共10	1年6ヵ月	6ヵ月	2 年	7 カ月	2ヵ月	4ヵ月	3ヵ月	9ヵ月	2 年	1年2ヵ月	3 カ月	1ヵ月
1/2	<u>#</u>	O+	O+	↔	0+	↔	↔	↔	OH:	O+	ю	€0	↔
Ħ	量	25	47	36	20	14	54	49	34	54	54	53	09
	ф ,	0	0	0	0	0	0	0	0	0	0	0	0
E	K	黑	规	冶	笊	幡	加	杀	+	ᅫ	泗	₩	驒
Ž		53	30	31	32	33	34	35	36	37	38	39	40

腎障碍は軽度であり、高度の障碍例はみられない.脳 圧は平均 265.8 mmH₂O で中等度に高い.

以上各群の腎障碍について詳細を述べたが、腎障碍度を高度、軽度に分けて、高度の比率をみると、天幕下群 72.7%、視床下部群 53.8%、視床群 40%、下垂体群 33.3%、皮質・皮質下白質群 27.3%、基底核群 25.0% の順になる。また高度例の占める割合からみると、視床下部群 46.5%。基底核群 25%、視床群20%、天幕下群 18.2%、下垂体群 16.7%、皮質・皮質下白質群 0%の順となり、視床下部群が最も多い。髄液圧と腎障碍との関係をみると、腎障碍高度例の平均 292 mmH₂O、軽度例の平均 330 mmH₂O、正常例の平均 266 mmH₂O となり、両者間に密な相関はみられない。また、腫瘍の種類による腎障碍の差異もない。

考 察

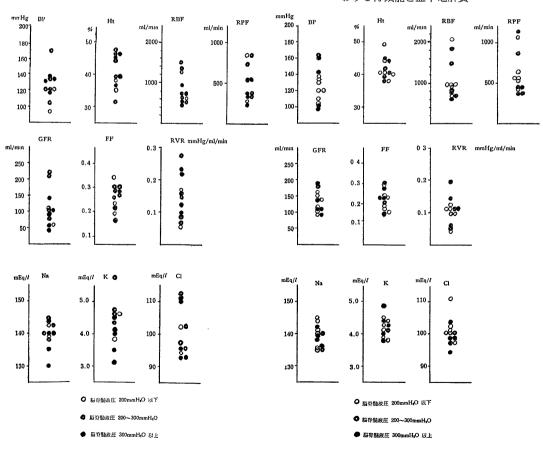

実験において腎循環を検索するにあたつて, 従来の

図23 天幕下腫瘍患者における腎機能と血中電解質

生化学的方法による測定誤差をなくするため、図1に示したような bypass をつくり、これによつて 直接 腎血流量を測定した。この方法の長所としては、直接 腎血流量を測定できることであるが、その他に腎動・静脈血の電解質較差の測定、必要ならば酸素較差など 腎の代謝に関係ある諸検査に必要な sample を 随時採取できる点である。しかし、反面に短所もあり、麻酔手術侵襲による循環血液量、腎血流量への著しい影響も当然考慮され、操作の不手際によつて shock 状態に陥し入れ、目的とする腎血流量の測定に全く役立たないことになる可能性がある。次に bypass 設置 時の手術操作によつて腎周囲の神経叢および内臓神経を損傷する懸念がある。 さらに bypass 設置によって循環動態に大きな変動を与えるなどの問題がある。

これらの問題を解決するために、第1に、麻酔は比較的浅い状態に維持した。第2に、腎周囲、ことに腎門部の神経および内臓神経の損傷をさけて図1に示すように、直接腎静脈の catheterisation を行なうこと

図24 皮質・皮質下白質腫瘍ならびに損傷患者に おける腎機能と血中電解質

なく、下大静脈に誘導、その挿入固定時にも腹大静脈 周囲の組織を 剝離損傷しないように注意した。 第3 に、bypass 造設の循環動態への影響をさけて図1のように、一時血流回路を両側浅頸静脈に導いて、腎静脈、ひいては腎実質の鬱血をさけ、次に回路を遮断して血流を下大静脈へ流入せしめて、生理的な循環動態に近くした。このような操作で、まず、対照犬として5例の実験を行なうと、RPF は2時間値で15%の減少率、血圧は3.5%程度の減少率を示し、目的の実験に十分供し得ることが確かめられた。なお、犬の生存時間は7時間以上であつたが、実験成績の誤差を少なくするため1時間値および2時間値を取りあげた。

