
A simple, accurate scheme for the flow of an
electric charge distribution

言語: en

出版者: 

公開日: 2023-12-06

キーワード (Ja): 

キーワード (En): Coulomb interaction, continuity

equation, nonlinear diffusion, finite volume method

作成者: APISORNPANICH  Lalita, Patrick VAN MEURS

メールアドレス: 

所属: 

メタデータ

https://doi.org/10.24517/0002000263URL
This work is licensed under a Creative Commons
Attribution-NonCommercial-ShareAlike 4.0
International License.

http://creativecommons.org/licenses/by-nc-nd/4.0/


Sci. Rep. Kanazawa Univ. ARTICLES
Vol. 66, pp. 1–16, 2023

A simple, accurate scheme for the flow
of an electric charge distribution

Lalita APISORNPANICH and Patrick VAN MEURS*

Faculty of Mathematics and Physics, Institute of Science and Engineering, Kanazawa University
Kanazawa, 920-1192, Japan

(Received March 7, 2023 and accepted in revised form June 2, 2023)

Abstract We consider a PDE which describes the evolution of an electric charge distri-
bution in one spatial dimension. Due to the (singular) electrostatic interaction, the PDE
is nonlocal. Moreover, the PDE describes the neutralization of charge at points where the
charge distribution changes sign. Despite these complex features of the PDE, we develop a
simple scheme to solve the PDE numerically. We demonstrate by means of simulations that
the scheme is accurate and that it preserves the (expected) properties of the exact solution.
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1 Introduction

We are interested in computing numerically the evolution of an electric charge distribution κ in
one spatial dimension. The flow of this charge distribution at a point x is given directly by the
(nonlocal) electrostatic force induced by the charge distribution surrounding x. When two blobs of
positive and negative charge meet, they gradually neutralize each other at the contact point. This
neutralization is such that the net charge remains constant.

In more detail, for any T > 0 we consider the problem given informally by
∂κ

∂ t
=− ∂

∂x

(
|κ|(g∗κ)

)
0 < t < T, x ∈ R

κ(x,0) = κ
◦(x) x ∈ R,

(P)

where κ = κ(x, t) is the (signed) charge density,

v(x, t) := (g∗κ(·, t))(x) := PV
∫
R

g(x− y)κ(y, t)dy (1.1)

is the flow field (with nonlocal dependence on κ),

g(x) :=
1
x

*Corresponding author Email: pjpvmeurs@staff.kanazawa-u.ac.jp.



2 A simple, accurate scheme for the flow of an electric charge distribution

is the electrostatic force and κ◦ ∈ Lp(R) for some p > 1 is an initial condition. Since g is not
integrable at 0, the integral in (1.1) needs to be defined carefully. The principal value integral exists
at least when κ is sufficiently regular. The convolution by g is known as the Hilbert transform; it
can be extended as a bounded linear operator from Lp(R) to itself for any 1 < p < ∞.

Problem (P) can alternative be interpreted as a model for two competing species. The densities
of the species’ distributions are the positive and negative parts κ± ≥ 0 of κ (note that κ = κ+−
κ−). Since the interior of the supports of κ+ and κ− are disjoint, we obtain from (P) that κ±

satisfy the continuity equations given informally by
∂κ+

∂ t
=− ∂

∂x

(
κ
+ (g∗ (κ+−κ

−))
)

0 < t < T, x ∈ int(suppκ
+(·, t))

∂κ−

∂ t
=− ∂

∂x

(
κ
− (−g∗ (κ+−κ

−))
)

0 < t < T, x ∈ int(suppκ
−(·, t))

(1.2)

with free boundaries. Note that both equations are similar, but that κ− evolves with the negative of
the flow field v, which is natural for an electric charge density. In (P), this is encoded by the factor
|κ|. Moreover, the factor |κ| in (P) implicitly encodes the evolution of the free boundaries in (1.2):
it results in the cancellation of charge density (or neutralization of charge) at contact points, i.e.
points x where κ changes sign.

The motivation for studying problem (P) does not come from the field of electrodynamics.
Instead, it appears in plasticity theory and in quasi geostrophic equations (see [BKM10, vMPP22]
and references therein). [BKM10] establishes a proper solution concept for (P) and proves several
properties of the solution; see Section 2 below. Here and henceforth we will adopt this solution
concept, and interpret (P) in the classical sense only at points (x, t) around which κ is regular and
κ(x, t) ̸= 0. Building a meaningful solution concept was a challenging task due to the nonlocal,
nonlinear and singular nature of the PDE. Very recently, [vMPP22] proved that (P) appears in the
limit n → ∞ of the particle system governed by

dxi

dt
=

B
n

n

∑
j=1
j ̸=i

bib j

xi − x j
, i = 1, . . . ,n, (1.3)

where n is the number of particles, B =
∫
R |κ◦(x)|dx is the total charge at initial time, and xi =

xi(t) ∈ R and bi ∈ {−1,1} are respectively the position and charge of particle i. Upon collision,
particles of opposite charge are removed from the system.

