近赤外分光法(NIRS)による視覚関連脳機能測定

メタデータ	言語: jpn		
	出版者:		
	公開日: 2017-10-02		
	キーワード (Ja):		
	キーワード (En):		
	作成者:		
	メールアドレス:		
	所属:		
URL	https://doi.org/10.24517/00000189		
This work is licensed under a Creative Commor			

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 International License.

近赤外分光法(NIRS)による視覚関連脳機能測定 Measurement of Vision-Related Brain Functions

by Near Infrared Spectroscopy(NIRS)

小島治幸¹ Haruyuki KOJI MA 前原吾朗² Goro MAEHARA 田谷修一郎³ Shui chi ro TAYA 宮地弘一郎³ Koi chi ro M YAJI 片桐和雄⁴ Kazuo KATACI RI

¹金沢大学文学部心理学講座 助教授 ²金沢大学大学院社会環境科学研究科 研究員 ³金沢大学大学院社会環境科学研究科 技術員 ⁴金沢大学教育学部障害児教育講座 教授

		〒920-1192 金沢市角間町	
Address:	h. Koji Ma,	Dept. Of Psychology, Fac. Of Letters,	Kanazawa Uhiversity,
		Kakuma, KANAZAWA, 921–1192	

hkojima@kenroku.kanazawa-u.ac.jp

KEYWORDS: 近赤外分光法(NIRS), 脳血流反応, ヘモグロビン濃度, 視覚, 皮質領域

く要約>

近赤外分光法(NRS)装置によって視覚刺激に対する視覚関連領野の脳血流反応を検討した. 測定1:フリッカー(光点滅)刺激観察時の視覚皮質対応部位における脳血流を測定する ことで網膜対応表象(retinotopy)をNRSによってどの程度測定可能か検討した. 測定2: 無意味図形を用いた対象弁別課題において視覚連合野の脳活動を測定した. 測定3: 鏡映描写遂行時における運動野対応部位の脳血流量変化を測定した.

これらをもとに、NRSによる脳機能測定の特徴や今後の課題について考察する.

<u>はじめに</u>

近赤外分光測定(Near Infrared Spectroscopy)は、血中ヘモグロビンの光吸収特性を利用して血流量の変化をとらえる方法である.この方法を利用した近年の技術開発によって、 脳皮質表層部の脳血中酸化ヘモグロビンならびに脱酸化ヘモグロビン量を、頭皮表面から 非侵襲的に計測する事ができるようになり、新たな脳機能計測技術として注目を浴びてい る^{1,2)}.NRS装置は脳活動に伴う血流変化を捉えて脳機能推定を行う点はfMRと同様だが、 その空間解像度では劣るものの巨大な設備を必要とするfMRIに比べて比較的自由な環境で 使用する事ができる利点があることから、臨床/医療/教育場面での利用可能性について も期待されている³⁾.

我々の研究室では、これまで、脳高次機能/認知機能を行動的・物理的・生理的指標に よって測定することでその発現メカニズムの解明を目指してきたが、このところ、その測 定指標の一つとして近赤外分光測定も利用している.本稿では、視覚認知関連課題施行時 における脳血流測定の試みを紹介する.

視覚信号は眼から視神経によって外側膝状体に伝わり、そこから後頭葉の第一視覚皮質 (Primary visual cortex: VI) に伝えられる.そして、視覚刺激に端を発する信号は更に その周辺の第二第三視覚野(V2, V3)などを経て側頭葉・頭頂葉方向へと伝えられ複雑な処 理などがなされてゆく⁴⁾.これらのうち、V1 の神経細胞群は網膜位置に対応した地勢的配 置(retinotopy)がなされており⁵⁾、それぞれの位置に対応する細胞群は、ある傾き(方位) や運動方向をもった片眼からの視覚刺激に対して「選択的」に反応する細胞が規則的な柱 状構造を形成している⁶⁾.しかし、視覚経路が高次になるにつれ、その retinotopy は徐々 に崩れ、代わりに複雑な視覚特性に選択的に反応する神経細胞群が存在するようになる⁴⁾. 一般に、大脳皮質の後頭葉にあたる 1/3 が視覚処理に関わっており、一次感覚野の大部 分を視覚関連機能が占めていることからもわかるように、ヒトの知覚・認識・思考といっ

 $\mathbf{2}$

た認知的機能から社会的行動にいたる多くの認知的行動機能が視覚と何らかの関連を持っ ている.このため、視覚反応に関する脳の反応特性を調べることは脳機能の解明にとって 重要であり、従来、行動学的のみならず生理学的指標を用いて視覚処理機構に関する膨大 な研究がなされている.我々はこれらの事実をふまえて、近年開発され研究臨床分野に普 及し始めている NI RS 装置を用いることにより、様々な視覚反応と脳血流を指標とした生理 反応との関係について研究してきた.