犬の脳障碍実験においては,循環動態の変化として CBV の変動は軽く、 血圧も著しくは下降せず一般的 な shock とは趣を異にする. Campbell, Whitfield は718例の脳挫傷例のうち重症例に属する6%にのみ shock 症状をみとめ、軽症例には全くみられないと述 べている. Denny, Brownら 34) は、中等度の脳損傷 においては血管収縮を, 重症例においては血管拡張を きたすと述べている. ト部35), 友松36), 上羽37)は視束 前野の破壊による心搏出量の減少を報告している. 松 岡38)は脳圧の上昇と血圧上昇の間に深い関係があると 述べている. とにかく種々の報告があるが一般外傷と 異なつて、 頭部損傷時には shock 症状を伴なうこと は少ないとされている. 著者の実験においても脳障碍 時に循環血液量と腎血漿流量との間にも, また血圧と 腎血漿流量との間にも相関はみられず, shock 時にお けるような相関はみとめられなかつた、従つて、腎血 管の 挛縮によつて RPF および GFR の減少、 RVR の増強をきたしたものと考えられる.

中枢神経系と腎機能との関係については、1859年Claude、Bernard 30)による脳幹部の穿刺刺激に基づいて尿分泌に変化をきたす実験報告に端を発し、Livingston 40)らはネコの大脳皮質 area 13 の電気刺激による腎皮質の乏血を観察し、Hoff 41)らもネコのanterior sigmoid gyrus の電気刺激による腎皮質の乏血を報告している。 臨床例では、Mc Lardy 42)はprefrontal lobotomy を行なつた 122例中、7例が尿毒症のため死亡し、この7例には orbital cortical surface の area 47 に bilateral lesion が存在していたと報告している。また藤井43)は頭部外傷患者について経過を追つて腎障碍の消長を観察している。著者の犬実験例においても、対照犬に比べると、脳損傷犬の腎 clearance の変化が 著しくみとめられ、しかも脳障碍の局在部位による腎障碍の差がみとめられた。

犬の実験における脳損傷部位の局在と, 腎機能の変

動との関係についてみると、皮質・皮質下白質障碍群 において腎障碍は最も軽度である. Wolf44) は精神的 stress, Meehan 45) は痛みによる腎血流量の変化をみ とめると述べているが、この報告や Livingston 40), Hoff 41) の報告に基づいて腎血流量支配は大脳皮質に はじまるといわれる. しかし、著者のこの群の成績 では、軽度の腎血管抵抗の増強がみられる程度であつ た. 基底核障碍群では中等度の腎血流量の減少に伴な う影響がみられ,腎血管抵抗も中等度に増強がみられ た. 視床外側核障碍群においても大略似た変化がみら れた. 視床内側核障碍群, 脳幹障碍群においてもかな り高度の腎機能障碍がみられた. 視床下部 area の障 碍に属する3群においては、腎障碍が最も著明であ る. このことは、家兎の実験においても臨床例におい ても共通してみられた所見である. そこで, この腎機 能の調節に大きな影響を与えている視床下部がいかな る役割を演ずるかが問題となつてくる. この点に関す る報告は比較的少なく, 黒津52), 三崎53)らは, 視床下 部を内側核と外側核に分けて電気刺激し、内側核刺激 によつて尿量が減じ,外側核刺激によつて逆に尿量が 増加することを観察しているが, これは必ずしも腎血 流量の増減を意味するものではなくて、 ADS の関与 をも考慮されなければならない. 事実, 尾前54)は内側 核と外側核との刺激によつては腎血流量の差異をみる ことができないと報告している. しかし, 細井18)は内 側核刺激によつて外側核の刺激によるよりも RPF, GFR の減少が著しく、FF の低下および RVR の増 強も同様に著明であることを述べている. ここで著者 の成績をみると,内側核障碍群および外側核障碍群い ずれにおいても著明な RPF, GFR の減少がみられる が、その程度は 内側核障碍群の方が やや 優位であつ た. FF の低下と RVR の増強についてはかなり明白 な差異がうかがわれ, 外側核障碍群に比べて内側核障 碍群においてはとくに RVR の増強がみられた、この 成績は細井18)の報告と一致するが、著者の尿量につい ての所見は両障碍群の間に有意の差はみられず、この 点は黒津52),三崎53)らの成績と一致しない。