However, we are not aware of a properly motivated numerical scheme for computing solutions
to (P). This motivates the aim of this paper, which is the construction of such a scheme, a numerical
investigation of its accuracy, and a description of the features of the numerical solution to (P).

The paper is organized as follows. In Section 2 we list properties of the solution κ . In Section
3 we develop the scheme for solving (P) numerically. In Section 4 we investigate numerically the
performance of the scheme, and use the scheme to describe features of the numerical solution to
(P). Section 5 contains the conclusion.

2 Properties of the solution κ

We list several properties of problem (P) and its solution which will aid the construction of the
scheme in Section 3. To the best of our knowledge, the first (and only) solution concept of (P)
was found in 2008 in [IMR08, BKM10]. By integrating the equation in space, it turns out that
the integrated equation satisfies a comparison principle for a suitable notion of viscosity solutions.
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In particular, this implies the uniqueness of such solutions. The existence of solutions is shown
for any T > 0 and any κ◦ ∈ L1(R)∩ Lp(R) where p ∈ (1,∞] can be chosen freely (actually, in
[BKM10] a slightly more general class of initial conditions is considered, but this is not relevant
for the contents of our paper). Moreover, for such κ◦ the solution κ(·, t) remains in L1(R)∩Lp(R)
for all t > 0.

In addition, [BKM10] constructs a self-similar solution for the integrated PDE in (P), which
translates to

κ∗(x, t) =
1

2πt

√
[4Nt − x2]+, (2.1)

where
N =

∫
R

κ∗(x, t)dx

is a parameter (independent of t) which equals the net charge. Note that the graph of κ∗(·, t) is
a half-ellipse centred at 0. By the translation invariance of the PDE, κ∗(x− x0, t + t0) is also a
solution for any x0 ∈ R and any t0 ≥ 0. By the symmetry between positive and negative charge,
also −κ∗ is a solution. Moreover, [BKM10] shows that κ∗ is stable, in the sense that the solution
κ(·, t) of (P) converges to κ∗(·, t) as t → ∞ with parameter N =

∫
R κ◦(x)dx.

Based on these facts, we make two further predictions on the properties of the solution to (P)
which we will use to test our scheme:

1. Since the self-similar solution κ∗ has compact support for all t > 0, we expect that if κ◦ has
compact support, then also κ(·, t) has compact support for all t > 0.

2. We expect that the net charge

N(t) :=
∫
R

κ(x, t)dx (2.2)

is conserved.

Regarding the second prediction, we remark that the total charge given by

B(t) :=
∫
R
|κ(x, t)|dx (2.3)

is, however, not expected to be conserved due to the possible cancellation of charge. Instead, we
expect B to be non-increasing.

3 The scheme

First, in Section 3.1 we give a motivation for the scheme. We state the scheme precisely in Section
3.2, and in Section 3.3 we list several of its properties.

3.1 Motivation of the scheme

The scheme is based on the finite volume method with explicit Euler time integration. Motivated
by the prediction in Section 2 that the support of the solution κ(·, t) is compact, we discretize (P)
on a bounded interval [a,b]. We put zero-flux boundary conditions at a and b such that the net
charge will be conserved (see Proposition 3.1 below).
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Next we introduce the uniform spatial grid. Let M ≥ 1 be the number of cells,

xi := a+(b−a)
i

M
(i = 0, . . . ,M),

Qi := [xi−1,xi] (i = 1, . . . ,M),

mi :=
xi + xi−1

2
(i = 1, . . . ,M)

be respectively the cell boundary points, the cells (as closed intervals) and the midpoints of the
cells; see Figure 1. Let

h := |Qi|=
b−a

M
> 0

be the cell size.

mi
xi−1

vi−1

f±i−1

xi

vi

f±ih
κi

Figure 1: A cell Qi.

Next we introduce the spatial discretization. We start from (1.2), which we derived from (P).
To obtain the spatial discretization, we formally approximate the equations in (1.2) in terms of the
average values of κ over Qi given by

κi(t) :=
1
h

∫ xi

xi−1

κ(x, t)dx (i = 1, . . . ,M).