<u>NIRS計測</u>

以下に紹介する近赤外分光法による脳血流計測(NRS計測)には日立メディコ社製光トポ グラフィ装置(ETG-4000)を用いた.この装置を用いた脳血流計測を行うためには赤外光 照射プローブならびに光受容プローブを3cm間隔で,頭皮表面に設置する必要がある. それらの設置位置は国際10-20法に基づいて決定した.

N RS 装置では、プローブ設置直後に脳血流量を測定し、それを基準値として、対象皮質 領域において単位時間(時間解像度 10Hz)における、酸化ヘモグロビン(Qxy-Hb)および脱 酸化ヘモグロビン(Deoxy-Hb)の変化量を計測することができる.脳活動の指標として Qxy-, Deoxy-のどちらに注目すべきかについては議論の余地がある.ちなみに、空間解像度にお いて優れ脳機能計測研究に用いられることも多い f MRI では脳活動代謝に基づく 脳画像計測 は酸化ヘモグロビンレベルの変化を脳活動の指標としている(BQLD 反応).このため、f MRI 研究との比較との意味も含めて、本稿では以下 Qxy-Hb 変化量についての結果を紹介し議論 を進めることにする.

また,脳血流変化を実際に測定してみると,案外,様々な要因に基づくと思われるノイズ様の変動や周期的変動,測定チャンネル間や個人間でのレベルの違いなどがあることがわかる.これらの問題を回避することのできるデータ分析方法が未だ確立していないのも 事実である.以下に紹介する我々の測定例では必ずしも結果の算出方法や表示方法が統一

されていないが、これら未確立の方法を試行錯誤した結果であるとご了承いただきたい。

測定1:視覚点滅刺激に対する視覚野の反応

前述のように、第一視覚野における retinotopy は、視覚刺激に対する脳機能を調べる上 で先ず押さえておかねばならない基本的な特性である. 我々はまず、NLRS 装置によってど の程度正確に視覚反応の retinotopy をとらえる事ができるかを調べた. 具体的には、視覚 刺激として、視野の全体あるいはその一部分を選択的に刺激することのできる放射状チェ ッカーパターン(図1-1)を用い、一次視覚野とその近傍の脳血流反応を測定した.

<方法>

健常な 3 名(MH, GM, ST)が実験に参加した. 3 名とも正常な裸眼視力又は矯正視力 を有していた.

刺激は PCに接続した 22 インチの ORT モニタ 上に呈示された. モニタの空間解像度は 1024 ×768pi xel であり,時間解像度は 60Hz であった. 被験者は頭部を顎台に乗せてモニタの 100cm手前に座り,暗室中で刺激を観察した.刺激は中間輝度(51 cd/m²)の背景上に呈示 された,7.5Hz の周期で明暗が反転する直径 13°の放射状のチェッカーパターンであった. パターンの明るい領域の輝度は 104cd/m²,暗い領域の輝度は 2 cd/m²であった. 刺激は視野 全体,または上下左右に4 分割した視野のいずれかに呈示された. 刺激を視野全体に呈示 する条件では円形のパターン全体が呈示され,分割視野に呈示する条件では扇形に4 分割 したパターンがそれぞれの視野に呈示された(図 1-1).

1回の計測セッションは5回の計測ブロックで構成され、1計測ブロックは30秒の休息 期間とそれに続く15秒の刺激期間で構成された.休息期間中はモニタ中央に注視点のみを 呈示し、刺激期間中にはチェッカーパターンと注視点の双方が呈示した.セッションを通 じて、被験者には常に注視点を固視し続けることが求められた.ひとつのセッション内で は常に同じ形状の刺激を同じ視野に呈示した.5つの刺激条件(全視野+4分割視野)につ いて、2セッション(10ブロック)の計測をランダムな順番で行った.