著者の犬の 視床下部障碍実験において RPF, GFR の著明な減少をきたしたことは RVR の高度の増強が みられる点で、一般の shock の場合と趣を異にし、特異的に腎血管の挛縮に由来するものと考えられる. この mechanism は、高位の自律中枢と目される視床下部の損傷によつて腎に入る遠心性神経興奮が tonic な状態となり、腎血管に挛縮をきたしたものと考えられる.

このような見地から家兎実験をみると, 前頭葉およ

び視床下部およびこれを取り囲む部分に移植された腫瘍が、視床下部自律中枢に対して影響を与え、結果として腎血管の持続的な挛縮を惹起せしめ、既述の如きrenogram にみられる腎機能障碍を発現し、腎の病理組織学的変化を呈するに至つたものと解することができる。

臨床例においても視床下部に腫瘍を有する患者に腎 血流量の低下がみられている.

血圧反応については, Kabat, Magoun & Ranson 55)がネコの視床下部内側核および外側核の電気刺激に より血圧上昇をきたすことを観察し、勝木56)、岡嶋57) らも家兎で同様の成績を報告している. Ranson & Magoun 48) が 視床下部外側核の 自律反応を追求し, これに関係する線維は視床下部内側より外方に走 り, 外側視床下部を下行することを 指摘 し, さらに Crosby & Woodburne 58) はそれに関係する anterior and posterior hypothalamotegmental tract の存 在を立証している. 視束前野の機能については、Kabat, Magoun & Ranson 55), 松本59), 平田60)らが内 臓運動を示標として, 副交感性であると述べている. 著者の実験成績では、視床下部内側核障碍群および外 側核障碍群において血圧上昇例が多くみられ、この点 Ranson & Magoun の成績と類似する. 視床前野障 碍群においては血圧下降が全例にみられている.

中枢神経系の変化と電解質の変動との関係については Lewy ら⁶²⁾, Stevenson ⁶³⁾ らが実験的に視束上核および室房核に電解質代謝中枢をみとめると述べ、Allott その他の報告 ⁶⁵⁾⁶⁶⁾⁶⁷⁾ によるとこの部の刺激によって血漿中の Na, Cl の増加をみとめている。また、Wise ⁶⁸⁾ は第4脳室の電気刺激による Na, 水の排泄増加をみとめ、Wise & Gonany ⁶⁹⁾ は犬で視床下部、中脳、橋、延随の電気刺激を持続して GFR の低下、および水、Na, Kの排泄の変動をみとめた。北村⁷⁰⁾は脳下垂体およびその周辺の侵襲が電解質の変動の大きな原因をなすと述べている。電解質代謝に関係する中枢神経の範囲は広いのである。室原⁷¹⁾は視床下部前部および中部の刺激によつて逆に血漿Kの低下をみとめている。視束前野の刺激によつて逆に血漿Kの低下をみとめている。

臨床的には、脳幹部の腫瘍患者にみられる cerebral salt wasting ⁷²⁾ が一般に知られており、中枢神経の電解質代謝に及ぼす影響がみられる。一方、視床下部は神経分泌機能にも関与し、神経分泌物質は、 tracts supraopticohypophyseus を介して後葉に至り、 いわゆる後葉 hormne として antidiuretic substance (ADS) 産生にあずかつている⁷³⁾⁷⁴⁾⁷⁵⁾。また、浅井⁷⁶⁾

は、視床下部刺激により血中 ADS 量と血液水分量とは並行して増加することを観察し、ADS と血液水分量についての相関を明らかにした。ADS が pitressinを主体とする後葉 hormone であることは知られているが 77)、Saritorius 78)、Richard 79)は pitressin 投与によつて、Kの排泄を促すと述べ、Knoche 80)は脳室近傍刺激によつて血中のKが減少するのは、脳室近傍刺激が副腎皮質機能を亢進せしめるためであると論じている。臨床的には尿崩症の問題をも含めて水と電解質の代謝と中枢神経との間には hormone も介在し、単に腎の排泄機能のみで論ずるのは当を得ない。