In the following computations we remove the time variable. As done for (1.2) we split κ (and,
similarly, κi) as κ = κ+−κ−. Assuming that either suppκ+ or suppκ− is disjoint with Qi, we
obtain by integrating both equations in (1.2) over Qi that

∂tκ
+
i =

1
h

(
κ
+(xi−1)v(xi−1)−κ

+(xi)v(xi)
)

for all 1 ≤ i ≤ M, (3.1)

∂tκ
−
i =

1
h

(
κ
−(xi−1)[−v(xi−1)]−κ

−(xi)[−v(xi)]
)

for all 1 ≤ i ≤ M. (3.2)

Similar to (1.2), the only difference between the above two equations is the sign in front of the
velocity v. Therefore, we focus on (3.1) in the following computations.

It is left to approximate the right-hand side of (3.1) by an expression which only depends
on {κ j}M

j=1. First, we interpret κ+(x j)v(x j) as the flux at x j. To encode the zero-flux boundary
condition, we replace κ+(x0)v(x0) and κ+(xM)v(xM) by 0. Then, it is left to treat κ+(xi)v(xi) for
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1 ≤ i ≤ M−1. With this aim, we approximate

v(xi) = PV
∫ b

a
g(xi − y)κ(y)dy

=
M

∑
j=1

∫
Q j

g(xi − y)κ(y)dy

≈
M

∑
j=1

g(xi −m j)
∫

Q j

κ(y)dy

= h
M

∑
j=1

g(xi −m j)κ j

=
M

∑
j=1

κ j

i− j+ 1
2

=: vi. (3.3)

The second equality in (3.3) is formal, because g(xi −y) is not integrable on either Qi or Qi+1. We
give a proper motivation for (3.3) in Section 3.4. Regarding κ+(xi) for each 1 ≤ i ≤ M − 1, we
approximate it by either κ

+
i or κ

+
i+1 following the upwind direction, i.e.

κ
+(xi)≈

{
κ
+
i if vi ≥ 0,

κ
+
i+1 if vi < 0.

When we put this together, the flux is approximated for any 1 ≤ i ≤ M−1 as

κ
+(xi)v(xi)≈ f+i :=

{
viκ

+
i if vi ≥ 0,

viκ
+
i+1 if vi < 0.

(3.4)

By setting f+0 := f+M := 0, (3.4) holds for all 0 ≤ i ≤ M. Finally, we obtain from (3.1) that

∂tκ
+
i ≈ 1

h

(
f+i−1 − f+i

)
for all 1 ≤ i ≤ M. (3.5)

Note that the right-hand side is explicit in terms of {κi}M
i=1 as desired.

Next we apply a similar spatial discretization to (3.2). Since the only difference with (3.1) is
that κ− is driven by −v as opposed to +v, only the expression for the flux changes. It changes into

f−i :=

{
−viκ

+
i if vi ≤ 0,

−viκ
−
i+1 if vi > 0

for any 1 ≤ i ≤ M−1, and f−0 := f−M := 0. Then, from (3.2) we obtain

∂tκ
−
i ≈ 1

h

(
f−i−1 − f−i

)
for all 1 ≤ i ≤ M. (3.6)

Finally, we discretize in time. We use the explicit Euler method with fixed time step τ > 0. We
add t back to the notation, and note that vi and f±i also depend on t. Let

tk := τk (k = 0, . . . ,K)

be the discrete time points, where K := ⌈T/τ⌉. We approximate

∂tκ
±
i (tk)≈

κ
±
i (tk+1)−κ

±
i (tk)

τ
.
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Then, setting
κ
±,k
i := κ

±
i (tk)

and defining vk
i and f±,k

i similarly, we obtain from (3.5) and (3.6) that

κ
±,k+1
i ≈ κ

±,k
i +

τ

h
( f±,k

i−1 − f±,k
i ). (3.7)

Finally, we put κ
+,k+1
i and κ

−,k+1
i together to obtain κ

k+1
i . Note that {κ

+,k+1
i }M

i=1 and {κ
−,k+1
i }M

i=1
may overlap in the sense that there may exists an i for which κ

+,k+1
i κ

−,k+1
i ̸= 0. Hence, they might

not be the positive and negative part of some {κ
k+1
i }M

i=1. To remove overlapping parts without
changing the net charge, we simply set

κ
k+1
i := κ

+,k+1
i −κ

−,k+1
i . (3.8)

This completes the motivation for the scheme below in Section 3.2.
However, the notation becomes inconsistent when iterating over k, because while κ

±,k
i are the

positive/negative part of κk
i , κ

±,k+1
i need not be the positive/negative part of κ

k+1
i . Fortunately, by

substituting (3.7) in (3.8), the use of κ
±,k+1
i can be avoided. Indeed, this substitution yields

κ
k+1
i ≈ κ

k
i +

τ

h
( f k

i−1 − f k
i ) for all 1 ≤ i ≤ M,

where
f k

j := f+,k
j − f−,k

j for all 0 ≤ j ≤ M.