近赤外光の照射プローブ8 個と受容プローブ8 個が, 被験者の後頭部に4 ×4 の配列で 左右対称に配置された(図 2-1). この際, 最下列の4 個のプローブの中央が, 後頭結節の 真上 0.5cmに位置するように配置した. プローブ間の間隔は 3cmであった. 照射プローブ とそれに隣接する受容プローブの間がヘモグロビン(Hb)濃度変化の計測チャンネルであり, したがって計測は全 24 チャンネルで行われた.

計測値の分析は被験者別に行った.分析には,実測値のベースラインからの差分を用いた.ベースラインは、各ブロックにおける刺激呈時開始直前10秒間の計測値の平均値であった.チェッカーパターン観察時の酸化ヘモグロビン(Qxy-Hb)濃度変化を算出するため, 各計測ブロックについて,刺激呈時開始後5秒から刺激呈時終了までの10秒間の平均値を 算出した.この計算を各チャンネルについて10回の計測ブロックについて行い,得られた 10の値から平均と標準誤差を得た.

<結果>

図3 は、代表的な被験者(GM)の結果である.このグラフは、Qxy-Hb 濃度変化の平均値を チャンネル毎に3次元ヒストグラムとしてプロットしたものである.図 3-1 は全視野に刺 激を呈示した条件の結果を示し、図 3-2 はそれぞれ(a)左上半視野、(b)右上半視野、(c)左 下半視野および(d)右下半視野に刺激を呈示した条件の結果を示す.図 3-1 におけるグラフ のx 軸に示された a~g および z 軸に示された A~G は、それぞれ図 2-1 に示した後頭部に おけるプローブ位置の指標と対応している.それぞれのチャンネルにおける Qxy-Hb 濃度変 化が有意にベースラインと異なるか否か検討するため、10 回の計測の標準誤差を用いて 95% 信頼区間の検定を行った.検定の結果統計的に有意な賦活が認められたチャンネルの値は 濃いグレーのコラムで示し、それ以外のチャンネルは白いコラムで示す.

全視野に視覚刺激が呈示されるときには、後頭部の左右両側の多くのチャンネルで大きな Qxy-Hb 濃度変化が生じた(図3-1). 一方、刺激を4分割して呈示した条件では、一部の 条件に限り、刺激呈示視野と賦活したチャンネルの位置に対応が認められた(図3-2). 具

 $\mathbf{5}$

体的には、刺激が下半視野に呈示される場合には、刺激呈時視野の反対側の脳部位に大きな Qxy-Hb 濃度変化が認められた(図3-2c, d).しかし、刺激が上半視野に呈示される条件では、全体に Qxy-Hb 濃度の変化量が減衰し、また視野に対応した賦活は認められなかった(図3-2a, b).

<u>測定2 : 形状弁別課題時の後側頭部反応</u>

視知覚は明るさや色,動きなどの初期的な手がかり処理を経て,肌理(テクスチャー), や形状/形態,奥行きや空間など徐々に複雑な形態/空間処理がなされることが知られて いる.そのうち形状/形態弁別や対象認識には下部側頭葉が深く関わっていることが知ら れており^{7,8},本測定では形状弁別課題遂行中に対応する後側頭下部の脳血流量を測定し たところ,弁別課題遂行中の酸化ヘモグロビン濃度は安静時に比べて有意に上昇した.

く方法>

観察者22名が形状弁別課題と位置弁別課題とを行った.

形状弁別課題では、無意味な線画が刺激として用いられた(図1-2). 被験者は先ず, PC 画面に提示される「標準刺激」を覚える(図1-2a). そして続いて呈示される「比較刺激」 が標準刺激と同じか違うかを次々に判断することが求められた(図1-2b). 1 セットの無意 味線画は、1 つのターゲット刺激と16 個のディストラクタ刺激で構成されていた.

形状弁別課題は以下の手順で行われた.まず,課題の始まりを知らせるために,注視点 が2 秒間赤くなった.その後,ターゲット刺激が4秒間呈示され,4秒間のブランクをお いて,ディストラクタ刺激が2.5秒ごとに20回呈示された.観察者は,ターゲット刺激の 形状を記憶し,その後に呈示される刺激がターゲット刺激と同一であるかを20回判断した. 20試行のうちターゲット刺激が呈示されるのは4試行であった.