著者の犬の実験においては視床下部障碍群および脳 幹障碍群に動脈血の Na が増加し、とくに視床下部内 側核障碍群にその増加が著しい. そして高度の増加例 においては腎動静脈血 Na 較差は低下し,近位尿細管 における Na pump のはたらきが、RBF の減少した 状態であるにもかかわらずよく営まれ、生体の Na 貯 溜機構の一端がうかがわれた. 血漿Kの変動は視床下 部 area の障碍に属する全群にみられ、外側核障碍群 に含まれる2例に高度の増加がみられたが、その他の 群では、比較的軽度の増加であつた、一般に血漿Kの 変動は Na の変動に比べて軽い. 血漿 Cl 変動はすべ ての群にみられず, 脳損傷部位の局在性との相関もみ られなかつた.血液水分量は2時間値でみると,すべ ての群に増加を示し、とくに視床内側核障碍群および 外側核障碍群に増加著しく, 血漿 Na の上昇と並行す る傾向がうかがわれる.

臨床例では一般に血漿電解質の著しい変動はみられ ないが, 天幕下病巣群において C1 の増加 2 例, 減少 6例, Kの増加1例, 減少1例, Naの増加1例が みとめられ、血漿電解質の変動は比較的高率にみられ る. 下垂体病巣群, 視床下部病巣群においても血漿電 解質の軽度の変動がみられる. 臨床例 No. 28 は下垂 体および漏斗部に占居した craniopharygioma の例 であるが、 多尿と血漿Kの増加、 C1 の低下がみられ ている. この症例の RPF, GFRはそれぞれ 247 ml/ min, 92 ml/min であつて減少しているが、中枢神経 と腎機能,電解質, ADS など多面的な相関にある症 例であると考えられる. Broers 81) は3頭の犬に実験 的持続的多尿症をつくり,詳細な観察の結果,視束上 核の両側破壊、下垂体柄の底部の破壊、下垂体全例お よび視床下部の内側部破壊の所見を確認した. さきに 述べた症例と Broers の実験および tractus supraopticohypophyseus の存在を綜合考察すると, 自律中 枢といわれる視床下部下垂体 area の複雑な連合がう かがわれて興味深い,

視床下部刺激ないし損傷による血液水分量の変動に ついては、安藤82)、佃83)84)らは、いずれも水分量の増 加をみている. 著者の実験においても Ht 値の軽度の 低下をみとめた. Ht の低下と血漿 Na の増加とは関 連を有するものと考えられる. また尿量の減少は視床 下部損傷時とくに内側核障碍群, 外側核障碍群におい て著しい. 基底核, 視床障碍群, 皮質・皮質下白質障 碍群と所見と対比して考察すれば, 尿量の減少は著明 な腎血管の挛縮によつて惹起される RBF, RPF, GFR などの減少に基づくものと解することができる. 一 方,血液水分量の増大と,ADH 活性との相関につい ての浅井の報告を参考にするとき, 視床下部の損傷が ADS 産生 および ACTH 85) 分泌を 介する 副腎皮質 hormone の分泌に影響して、それらとの相関の下に 水分代謝を規制していることも考慮しなければならな い.

結 論

著者の研究は、脳損傷時の中枢神経障碍によって生ずる腎障碍の機構と病態生理学上の特徴とを把握するのが目的である。

実験的に犬を用い、脳の種々な部位に電気凝固によって病巣を作成し、腎機能障碍の発現を時間の経過に従って観察し、腎 clearance、腎動静脈血電解質較差および水分量の変化を検索した.

また、家兎に Brown-Pearce 癌を脳の種々なる部位の組織内に移植し、移植腫瘍の発育とともに腎障碍がいかに出現するかについて renography を行なつて検索し、また、病理組織学的に検索した。

さらに、臨床例について脳腫瘍患者を、その局在部 位別に分類して、生化学的腎機能検査を施し、腫瘍の 局在と腎機能障碍との相関を求めた.

得られた成績は次の如くである.