3.2 Scheme

The scheme follows from the approximations in Section 3.1 by treating κk
i as an independent

quantity and replacing all approximations by equalities. In more detail, for an initial condition
{κ0

i }M
i=1 ∈ RM, we iteratively compute {κ

k+1
i }M

i=1 from {κk
i }M

i=1 for k = 0, . . . ,K −1 as follows:

1. compute vk
i =

M

∑
j=1

κk
j

i− j+ 1
2

for i = 1, . . . ,M−1,

2. set κ
±,k
i as the positive and negative part of κk

i for i = 1, . . . ,M,

3. for i = 1, . . . ,M−1 compute

f+,k
i =

{
vk

i κ
+,k
i if vk

i ≥ 0

vk
i κ

+,k
i+1 if vk

i < 0
and f−,k

i =

{
−vk

i κ
−,k
i if vk

i ≤ 0

−vk
i κ

−,k
i+1 if vk

i > 0,

4. set f k
0 = f k

M = 0 and take f k
i := f+,k

i − f−,k
i for i = 1, . . . ,M−1,

5. compute κ
k+1
i = κk

i +
τ

h ( f k
i−1 − f k

i ) for i = 1, . . . ,M.

For convenience we further set f±,k
0 = f±,k

M = 0 for all 0 ≤ k ≤ K.

3.3 Properties and computational complexity

Let a< b, M ∈N, T,τ > 0 and {κ0
i }M

i=1 be given, let h,K be as in Section 3.1 and let vk
i , f±,k

i , f k
i ,κ

k
i

be as defined by the scheme in Section 3.2. The computational complexity of the scheme is
O(M2K) = O(h−2τ−1). Indeed, the scheme is iterated K times. At each iteration, Steps 2-5 take
O(M) many computations, but Step 1 requires O(M2) many computations.
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Regarding the properties of the scheme, we show below in Proposition 3.1 that the discrete net
charge given by

Nk
h := h

M

∑
i=1

κ
k
i (k = 0, . . . ,K) (3.9)

is unconditionally conserved. Moreover, in Proposition 3.3 we show that nonnegativity of {κk
i }M

i=1
is conserved and that the total charge

Bk
h := h

M

∑
i=1

|κk
i | (k = 0, . . . ,K) (3.10)

is non-increasing in k for τ small enough with respect to h and B0
h.

Proposition 3.1. Nk
h = N0

h for all 0 ≤ k ≤ K.

Proof. Proposition 3.1 follows from induction by the following computation:

Nk+1
h = h

M

∑
i=1

κ
k+1
i = h

M

∑
i=1

(
κ

k
i +

τ

h
( f k

i−1 − f k
i )
)
= Nk

h + τ( f k
0 − f k

M) = Nk
h . (3.11)

Lemma 3.2. For all 1 ≤ i ≤ M and all 0 ≤ k ≤ K,

f±,k
i−1 − f±,k

i ≥−4
h

κ
±,k
i Bk

h.

Proof. We prove the inequality with ‘+’ in the superscript; the proof for when the superscript
is ‘−’ is analogous. For c ∈ R we set [c]+, [c]− ≥ 0 as the positive and negative part. First, we
assume that 2 ≤ i ≤ M−1. By the definition of f+,k

j ,

f+,k
i−1 − f+,k

i ≥−[vk
i−1]

−
κ
+,k
i − [vk

i ]
+

κ
+,k
i ,

where for ℓ ∈ {i−1, i}

|vk
ℓ|=

∣∣∣∣ M

∑
j=1

κk
j

ℓ− j+ 1
2

∣∣∣∣≤ 2
M

∑
j=1

|κk
j |=

2
h

Bk
h. (3.12)

Hence, Lemma 3.2 follows for 2 ≤ i ≤ M −1. If instead i ∈ {1,M}, then the computation above
simplifies since f+,k

0 = f+,k
M = 0.

Proposition 3.3. If τ ≤ h2/(4B0
h), then the following hold:

1. Bk+1
h ≤ Bk

h for all k = 0, . . . ,K −1;

2. Let k ∈ {0, . . . ,K −1}. If κk
i ≥ 0 for all 1 ≤ i ≤ M, then κ

k+1
i ≥ 0 for all 1 ≤ i ≤ M;

3. Let k ∈ {0, . . . ,K −1}. If κk
i ≤ 0 for all 1 ≤ i ≤ M, then κ

k+1
i ≤ 0 for all 1 ≤ i ≤ M.