位置弁別課題では、水平線分が刺激として用いられた. 位置弁別課題も、形状弁別課題 とほぼ同じ手順で行われた. 位置弁別課題では、最初に4秒間呈示された線分の位置を記

憶し, その後に呈示された水平線分の位置が記憶した位置よりも上であるか, もしくは下 であるかを 20 回判断した. 線分の呈示位置は毎試行ランダムに変化させた.

形状弁別課題と位置弁別課題は、間に1分の休憩をはさんで6回ずつ交互に行われた. また、実験の最初には30秒の休憩があった.休憩時には白い注視点が中央に呈示され、観 察者はその注視点を見るように教示された.実験に要した時間は計24分30秒であった.

N RSのプローブは、左右の後側頭部に9 つずつ配置した. プローブは 3×3 の正方形状に 並べ、下辺の中央に位置するプローブが T3 と C2 の中間点に一致するように配置した(図 2-2).

く結果>

まず,5秒ごとに計測値の中央値を算出した.次に,1回の課題遂行の直前と直後に行われた休憩の後半30秒における計測値に1次関数をあてはめ,ヘモグロビン濃度変化のベースラインとした.このベースラインと計測値との差を,1回の課題遂行ごとに計算した. さらに,6回の課題遂行におけるベースラインと計測値との差を平均し,課題遂行中のヘモグロビン濃度変化とした.

図4は、形状弁別課題と位置弁別課題遂行中の酸化ヘモグロビン濃度変化の平均を示し ている.課題の後半30秒の酸化ヘモグロビン濃度平均値に対して被験者内分散分析を行っ たところ、チャンネル7(ズ1,21)=5.39、*MSe*=0.00414、*p*=.030)とチャンネル9(ズ1, 21)=6.54、*MSe*=0.00628、*p*=.018)において課題間で有意な差があった(図4の破線 で囲んだチャンネル).このことは、形状弁別課題の遂行によって後側頭部の酸化ヘモグロ ビン濃度が上昇したことを示唆している.これらのチャンネルでは、形状弁別課題中、脱 酸化ヘモグロビン濃度は有意に低下していた.こうした形状弁別課題遂行中のヘモグロビ ン濃度変化は、形状認識処理のための皮質の活性によるものであると推測でき、fMR の知 見とも一致する結果となった[®].

測定 3: 鏡映描写時における運動野対応部位反応

ヒトが体を動かすときには必ずしも感覚情報を要しないが、行為行動する多くの場合、感 覚情報をもとに外界環境を知覚認識しそれに応じて体を動かしている.このような事態を 反映するように、運動野の活動は視覚刺激などに受動的に追従する場合と視覚刺激などと は関係なく意図的に運動する場合とでは運動野の異なる領域が活性化することが知られて いる⁹⁾.タッピングなど比較的単純な上肢運動時に運動野の脳血流反応を N PS によって測 定した報告はこれまでに多数あるが^{e.g. 10)}、新規又は不慣れな視覚刺激に供応して運動を行 う場合(例えば、鏡映描写)、タッピングなどとはやはり幾分異なる皮質領野を活性化させ るという報告がある^{11.9}. 鏡映描写時には運動野付近で脳血流変化量は起るのだろうか. <方法>

正常な裸眼又は矯正視力をもった成人6名が測定に参加した.全員右利き(通常の書字 は右手)であった.このうち1名(HK)は「鏡映描写」の経験があった.その他5名は「鏡 映描写」は初めてだった.

参加者には A5 サイズの描写用紙があらかじめ提示された.その用紙には星形図形が描か れている.星形は大小二つの星型パタンが入れ子状になっており,大きな外側の星型の 1 辺は 35mm 小さな内側の星形は1 辺 27mmで,二つの星形パタンの間には 5mmの間隔がある (図 1-3).参加者は,鏡映描写器(竹井機器工業製)を用いて,鏡越しに,紙面に描かれ た星形図形の中央を「できるだけ早く正確に」鉛筆でなぞって描く事が求められた(上下 反転描写).