1) 50頭の成犬を用い、皮質・皮質下白質、基底核、視床外側核、視床内側核、脳幹、視床下部前部および視束前野、視床下部外側および視床下部内側の8群に分類して電気凝固による破壊巣を作つた結果、それぞれの群の間に腎 clearance の差異がみ出された。その障碍の程度は視床下部内側巣群に最も著しく、次いで視床下部外側巣群、視床下部前部および視束前野巣群、視床内側巣群、脳幹巣群にも腎障碍の強い変化がみられた。そのPatternは RBF、RPF、GFR の著しい減少、血圧の上昇、腎血管抵抗の増強とによって代表され、これは一般的な shock と異なり循環血液量の変動を伴なうことの少ない特異な状態である。血液水分 および 血漿 Na の増加、血漿 K の軽度の増

加,CI の不変の所見もうかがわれた。

このような変動の mechanism として高位の自律中枢と目される視床下部からの腎に対する支配を介して発現する主として特異的の交感神経の緊張に基づくものと考えられ、さらに内分泌系の影響をも伴なつていることが推定された。

- 2) Brown-Pearce 家兎癌脳組織内移植時に みられる腎の病理組織学的変化は、遠位尿細管を主とする実質細胞の変性であり、軽度ながら急性腎炎像の合併もみられた. renogram によつて検索した腎機能変化は概ね病理組織学的変化と併行している. なお、前頭葉および視床下部に腫瘍が移植された場合に腎障碍が強くみられた.
- 3) 臨床例では、視床下部に腫瘍がある場合、腎 clearance 値は一般に低く、腎機能障碍の高度のことが多い(46.5%). 下垂体腫瘍の場合、内分泌系の障碍を伴なうこと多く、腎障碍の程度もかなり高度にみられた(33.3%). 天幕下腫瘍群においては腎 clearanee の低下例は多く(54.5%)みられたが、その障碍度は比較的軽い。また、本群には血漿電解質の変動を伴なう例の多い特徴がみられた。

抵筆するに臨み,終始 御聚篤なる御指導,御鞭撻を賜り,御校 関を辱うした 恩師ト部美代志教授に対し衷心より感謝の念を捧げ ると共に,研究に御協力下さつた 坪川孝志講師,山本恵一博士, 菊地献博士,宮永盛郎学士をはじめ 教室諸先生の御厚意に深く感 謝の意を表します。

文 献

- 1) 泉 海一: 日胸外会誌, 8,844 (1960).
- 2) 菊地 誠: 金沢十全医会誌, 68, 216 (1962).
- 3) Merrill, A. J.: J. Clin, Invest. 25, 389 (1946). 4) Papper, E. M. & Ngai, S. H.: Ann. Rev. Medicine, 7, 213 (1956). 5) 法沢喜守雄: ショックの臨床, P. 5 より引用, 医学書院, 東京, (1956). 6) 中村嘉三: 日外会誌, 55, 283 (1955). 7) Scheibert, C. D.: J. Neurosurg., 18, 182 (1961). 8)
- Brobeck, J. R., Teppermann, J., & Long,
- C. N. H.: Yale J. Biol. Med., 15, 831 (1943).
- 9) Lamport, H.: J. Clin. Invest., 20, 535
 (1941).
 10) Pfeiffer, J. M. & Wolff, H.
 G.: J. Clin. Invest., 29, 1227 (1950).
- 11) Surshin, A. & White, H. L.: J. Clin. Invest., 35, 267 (1956).
 12) Blake, W. D.: Am. J. Paysiol., 165, 149 (1951).
- 13) Cressmann, R. D. & Blalock, A.: Proc. Soc. Exper. Biol., 169, 670 (1952).