Proof. We prove the first statement by induction over k. Suppose that Bk
h ≤ Bk−1

h ≤ . . . ≤ B0
h for

some k ∈ {0, . . . ,K −1}. Then,

τ ≤ h2

4B0
h
≤ h2

4Bk
h
, (3.13)

and by Lemma 3.2

µ
±,k
i := κ

±,k
i +

τ

h
( f±,k

i−1 − f±,k
i )≥ κ

±,k
i

(
1− 4τ

h2 Bk
h

)
≥ 0 (i = 1, . . . ,M). (3.14)
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Then, by a similar computation as in (3.11), we obtain the desired result from

Bk+1
h = h

M

∑
i=1

|κk+1
i |= h

M

∑
i=1

|µ+,k
i −µ

−,k
i | ≤ h

M

∑
i=1

(µ+,k
i +µ

−,k
i ) = Bk

h.

To prove the second statement, note that (3.13) holds and that f−,k
j = 0 for all 0≤ j ≤M. Then,

κ
k+1
i = κ

+,k
i +

τ

h
( f+,k

i−1 − f+,k
i ),

which, by repeating the computation in (3.14), is nonnegative for all 1 ≤ i ≤ M.

Remark 3.4. The requirement in Proposition 3.3 that τ ≤ h2/(4B0
h) = O(h2) is rather strict given

that the stability condition for the finite volume method for the continuity equation with constant
velocity is τ ≤ Ch = O(h). The additional factor h appears in the estimate in (3.12), which is
based on the worst case scenario in which κk

i is concentrated around the singularity of g. If we
would have a uniform bound |κk

i | ≤C which holds for all 1 ≤ i ≤ M and all 0 ≤ k ≤ K (this bound
turns out to hold for all simulations performed in Section 4), then the estimate in (3.12) can be
sharpened to

|vk
ℓ| ≤

M

∑
j=1

|κk
j |

|ℓ− j+ 1
2 |

≤
M

∑
j=1

C
|ℓ− j+ 1

2 |
≤ 2C

(
2+

M−1

∑
i=1

1
i+ 1

2

)
≤ 2C

(
2+

∫ M

1
2

1
x

dx
)
≤ 2C

(
2+ log

b−a
h

+ log2
)
= O(| logh|),

and the required upper bound on τ in Proposition 3.3 would become of size O(h| logh|).

3.4 Proper motivation for vi

Here we give a proper motivation for the formal computation in (3.3). We fix i ∈ {1, . . . ,M − 1}
and assume that κ ∈ C([a,b]) is differentiable at xi. Because of the singularity in g, we have to
consider the integrals over Qi and Qi+1 together as a principal value integral, i.e.

PV
∫ xi+1

xi−1

g(xi − y)κ(y)dy = lim
ε→0

(∫ xi−ε

xi−1

g(xi − y)κ(y)dy+
∫ xi+1

xi+ε

g(xi − y)κ(y)dy
)
.

Using the oddness of g, we can rewrite the right-hand side as

lim
ε→0

(∫ h

ε

2zg(z)
κ(xi − z)−κ(xi + z)

2z
dy
)
.

Then, in the integrand, zg(z)≡ 1 and the fraction converges to −κ ′(xi) as z → 0. Hence, the limit
ε → 0 exists. By the midpoint rule for integration, we obtain that the limit is approximately equal
to

2h
κ(mi)−κ(mi+1)

h
≈ hg

(h
2

)
κi +hg

(
− h

2

)
κi+1.

The two terms in the right-hand side are precisely the two terms in the sum in (3.3) corresponding
to j = i and j = i+1.
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4 Simulations

In this section we examine the performance of the scheme for problem (P) in Section 3.2 by
means of numerical simulations. We also examine the features of the numerical solution. In all
simulations we take

[a,b] = [−3,3],

M = 12 ·2ℓ for ℓ ∈ {0, . . . ,8},

τ =
1

10M
=

h
60

,

κ
0
i =

1
h

∫
Qi

κ
◦(x)dx for i ∈ {1, . . . ,M},

where we consider three different choices for κ◦ in respectively Sections 4.1, 4.2 and 4.3. Note
that by the choice of κ0

i , we precisely capture the net charge (recall (2.2) and (3.9)) of κ◦:

N0
h = h

M

∑
i=1

κ
0
i =

∫ b

a
κ
◦(x)dx = N(0).

Recall from Proposition 3.1 that the scheme conserves the net charge. In Section 4.4 we summarize
our observations and findings.