参加者は実験者の合図に従って描写を開始し,時計まわりに星型をたどった.30秒間この描写を続け,もし30秒以内に出発点に戻った場合には続けて2周3周と,何度でも繰り 返し続けるように教示した.その後,30秒間の休憩をとり,これを10回繰り返した(描 写30秒+休憩30秒=1試行).被験者はまず左手(非利き手)で10試行描写課題を遂行し, ついで右手(利き手)で10試行行った.この鏡映描写に先立って,鏡を用いないで通常通り

描写する条件(通常描写)を左手,右手の順で行った.

N RS プローブは、左脳と右脳それぞれにおいて、国際 10-20 法の C3/C4 を基準にその前部を覆うように設置した。C3/C4 は一般に中心溝付近に位置すると考えられ、一次運動野はその前部にあたるからである。プローブは一次運動野と前運動野を主にカバーし、前頭眼野や補足運動野をも含む領域に設置されたと考えられる。

く結果>

左右半球毎に平均脳血流変化量をみてみると,通常描写の場合,左半球では右手描写の ときの方が左手描写のときと同じかそれよりも高く,右半球では左手描写のときに右手描 写時と変わらないかそれよりも高かった(図5 左列).一方,鏡映描写のときには,左右両 半球ともに左手描写時に脳血流量が高まった(図5 右列).

この結果は、運動野が通常用いるような運動機能については、左右半球に機能が分化し ているが、新規な環境(視覚)情報に対応して行う不慣れな運動については、それがたと え左片側の手腕しか用いていないにも拘らず、脳の両半球を活性化させて運動制御を試み ようとしている事を示している.一般に NL PS 装置は局所的な血流の変化をとらえるより比 較的大域的な血流量変化をとらえることに長けており、本結果はこのような装置の特性を 生かして明らかにできた一つの例であろう.

それでは一方で、個々のチャンネルの信号はどの程度運動経路の交差性をとらえること に成功したのであろうか? 通常描写時に使用した手腕に対応した左右半球運動野の活性 が確かに記録できているかを調べるために、通常描写で右手を使用した場合にチャンネル 11、12(左半球一次運動野付近)で有意な脳血流上昇が記録された個数と、通常描写で左 手を使用した場合にチャンネル23、24(右半球一次運動野付近)において有意な血流上昇 が観測されたチャンネルは、6名の参加者の4つのチャンネル、合計24チャンネルのうち 16チャンネル(測定総数の66%)だった.このうち、プローブ設置が不適切であったと見 なされるチャンネル4つを除くと、16/20=80%のチャンネルで、対側運動野で通説通りの

脳神経活動が確かめられた事になる.この測定技術を用いて何らかの脳機能を測定・診断 などする場合に、80%程度の検出率があれば、ある程度信頼性の高い測定技術であると考え られるかもしれない.しかし装置装着の不具合による「不良チャンネル」を含めると検出 率が 66%になる事を考えると、設置から測定までの手続きや簡便に扱える用具の開発、効 率的な分析手法の開発などが待たれるところである.

考察

以上,視覚関連脳機能をNRS計測によって捉える我々の試みを紹介した.これまでのNRS 研究報告では言語野や運動野,前頭領野に関するものが圧倒的に多いが,比較的計測しに くいとされていた後頭葉・視覚野対応部の反応も,ある程度の「忍耐」をもって計測すれ ば,今回紹介したようにある程度確実に計測可能なことがわかる.

本研究では、酸化ヘモグロビン濃度変化に注目して検討した.脱酸化ヘモグロビン濃度 変化の限局的増加と酸化ヘモグロビン濃度変化の減少を観察できた場合、その部位で酸素 交換の亢進が生じ、最も活動した部位であるという指摘もなされている³⁰.本研究でも形状 弁別課題時に脱酸化ヘモグロビン濃度変化の増加を観察した.両指標の振る舞いを含めて 検討することが必要であろう.

加えて、NRS 計測システムのもつ様々な制限は(例えば、空間解像度の悪さや深部計測 ができない点などはこの機動性に優れた装置のもつ技術的な宿命として)致し方ないとし ても、測定したヘモグロビン濃度変化から生体ノイズや二次的・三次的な原因による血流 変動を除去して、問題とする一次的脳機能に基づく血流変化を如何に確実に抽出するかと いう方法的課題も残されている.原因があまり明確でない測定時ノイズや信号変化の個人 差は予想以上に大きい.限られた時間内に信頼できるデータを安定的に取得し、そこから 有用な情報をシステマティックに得るためにデータ解析上の工夫も今後ますます必要であ ろう.また、頭蓋や脳の形状は個人個人で異なっている.それぞれに測定した計測値を診

断目的などで特定のモデルと比較する場合などには何らかの標準化が必要となろう. その ような解析手法も報告され始めている¹²⁾.