14) Blalock, M. A., Wakin, K. G. & Mann, F. C.: Am. J. Physiol., 169, 670 (1952). 15) Takeuchi, J., Uchida, E., Nakayama, S., Takeda, T., Yagi, S., Inoue, G. & Ueda, H.,: Japanese Heart Journal, 1, 65 (1961). 16) Takeuchi, J., Yagi, S., Ikeda, T., Uchida, E., Inoue. G., Shintani, F., & Ueda, H.,: Japanese Heart Journal, 1, 288 (1960).17) 八木 繁: 東医誌, 68, 839 (1960).18) 細井安邦: 奈医誌, 11, 492 (1960).19) Robert, K. S., Chan, N. & Robert, L. M., : A Stereotaxic Atlas of the Dogs' Brain, C. T. Springfield, Illinois, (1960). 20) ト部美代志・坪川孝志: 手術, 17, 845 (19-21) 斎藤正行: 光電比色計による 臨床化学検査,南山堂,東京,(1956)。 藤井暢三: 生化学実験法定量篇, 南山堂, 東京, (1956).23) Smith, H. W., Finkelstein, N., Aliminosa, L., Crawford, B., & Graber, M.,: J. Clin. Invest., 24, 388 (1945). 24) 高木秀夫: 日循会誌, 21, 488 (1945). 25) Corcoran, A. C. & Page, I. H. : J. Biol. Chem., 170, 165 (1947). 26) 木下良順: 医 学の進歩, 1,610 (1942). 27) Albrink, W. S.: Cancer Res., 13, 64 (1953). 28) 小島 清秀: Cann, 47, 625 (1956). 29)緒方 知三郎: 病理組織顕微鏡標本の作り方手ほどき, P. 138, 220, 南山堂, 東京, (1959). Mc Manus, J. F. A.: Nature, 158, 202 (19-46). 61) 久田欣一・川西 弘・戸部邦夫: 最新医学, 19, 3366 (1964). 32) 久田欣一, 川西 弘·戸部邦夫·宮村浩之: Radioisotopes, 14, 24 (1965). 33) De Wardner, H. E.: The Kidney, p. 205, London, (1961). Denny Brown, D. & Russel, W. R.: Brain, 64, 93 (1941). 35) 卜部美代志: 臨外, 15, 737 (1960). 36) 友松蓬弥: 日循誌, 20, 240 (1956). 37) 上羽康之: 日循誌, 24, 648 (1960).38) 松岡豊治: 日大医誌, 13,75 (1954). 39) Claude Bernard: 吳·沖 中自律神経各論, p. 138, 金原出版, 東京, (1949). 40) Livingston, R. B., Fulton, J. E., Delgado, J. M. R., Sachs, E. JR., Brendler, S. T. & Davis, G. D.: Res. Publ. Ass. Nerv. Ment. Dis., 27, 405 (1948). 41) Hoff, E. C., Kell, J. F. JR., Hasting, V., Sholes, D.

M. & Gray, E. H.: J. Neurophysiol., 14, 42) McLardy, T.: J. Neurol. Neurosurg. Psychiat., 13, 106 (1950). 43) 藤井寅夫: 日大医誌, 19, 3542 (1950). 44) Wolf, S., Pfeif, J. B., Packy, H. S., Winter, O. S., & Wolf, H. G.: Ann. Int. Med., 29, 1059 (1948). 45) Meehan, J. P.: Am. Heart J., 60, 318 (1960). 46) Karplus, J. P. & Kreidl, A.: Pflüg. Arch., 129, 144 (1909). 47) Kabat, H., Anson, B. J., Magoun, H. W., Ranson, S. W.: Am. J. Physiol., 112, 214 (1935). 48) Ranson, S. W., & Magoun, H. W. : Ergebn. Physiol., 41, 56 (1843). 49) Smith, H. W.: The Kidney, p. 18, Oxford Univ. Press, Newyork, (1951). 50) Houck. C. R., : Am. J. Physiol, 167, 523 (1951). 51) Pappenheimer, J. R.: Physiol. Rev., 40, 35 (1960). 52) 黑津敏行: 日生理誌, 17, 52 (1955). 53) 三崎要一・平原竜雄: 阪大 医誌, 4,77 (1951). 54) 尾前照雄: 日循誌, 19, 204 (1955). 55) Kabat, H., Magoun, H. W. & Ranson, S. W.: Arch. Neurol. Psychiat., 34, 931 (1935). 56) 勝木司馬之助 ·岡嶋 透: 最新医学, 12, 2478 (1957). 57) 岡嶋 透: 医学研究, 25, 2225 (1955). 58) Crosby, E. C., & Woodburne, R. T.,: J. Comp. Neurol., 94, 1 (1951). 59) 松本 勉: 医学研究, 25, 1713 (1955). 60) 平田 党: 福岡医誌, 32, 299 (1939). 61) Wang, S. C. & Ranson, S. W.: Am. J. Physiol., 132, 5 (1941). 62) Lewy, F. H. & Gassmann, F. K.: Am. J. Physiol., 112, 504 63) Stevenson, V. A.: Am. J. (1935).Physiol., 161, 35 (1939). 64) Allott, E. N.: Lancet, 1, 1035 (1939). 65) Paters. J. P., Welt, L. G., Sims, E. A., Orloff, A. H., & Needham, J.: Trans. Ass. Am. Physiol., 63, 57 (1950). 66) Sweet, W. H., Cotzias, G. C., Seed, J., & Yakovlev, P.: Res. Publ. Ass. Nerv. Ment. Dis., 27, 795 (19-67) Higgins, G., Lewin, W., O'Brien, J. R. P. & Taylor, W. H.: Lancet, 1, 1295