4.1 Self-similar solution

We start with the case in which κ◦ is a half-ellipse, such that the solution κ to (P) is explicitly
given by a time translated version of the self-similar solution κ∗ defined in (2.1) until the time T
at which the support of κ∗(·, t) touches the endpoints of [a,b]. We take

κ
◦(x) =

8
π

√
[1

4 − x2]+,

which equals κ∗(x, 1
16) with total charge B(0) = N(0) = 1. Then,

κ(x, t) = κ∗

(
x, t +

1
16

)
=

1
2π(t + 1

16)

√
[4(t + 1

16)− x2]+.

Note that at t = 3
16 and t = 15

16 the support of κ(·, t) is respectively [−1,1] and [−2,2]. Since
κ(x, t) ≥ 0, the scheme reduces to a standard application of the finite volume method. However,
due to our simple discretization of the velocity in (3.3) it is not clear whether the discrete solution
κk

i resembles κ(xi, tk). Therefore, we first test our scheme for κ◦ above without any negative
charge.

Figure 2 illustrates κk
i alongside κ(x, t) at t = 0, 3

16 ,
15
16 . Here and in what follows, at a given

time point t, we take k = ⌈t/τ⌉ as the corresponding iteration number (note that t ∈ (tk−1, tk]).
It appears that the scheme is able to capture κ(x, t) well without any speed up or lag in t. One
noteworthy difference between κk

i and κ(x, t) is that at the endpoints of the support of κ(·, t),
where κ(·, t) sharply hits 0, κk

i regularizes the decay to 0. We observe that this regularization
becomes smaller as M increases. For large values of M, the gray surface which represents κk

i
resembles a blob with regular boundary; in the remainder (Figures 5 and 7) we will illustrate κk

i
by this boundary as a line plot.
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Figure 2: κk
i (gray) alongside κ(x, t) (red) at t = 0, 3

16 ,
15
16 and for M = 12 ·2ℓ with ℓ= 1,3,5.

To test and quantify the convergence of the scheme to (P), we define the relative error

ε̃M(t) :=
1

MBk
h

M

∑
i=1

|κk
i (M)−κ(mi, t)|, (4.1)

which is based on the vector 1-norm. Recall that mi is the midpoint of cell Qi. We write κk
i =

κk
i (M) to emphasize the dependence on M. Since κk

i remains nonnegative, we obtain for the total
charge Bk

h (i.e. h times the vector 1-norm of {κk
i }M

i=1; recall (3.10)) that Bk
h = Nk

h = N0
h = N(0) = 1

for all 0 ≤ k ≤ K.
Figure 3 suggests that the decay of ε̃M is close to first order in 1

M . This is a surprisingly
fast decay, because the standard finite volume method for the continuity equation with constant
velocity has first order decay while the velocity in (P) is not constant and depends moreover on
κ in a nonlocal and singular manner. Another interesting observation from Figure 3 is that ε̃M(t)
seems to decrease in t. We think that this is due to the following. As time increases, the support
of κ(x, t) spreads out over more cells, and thus κ(x, t) can be discretized more accurately over the
cells (see the first row of three plots in Figure 2). However, that the scheme actually does this is
surprising to us. It indicates that there is no artificial speed-up or lag in time.

The error in (4.1) is of limited practical use, because it requires the exact solution κ to be
known. In preparation for testing our scheme with κ◦ for which we do not have an explicit expres-
sion, we define the relative error

εM(t) :=
1

MBk
h

M

∑
i=1

∣∣∣∣κk
i (M)−

κk
2i−1(2M)+κk

2i(2M)

2

∣∣∣∣.
This error compares the discrete solution κk

i (M) to that on a grid which is twice as fine (i.e. to



Lalita APISORNPANICH and Patrick VAN MEURS 11

10−4

10−1

12
·2

0

12
·2

4

12
·2

8

−1

Figure 3: The error ε̃M(t) as a function of M for κ◦ as the half ellipse and for t = 3
16 (red) and

t = 15
16 (blue).

κk
i (2M)). The number of fine cells, i.e. 2M, is chosen such that each cell on the coarse grid covers

precisely two neighboring cells on the fine grid.
Figure 4 shows that εM(t) is qualitatively similar to ε̃M(t). In particular, the decay with respect

to 1
M seems to be roughly of first order, which implies on itself that the decay of ε̃M(t) is roughly

of first order too. This motivates us to work with εM(t) in all simulations which follow.

10−4

10−1

12
·2

0

12
·2

3

12
·2

6

−1

Figure 4: Similar as Figure 3, but now for the error εM(t).

4.2 Two asymmetric positive blocks

In Section 4.1 we demonstrated that the scheme performs well for the self-similar solution. Here
we investigate its performance for a more generic solution. We still limit κ◦ to be non-negative in
order to discover the effect of the simple approximation for the velocity in (3.3).