このように、まだ多くの改善すべき問題点を抱えている NLRS 測定ではあるが、この測定 方法の利点、特に簡便性や機動性といった点は実用上見逃すことができない長所であるこ とは確実である.今後、上述のような問題点が着実に改善されて行くことを期待したい.

文献

- 1) Jobsis, F. F.: Noninvasive infrared monitoring of cerebral and myocardial sufficiency and circulatory parameters. Science 198: 1264-1267, 1977.
- Villringer, A, Planck, J., Hock, C., et al.: Near infrared spectroscopy: a new tool to study hemodynamic changes during activation of brain function in human adults. Neurosci. Lett. 154: 101-104, 1993.
- 3) 加藤俊徳, 小池敏英, 前迫孝憲, ほか: 脳波・筋電図の臨床 高選択性近赤外分光 機能画像法 NI RS-I maging によるブローカ野の脳血流動態と局在化に関する検討 単 語復唱課題遂行時の特徴について. 臨床脳波 46(1): 20-32, 2004.
- 4) Zeki, S.: A Vision of the Brain, Blackwell Scientific Publications: Oxford. 1993.
- 5) Tootell, R.B.H. et al. : Deoxyglucose analysis of retinotopic organization in primate striate cortex. Science 218, 902-904. 1982.
- Hubel, D. H., Wiesel, T. N.: Receptive fields and functional architecture of monkey striate cortex.. J. Physiol. 195: 215-243, 1968.
- Tanaka, K. : Neuronal mechanisms of object recognition. Science, 262, 685-688.
 1993.
- B) Grill-Spector, K, Kushnir, T., Hendler, T et al. : The dynamics of object-selective activation correlate with recognition performance in humans.

Nat. Neurosci. 3, 837-843, 2000.

- 9) Weiller, C., Jüptner, M., Fellows, S., et al.: Brain representation of active and passive movements. NeuroImage 4, 105-110. 1996.
- 10) Watanabe, E., Yamashita, Y., Maki, A, et al.: Non-invasive functional mapping with multi-channel near infra-red spectroscopic topography in humans. Neuroscience Letters 205, 41-44. 1996.
- 11) Imamura, K, Onoe, H, Watanabe, Y., et al.: Regional activation of human cerebral cortex upon an adaptation in mirror drawing. Neuroscience Letters 209, 185-188. 1996.
- 12) Schroeter, M L., Bucheler, M M, Muller, K, et al. : Towards a standard analysis for functional near-infrared imaging. NeuroImage, 21, 283-290, 2004.

謝辞

本研究は科学研究費補助金「金沢大学21世紀 OCE プログラム:発達・学習・記憶と障害の革新脳科学の創成」の援助を得て行われた.

本稿の内容の一部は、2005年12月の日本基礎心理学会において発表した.

Figure Captions

図1. 各測定で用いた刺激の例. -1)測定1:フリッカーパターン, -2)測定2:形状 弁別課題における(a)ターゲット刺激と(b)ディストラクタ刺激, -3)測定3:描写で用い た星形図形.

図2. プローブの装着位置.-1)測定1:後頭視覚皮質対応部,-2)測定2:後側頭葉 対応部,-3)測定3:前中心溝/運動野対応部.Oはプローブ位置,番号は計測位置に対応するチャンネルを示している.

図3. -1) 全視野フリッカーパターン観察時の脳血流量変化
 -2) 4 分割フリッカーパターン観察時の脳血流量変化

図4. 課題遂行中における酸化ヘモグロビン濃度変化の平均. (a)形状弁別課題.(b)位置弁別課題.チャンネル7とチャンネル9において(破線四角), 形状弁別課題遂行中には酸化ヘモグロビン濃度変化が上昇した.

図5. 描写時の左右運動野(1: 左半球 2: 右半球)における脳血流変化(mMol *mm). 左列)通常描写時,右列)鏡映描写時.黒:左手による描写,白:右手による描写.

図 1-1

図 2-3

右半球