68) Wise, B. L.: Proc. Soc.

69) Wise,

(1951).

Biolog & Med., 91, 577 (1956).

B. L. & Gauong, W. F.: Am. J. Physiol.,

```
198, 129 (1960).
                   70) 北村勝俊・松角康彦:
最新医学, 13, 1324 (1958).
                           医学研究, 27, 3171 (1957).
                              72) Cort, J.
H.: Lancet, 752 (1954).
                            73) Scharrer.
E.: Z. Neurol. Psychiat. 155 (1954).
74) Bargmann, W.: Dtsch Med. Wschr., 45,
1535 (1953).
               75) Hild, W. & Zetler, G.:
Z. Exper. Med., 120, 136 (1953).
                                  76) 浅井
良一: 日内会誌, 44, 880 (1955).
                                      77)
Gilman, A. & Goodman, L.: J. Physiol., 90,
133 (1937).
                   78) Saritorius, O. W.:
```

```
Endocrinol. 45, 273 (1949). 79) Richard,
J. E.: J. Clin. Invest., 30, 1055 (1961).

80) Knoche, H.: Z. Zellforsch. 45, 14 (1956).

81) Broers, H.: Arch. di. sc. Biol., 18, 83 (1933). 82) 安藤兵次: 臨病理血誌, 15, 91 (1936). 83) 佃 毅: 日内会誌, 19, 283 (1931). 84) 柏木 力: 医学研究, 27, 163 (1958). 85) Shibusawa, K., Saito, S., Fukuda, M., Kawai. T., & Yoshimura, F.: Endocrinol. Jap. Med., 2, 47 (1955). (a)
```

Abstract

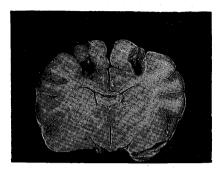
The present studies were done to clarify the mechanism of the occurrence of the impediment of the kidney following the damage of the central nervous system.

Observations were made on the changes of renal clearance, water shift and electrolytes balance in the blood which developed after the experimentally produced lesion through electrocoagulation in various parts of the brains of dogs.

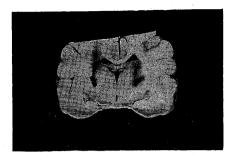
Next experiment was done on the rabbit, the renal responses being observed which were exhibited following the growth of the implanted Brown-Pearce's cancer in various parts of the brain. The renal function was checked up by means of renography, and the histology of the kidney was examined after the H-E staining.

Clinical studies were performed in brain tumor patients to find the interrelation between the site of the tumor and the renal functional deviation which was examined by the biochemical method.

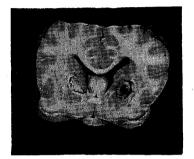
1) Fifty adult dogs were divided into 9 groups according to the site of the electrocoagulated lesion produced: the group of the cortex and subcortical white matter, the group of the basal nuclei, the group of the medial thalamic nuclei, the group of the lateral thalamic nuclei, the group of the brain stem, the group of the anterior hypothalamus and the preoptic area, the group of the lateral hypothalamus and the group of the medial hypothalamus. Differences of the renal clearance were found among the groups. The most significant change of renal clearance was observed in the group of the lesion of the medial hypothalamus, and the evident change was seen also in the groups of the lesion of the lateral hypothalamus, the anterior hypothalamus. the preoptic area, the medial thalamic muclei and the brain stem. The change of the renal clearance was represented with a marked decrease of the renal blood flow, renal plasma flow and gromerular filtration rate, and elevation of the blood pressure and renal vascular resistance. This phenomenon was not regarded as a sign of the traumatic shock because of the absence of less circulating blood volume. There was a tendency of increasing water amount in the blood, serum sodium and serum potassium.