More precisely, we investigate the evolution of two positive blobs of different size. With this
aim, we take

κ
◦(x) =

{
1 if x ∈ [−1, 1

2 ]∪ [0,1]

0 otherwise;
(4.2)

see Figure 5. First we examine κk
i for M = 12 ·28 to study features of the solution κ to (P). From

Figure 5 we make three interesting observations:



12 A simple, accurate scheme for the flow of an electric charge distribution

• Shortly before the two blobs aggregate (at t = 0.13), the influence of one blob on the profile
of the other is hardly visible. In particular, close to the point of contact the blobs do not
seem to anticipate the aggregation. The effect of the nonlocal (repelling) force of the small
blob exerted on the big blob is visible from the small shift of the big blob to the right.

• Shortly after the two blobs have aggregated (at t = 0.17), the kink in the graph of κk
i close

to where the two blobs met is still profoundly visible. Therefore, the smoothing effect of
(P) seems to be weak.

• At t = 1, which is long after the aggregration of the blobs but before κk
i hits either of the

endpoints of [a,b], the graph of κk
i starts to resemble the self-similar solution. This is in line

with the stability result established in [BKM10].

0

1

−3 0 3

t = 0

0

1

−3 0 3

t = 0.13

0

1

−3 0 3

t = 0.17

0

1

−3 0 3

t = 1

Figure 5: κk
i (blue) for M = 12 ·28 and κ◦ as in (4.2) at several time points.

Next we examine the convergence of κk
i as M gets large. Figure 6 suggests that the error

εM(t) has again roughly a first-order decay with respect to 1
M . Hence, the good performance of

the scheme extends beyond the self-similar solution. We also observe that εM(t) seems to be
decreasing in t when M is large enough.

We remark that while the decay of εM(t) in M suggests convergence of the scheme, it does not
necessarily follow that the limit is given by the solution κ of (P). However, we have validated that
κk

i is close to the numerical solution of the particle system in (1.3) (see e.g. [Pra20] for an accurate
numerical scheme), and [vMPP22] guarantees that the particle system converges to (P).

4.3 Two asymmetric blocks of opposite charge

Finally, we consider a choice for κ◦ which takes both signs such that we can test the part of the
scheme where it deviates from the finite volume method. To compare with the setting in Section
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Figure 6: The error εM(t) as a function of M for κ◦ given by the two positive blocks and for t = 0.1
(red), t = 0.2 (blue) and t = 0.5 (black).

4.2 (see (4.2)), we take

κ
◦(x) =


−1 if x ∈ [−1, 1

2 ]

1 if x ∈ [0,1]

0 otherwise;

(4.3)

see Figure 7. As for the previous case, we examine κk
i for M = 12 ·28 to study the features of the

solution κ to (P). From Figures 5 and 7 we make three interesting observations:

• At t = 0.04, shortly before the two blobs collide, it appears again that the shapes of the
blobs are hardly influenced by the presence of the other blob, and that there is no visible
anticipation of the shape prior to collision. In comparison to Figure 5, the blobs have slightly
moved towards each other, and the collision happens much earlier.

• At t = 0.2, well after the blobs have collided, it is clear from the size of the smaller blob
that a certain amount of charge has been neutralized. We also observe that the graph of κk

i is
steep around the contact point (steeper than on neighborhoods around the two endpoints of
its support). We have no conjecture about the (asymptotic) shape of κk

i around the contact
point.

• At t = 1 most of the charge of the small blob has been neutralized, and the support of κk
i

is not far from the endpoint b. Both blobs seem to expand (i.e. they get closer to their
corresponding endpoints a or b) despite the attractive force exerted by the other blob. The
contact point seems to move to the left. We also note that the positive blob may seem to have
moved to the right despite the attractive force exerted by the negative blob. Our explanation
for this is as follows: the figure only shows the remaining positive charge, whereas all the
neutralized positive charge is piled up along the area swept over by the contact point.

Next we examine the convergence of κk
i as M gets large. Figure 8 suggests that the error εM(t)

has again roughly a first-order decay with respect to 1
M , but the evidence is less strong than in the

previous case (see Figure 6). Indeed, larger values of M are needed to observe convergence, and
for t = 0.02 (prior to collision) the available data show a lower rate of convergence. Nevertheless,
the scheme seems to perform well also for initial conditions with both positive and negative charge
distributions. In addition, we observe again that (for M large enough) εM(t) is decreasing in time.
Finally, we have again validated that κk

i is close to the solution κ of (P) by comparing it to the
solution of the particle system in (1.3).
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Figure 7: κk
i (blue) for M = 12 ·28 and κ◦ as in (4.3) at several time points.
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Figure 8: Similar to Figure 6, but now for κ◦ given by the two blocks of opposite charge and for
t = 0.02 (red), t = 0.1 (blue) and t = 0.5 (black).

4.4 Synopsis of the observations

In Sections 4.1, 4.2 and 4.3 we have tested the accuracy of the scheme and observed features of
the numerical solution. Here, we focus on the common observations, and expect that they apply
to any initial condition.

The accuracy of the scheme seems to be close to O(τ + h). This is surprisingly good, given
the simplicity of the approximation of the nonlocal and singular flow field v (see (3.3)). As a
consequence of this accuracy, the numerical solution converges. We observed that the limit appears
to be indeed the solution κ to problem (P).

We also observed that the relative error decreases in time, which came as a surprise to us.
This shows that there is no artificial speed up or lag induced by the scheme. We note that this
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observation is based only on three time points. In fact, since there is no error at t = 0, there must
be a short initialization period during which the error increases. Nonetheless, the decrease in error
sets in long before the solution starts to resemble the self-similar solution.

The problem (P) tends to regularize κ(·, t) as t increases, but only for density values away from
0. At points where κ(·, t) hits 0, the derivative seems to blow up. This blow-up is even stronger at
points where κ(·, t) changes sign.

As for the long-time behavior of (P), there appear to be two competing effects: the spreading
out of density blobs and the attractive force between blobs of opposite charge. It would be inter-
esting to find out which of the two effects will be dominant, i.e. whether limt→∞ B(t) (recall (2.3))
equals 0 or not. However, our discretization in both time and space is not suited to address this
question numerically.

5 Conclusion

For the mathematically rather complicated problem (P) which describes the evolution of the elec-
tric charge density κ , we have developed a simple numerical scheme (see Section 3.2). The scheme
is not restricted to g(x) = 1

x , and can easily be extended to other interaction forces g as long as g
is odd and |xg(x)| is integrable around x = 0. The numerically tested performance of the scheme
is very good in the sense that its accuracy is close to the best accuracy one can expect from an
upwind scheme with explicit Euler time integrator. Also, the scheme appears to have no artificial
speed up or lag in time (in fact, the relative error tends to decrease in time for all tested scenarios),
and conserves the expected properties of κ .

We wish to mention four directions for future research:

1. It would be interesting to see whether the computational cost can be reduced (up to almost
one order in M) without giving up too much on accuracy. The idea is that in Step 1 of the
scheme (in the computation of vk

i ) the values of κk
j with j far from i get a smaller weight

compared to those for j close to i. Thus, by using a hierarchy of coarser cells (multi-grid),
several adjacent values κk

j can be clogged together to reduce the size of the sum in Step 1
without losing too much accuracy.

2. (P) should be discretized on R instead of a bounded interval [a,b]. This becomes relevant
when studying the long-time behavior. For this, both the spatial and temporal grid need to
be carefully designed.

3. The numerically observed good performance of the scheme further motivates to rigorously
establish accuracy of the scheme. However, we think that this is very challenging due to the
singular nature of the PDE (P) and the lack of regularity of its solution (see e.g. Figure 7).

4. The extension of the scheme to two spatial dimensions is much desired. Indeed, while the
counterpart of the PDE in (P) in two dimensions can formally be written as

∂κ

∂ t
=−div

(
|κ|(g2 ∗κ)

)
, g2(x) :=

x
|x|2

,

no well-posed solution concept is available for either this equation (an attempt was made
in [AMS11]) or for the corresponding particle system in two dimensions. Yet, since our
scheme is mainly based on the finite volume method, it is not difficult to extend it to two
dimensions. It remains to investigate the performance of the scheme in two dimensions.



16 A simple, accurate scheme for the flow of an electric charge distribution

Acknowledgements

PvM was supported by JSPS KAKENHI Grant Number JP20K14358.

References
[AMS11] L. Ambrosio, E. Mainini, and S. Serfaty. Gradient flow of the Chapman–Rubinstein–Schatzman model

for signed vortices. In Annales de l’Institut Henri Poincare (C) Non Linear Analysis, volume 28, pages
217–246. Elsevier, 2011.

[BKM10] P. Biler, G. Karch, and R. Monneau. Nonlinear diffusion of dislocation density and self-similar solutions.
Communications in Mathematical Physics, 294(1):145–168, 2010.

[IMR08] C. Imbert, R. Monneau, and E. Rouy. Homogenization of first order equations with (u/ε)-periodic Hamil-
tonians Part II: Application to dislocations dynamics. Communications in Partial Differential Equations,
33(3):479–516, 2008.

[Pra20] H. Prayogi. Explicit variable time step solver for particle dynamics in 1d with an annihilation rule. Master’s
thesis, Kanazawa University, 2020.
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