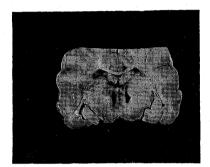

The mechanism of the renal disorder was reasonably explained as excitation of the sympathetic pathway to the kidney which was provoked by the damage of the hypothalamus, the autonomic center. The hormonal unbalance was also taking part in the renal functional disturbance.

2) The kidney of the rabbit which had been implanted with Brown-Pearce's tumor in the brain, showed the pathological evidence mostly of degeneration of the peripheral tubules which was accompanied by the acute nephritis. The renal functional disorder of the animals which was clarified by renography, almost corresponded to the intensity of the pathological change of the kidney. It was characteristic in this experiment of the rabbit that the most

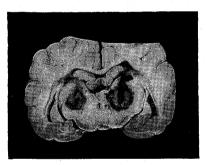

extreme impediment of the kidney was found in cases of implantation in the frontal lobe or in the hypothalamus.

3) The clinical observations showed: the disturbance of renal clearance was extensively seen in 46.5% of the patients with hypothalamic tumor, and in 33.3% of the patients with hypophyseal tumor who were also associated with hormonal disorder: decrease of the renal clearance, though to a slighter degree, was seen in 54.5% of the patients with infratentorial tumor who had often serum electrolytes unbalanced.


写 真 1 犬実験例における電気凝固巣


皮質・皮質下白質 (No. 9)

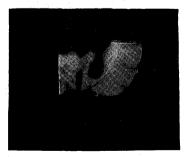
視床下側部 (No. 19)



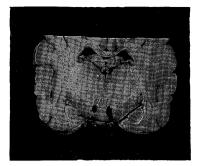
基 底 核 (No. 16)

視床内側部 (No. 24)

写 真 2 犬実験例における電気凝固巣

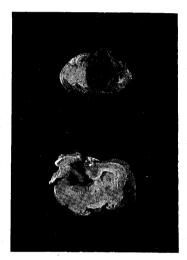

脳 幹 (No. 51)

脳 幹 (No. 52)


視床下部外側部 (No. 40)

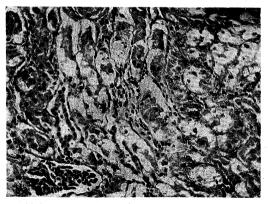
視床下部外側部 (No. 42)

視床下部前部 (No. 29)

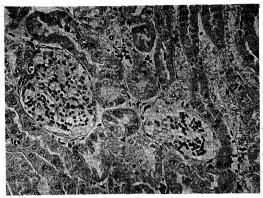


視床下部内側部 (No. 50)

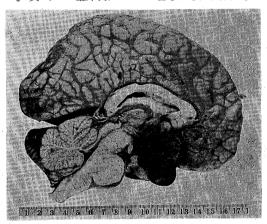
写 真 3 家兎における実験的脳腫瘍



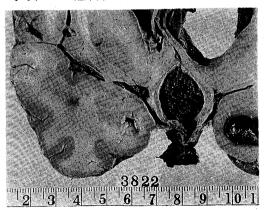
視床·視床下部腫瘍 No. 19, No. 24


皮質・皮質下白質腫瘍 No. 6, No. 7

写 真 4 家兎の視床・視床下部に移植された実験的脳腫瘍における腎組織所見


Henle 係蹄の上行部より介在部によけて尿細管上皮の変生, 壊死, 剝脱の状が著しい. かかる病変は巣状で左に隣接する 主部においては変性像はみられない. $H.E \times 30$ No. 24

写 真 5 家兎の視床・視床下部に移植された実験的脳腫瘍における腎組織所見


腎小体においては糸毬体の腫大、核増加、 Bowman 嚢との 癒着がみられる。また嚢内に液状物の潴溜をみとめる。 尿細 管の変化は介在部を除き概して少ない.H.E×30 No. 24

写 真 6 臨床例. No. 9 富〇正〇, 25歳, ô

視床下部腫瘍 (meningeal sarcoma の視床下部浸潤例)

写 真 7 臨床例. No. 7 黒〇正〇, 12歳, 8

視床下部腫瘍 (craniopharyngioma)